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Overview

1 Basic definitions in standard probability theory.

2 Coherent probabilities, and full conditional probabilities.

3 Credal sets.

4 Independence concepts for credal sets, full conditional
probabilities, full credal sets.



Standard axioms for probabilities...

Space Ω (FINITE!): subsets are events, functions are random variables.

PU1 P(A) ≥ 0.

PU2 P(Ω) = 1.

PU3 If A ∩ B = ∅, then P(A ∪ B) = P(A) + P(B).

EXP E [X ] =
∑

X (ω)P(ω).

CP If P(B) > 0, then P(A|B) = P(A∩B)
P(B) .

Two problems:

1 Conditional probability is a derived, incomplete concept: may
be left undefined even if given event is possible (nonempty).

2 Quite a bit of structure is assumed; precise specification of all
possible probability values is assumed feasible.



A different scheme: Coherent probabilities

Basic idea: assessments

P(A1|B1) = α1,P(A2|B2) , . . . ,P(Am|Bm) = αm

on conditional events must be coherent.

Result: assessments are coherent if and only if they can be
extended to a full conditional probability.

Assessments are coherent when,
for every λ1, . . . , λm,

sup
ω∈∪m

i=1Bi

m∑
i=1

λi (IAi
− αi )IBi

≥ 0.



A full conditional probability is...

...a function P(·|·) on E × E\∅ where E is Boolean algebra of
events, such that

P(Ω|C ) = 1;

P(A|C ) ≥ 0 for all A;

P(A ∪ B|C ) = P(A|C ) + P(B|C ) when A ∩ B = ∅;
P(A ∩ B|C ) = P(A|B ∩ C ) P(B|C ) when B ∩ C 6= ∅.

Write the “unconditional” probability P(A) for P(A|Ω).

P(A|B ∩ C ) can be defined even if P(B|C ) = 0!



Two examples

Two events A and B.

P(·|Ω)

A Ac

B 0 α

Bc 0 1− α

P(B|A) = β
P(Bc |A) = 1− β

Square with uniform distribution (NOTE: infinite space...)

Points a, b, c , d , line e.

P(a) = P(b) = P(c) = P(d) (= 0...).

But P(a|a ∪ b) = 1/2...
And P(e|a ∪ b) = P(a|a ∪ b) = 1/2.



The Krauss-Dubins representation

L0, . . . , LK partition Ω, and there is a positive probability Pi

over each Li .

P(A|B) = P(A|B ∩ Li ), where i = arg minj(P(B|Lj) > 0).

Example: two events A and B.

P(·|Ω)

A Ac

B 0 α

Bc 0 1− α

P(B|A) = β
P(Bc |A) = 1− β

P(·|A)

A Ac

B β

Bc 1− β



Example

Two events A and B, three layers

A Ac

B 1 0

Bc 0 0

A Ac

B 1− α
Bc α 0

A Ac

B

Bc 1



Coletti and Scozzafava’s layer numbers

The layer number of A is the index of the first layer Li such
that P(A|Li ) > 0.

Layer numbers

A Ac

B 1 0

Bc 0 0

A Ac

B 1− α
Bc α 0

A Ac

B

Bc 1

◦(A ∩ B) = 0, ◦(A ∩ Bc) = ◦(Ac ∩ B) = 1, ◦(Ac ∩ Bc) = 2.

Adopt: ◦(∅) =∞.

Adopt: ◦(A|B) = ◦(A ∩ B)− ◦(B) whenever B 6= ∅.



Layer numbers and Spohn ranking functions

Given a full conditional probability, the layer numbers induced
by it satisfy the properties of Spohn ranking functions
(measures of “disbelief”).

Ranking functions satisfy:

◦(A) = 0 or ◦(Ac) = 0 (or both).

◦(A ∪ B) = min(◦(A) , ◦(B)).

◦(∅) =∞.

◦(A|B) = ◦(A ∩ B)− ◦(B) if A ∩ B 6= ∅.



Coherent and full conditional probabilities offer...

a principled approach to conditional probability (and
conditional events).

a flexible framework for assessments, that does not require
much structure on events, and does not assume complete
specification.

a unifying language that can express a variety of formalisms
(even Spohn-like measures, probabilistic logics, default
reasoning).



Credal sets

A credal set is a set of probability measures (distributions).

A credal set is usually defined by a set of assessments.

Possibility space with three states: Ω = {ω1, ω2, ω3}

Assessments:
P(ω1) ∈ [1/3, 2/3],
P(ω2) ∈ [1/3, 2/3],
P(ω3) ∈ [1/3, 2/3],

p1 p2

p3



A few points...

Credal set with distributions for X is denoted K (X ).

Given credal set K (X ):

P(A) = infP∈K(X ) P(A).

E [X ] = infP∈K(X ) EP [X ].

Consider the lower expectation functional that associates
every random variable X with its lower expectation.

There is a one-to-one correspondence between closed convex
credal sets and lower expectation functionals.



Justifying credal sets

1 From partially ordered (binary) preferences, closed convex
credal sets:

X � Y iff EP [X ] > EP [Y ] for all P ∈ K .

From more general preferences, more general credal sets.

2 From coherence: a set of assessments {E [Xi ] = αi}mi=1 is
coherent if and only if it can be extended to a credal set.

For every X0,X1, . . . ,Xn, any m > 0, there is
ω ∈ Ω such that

n∑
i=1

(Xi (ω)− E [Xi ]) ≥ m × (X0(ω)− E [X0]).



Credal sets offer...

a unifying language to express assessments:

P(A) = 1/2; E [X ] = 10;

P(B) ∈ [1/2, 3/4]; E [X + Y ] = 1; P(A) ≤ P(B ∩ C ) ; . . .

and belief functions, Choquet capacities, p-boxes, probability
intervals, possibility measures...

a framework for robustness analysis.

a model for ambiguity aversion and risk assessment in
decision-making, economics, and finance.

a scheme for aggregation of beliefs within an agent, or a
community of agents.



Conditioning

1 One option:

K (X |B) = {P(·|B) : P ∈ K (X )} if P(B) > 0.

2 Another option:

K>(X |B) = {P(·|B) : P ∈ K (X ) and P(B) > 0} if P(B) > 0.

Problem:

Conditional probability is a derived, incomplete concept: may
be left undefined even if given event is possible (nonempty).



Full credal sets

A set of full conditional probabilities (used by Levi, Williams,
Walley).

Now: a set of assessments of lower/upper
probabilities/expectations

is coherent if and only if
it can be extended to a set of full conditional probabilities

Williams coherence (refined Pelessoni-Vicig version, finite Ω):
For every X0|B0,X1|B1, . . . ,Xn|Bn, any
s0 ≥ 0, s1 ≥ 0, . . . , sn ≥ 0, there is ω ∈ ∪ni=0Bi such that

n∑
i=1

si IBi
(ω)(Xi (ω)− E [Xi ]) ≥ s0IB0(ω)(X0(ω)− E [X0]).



Independence: first, for standard probabilities

Variables X1, . . . ,Xn are stochastically independent when

P(X1 = x1, . . . ,Xn = xn) = P(X1 = x1)× · · · × P(Xn = xn).

P(Xi = xi | ∩j 6=i Xj = xj) = P(Xi = xi ),
whenever P(∩j 6=iXj = xj) > 0.

Conditional independence: independence given every {Z = z}.



The semi-graphoid properties

Proposed as a way to encode the intuitive meaning of “conditional
independence”.

Symmetry: (X ⊥⊥Y |Z )⇒ (Y ⊥⊥X |Z )

Redundancy: (X ⊥⊥Y |X )

Decomposition: (X ⊥⊥(W ,Y ) |Z )⇒ (X ⊥⊥Y |Z )

Weak union: (X ⊥⊥(W ,Y ) |Z )⇒ (X ⊥⊥W |(Y ,Z ))

Contraction:
(X ⊥⊥Y |Z ) & (X ⊥⊥W |(Y ,Z ))⇒ (X ⊥⊥(W ,Y ) |Z )



Independence for full conditional probabilities

Example: two events A and B

A Ac

B 1 0

Bc 0 0

A Ac

B 1/10

Bc 1/10 4/5

Note: P(Ac ∩ Bc) = P(Ac) P(Bc).

However, P(Ac |Bc) = 4/5
1/10+4/5 = 8/9, while P(Ac) = 0!



Another example, as a digression (infinite space)

Square with uniform distribution (NOTE: infinite space...)

Points a, b, c , d , line e.

P(a) = P(b) = P(c) = P(d) (= 0...).

But P(a|a ∪ b) = 1/2...
And P(e|a ∪ b) = P(a|a ∪ b) = 1/2.

Note: P(e ∩ (a ∪ b)) = P(a) = P(a) P(b) = 0.

However, P(e|a ∪ b) = 1/2!



Failure of symmetry

Example: two events A and B

A Ac

B 1/2 0

Bc 1/2 0

A Ac

B 1/3

Bc 2/3

Note: P(Ac |B) = P(Ac).

However, P(B|Ac) = 1/3, while P(B) = 1/2!



Epistemic and cs-independence (for variables)

Idea: for independence of X and Y , require

P(X = x |Y = y ,Z = z) = P(X = x |Z = z)

and
P(Y = y |X = x ,Z = z) = P(Y = y |Z = z)

and

◦(X = x ,Y = y |Z = z) = ◦(X = x |Z = z) + ◦(Y = y |Z = z) .

This definition fails the following property:

Weak union: (X ⊥⊥(W ,Y ) |Z )⇒ (X ⊥⊥W |(Y ,Z ))



Other concepts of independence

1 Hammond’s concept of independence (fails Contraction).

2 Blume et al’s concept of preference independence (fails
Contraction).

3 Kohlberg and Reny’s concept of “strong” independence (fails
Contraction).

4 Layer independence.



Back to credal sets: Complete independence

X and Y are completely independent when

for all P ∈ K (X ,Y ),

P(X = x ,Y = y) = P(X = x)× P(Y = y) .

That is, elementwise stochastic
independence.

Example: several experts
agree on stochastic
independence.

This concept
violates convexity.

P(A ∩ B) P(A ∩ Bc)

P(Ac ∩ B)

1 1

1



Strong independence

X and Y are strongly independent when

K (X ,Y ) is the convex hull of a set of distributions satisfying
complete independence.

Variants:

Walley and Fine’s independent products;
Walley’s type-1 and type-2 products;
Weichselberger’s mutual independence;
Campos and Moral’s type-2 and type-3 independence;
Couso et al.’s repetition independence.

Justification by extendibility (Moral and Cano 2002), by
exchangeability (Cozman 2012, De Bock and De Cooman
2012).



Confirmational and epistemic irrelevance

Levi’s proposal: Y is confirmationally irrelevant to X when

K (X |Y = y) = K (X ) .

Walley’s proposal: Y is epistemically irrelevant to X when for any
function f (X ),

E [f (X )|Y = y ] = E [f (X )] .



Failure of symmetry (Couso et al 1999, Example 3)

Consider three urns (with red and white balls):

Urn Red White Unknown

A 5 2 3
B 3 3 4
C 3 3 4

Take ball X from A, then

if red, take ball Y from B,
otherwise take ball Y from C.

What are P(Y = R|X = R), P(Y = R|X = W ), P(Y = R)?

But notice: P(X = R|Y = R) ∈ [3/10, 28/31] (symmetry
fails).



Epistemic independence

Walley’s clever idea: “symmetrize” irrelevance.

X and Y are epistemically independent when

Y is epistemically irrelevant to X and

X is epistemically irrelevant to Y .

Quite an intuitive concept.



The zoo, for credal sets...

Complete independence.

Elementwise stochastic independence.

Strong independence and its variants.

Confirmational irrelevance.

Epistemic irrelevance and independence.

E [f (X )|Y ] = E [f (X )] and E [g(Y )|X ] = E [g(Y )].

Cognitive independence.

Kuznetsov independence.

Type-5 irrelevance.

By conditioning on every value of a given variable Z , we obtain
concepts of conditional independence...



Comparing concepts

All concepts satisfy forms of laws of large numbers (results by
De Cooman and Miranda).

Complete independence satisfies all semi-graphoid properties.

When lower probabilities are positive, epistemic independence
satisfies Symmetry, Redundancy, Decomposition, Weak Union,
but fails Contraction.

Other concepts fail various properties; usually Contraction is
violated.



Independence and zero probabilities

So far we have avoided zero probabilities in our discussion of
independence concepts for credal sets.

But consider conditional epistemic independence of X and Y
given Z :

E [f (X )|Y = y ,Z = z ] = E [f (X )|Z = z ] .

What happens if P(Z = z) = 0?



Conditioning and independence

Two options:

1 E [f (X )|Y = y ,Z = z ] = E [f (X )|Z = z ]
whenever P(Y = y ,Z = z) > 0.

TOO WEAK!!!

2 E>[f (X )|Y = y ,Z = z ] = E>[f (X )|Z = z ]
whenever P(Y = y ,Z = z) > 0.

De Campos and Moral’s type-5 independence; perhaps the
best idea if standard conditioning is adopted.

However, we can resort to full conditional probabilities here.



Now, full credal sets

Complete independence satisfies all semi-graphoid properties,
but too weak for full conditional probabilities.

Is there some appropriate form of “elementwise”
independence?

Epistemic independence fails Decomposition, Weak Union and
Contraction (!).



Hammond’s independence for full credal sets

Say that Y is h-irrelevant to X given Z when

E [f (X )|A(X ),B(Y ),Z = z ] = E [f (X )|A(X ),Z = z ] .

Say that X and Y are h-independent given Z if X is
h-irrelevant to Y given Z and Y is h-irrelevant to X given Z .

This concept satisfies Symmetry, Redundancy, Decomposition
and Weak Union, but fails Contraction.



Full Bayesian and Credal networks

Consider an extension of Bayesian networks, where each node
is associated with a full conditional probability. Or perhaps
where each node is associated with a credal set.

Example:
X −→ Y −→ Z .

Presumably, Z is independent of X given Y (Markov
condition).

Obviously, the properties of the joint model will depend on the
sort of independence that is adopted (factorization,
d-separation).



Conclusion

Standard probability theory offers a simple and flexible
framework, but it has some drawbacks.

1 Conditional probability does not get the right treatment.
2 Precise specification of probability values is assumed.

This talk considered some ways to bypass these difficulties:

1 Full conditional probabilities.
2 Sets of standard probabilities.
3 Sets of full conditional probabilities (“full” credal sets).

We examined concepts of independence for them.

A single best concept has not emerged: many options!
Some concepts satisfy semi-graphoid properties, but are
inadequate or hard to justify; other concepts seem intuitive but
fail semi-graphoid properties...


