Some of the things you wanted to know about uncertainty (and were too busy to ask)

Sébastien Destercke

Heudiasyc, CNRS Compiegne, France

ECSQARU 2013

Sébastien Destercke (CNRS)

ECSQARU Tutorial

ECSQARU 2013 1 / 54

Tutorial goals and contents

What you will find in this tutorial

- Mostly practical considerations about uncertainty
- An overview of "mainstream" uncertainty theories
- Elements and illustrations of their use to
 - build or learn uncertainty representations
 - make inference (and decision)
- A "personal" view about those things

What you will not find in this tutorial

- A deep and exhaustive study of a particular topic
- Elements about other important problems (learning models, information fusion/revision)

The Sec. 74

• • • • • • • • • •

Plan

Introductory elements

2 How to represent uncertainty?

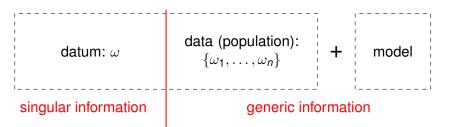
3 How to draw conclusions from information and decide?

4 Some final comments

Section goals: it's all about basics

- Introduce a basic framework
- Give basic ideas about uncertainty
- Introduce some basic problems

A generic framework



- model describes a relation in data space
- singular information: concern a particular situation/individual
- generic information: describe a general relationship, the behaviour of a population, ...

Uncertainty origins

Uncertainty: inability to answer precisely a question about a quantity

Can concern both:

- Singular information
 - items in a data-base, values of some logical variables, time before failure of **a** component
- Generic information
 - parameter values of classifiers/regression models, time before failure of components, truth of a logical sentence ("birds fly")

Main origins

- Variability of a population \rightarrow only concerns generic information
- Imprecision due to a lack of information
- Conflict between different sources of information (data/expert)

< ロ > < 同 > < 回 > < 回 >

datum: ω	data (population): $\{\omega_1, \dots, \omega_n\}$	+	model	
singular information	generic information			

Classification

- Data space=input features $\mathcal{X} \times$ (structured) classes \mathcal{Y}
- model: classifier with parameters
- Uncertainty: mostly about model parameters
- Common problem: predict classes of individuals (singular information)

datum: ω	data (population): $\{\omega_1, \dots, \omega_n\}$	+	model
singular information	generic information		

Risk and reliability analysis

- Data space=input variables $\mathcal{X} \times$ output variable(s) \mathcal{Y}
- Model: transfer/structure function $f : \mathcal{X} \to \mathcal{Y}$
- Uncertainty: very often about \mathcal{X} (sometimes *f* parameters)
- Common problem: obtain information about \mathcal{Y} , either generic (failure of products) or singular (nuclear power plant)

datum: ω	data (population): $\{\omega_1, \dots, \omega_n\}$	÷	model	
singular information	generic information			

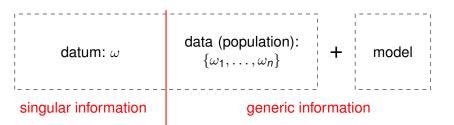
Data mining/clustering

- Data space=data features
- Model: clusters, rules, ...
- Uncertainty: mostly about model parameters
- Common problem: obtain the model from data $\{\omega_1, \ldots, \omega_n\}$

datum: ω	data (population): $\{\omega_1, \dots, \omega_n\}$	+	model
singular information	generic information		

Data base querying

- Data space=data features
- Model: a query inducing preferences over observations
- Uncertainty: mostly about the query, sometimes data
- Common problem: retrieve and order interesting items in $\{\omega_1, \ldots, \omega_n\}$



Propositional logic

- Data space=set of possible interpretations
- Model: set of sentences of the language
- Uncertainty: on sentences or on the state of some atoms
- Common problem: deduce the uncertainty about the truth of a sentence *S* from facts and knowledge

Handling uncertainty

datum: ω	data (population): $\{\omega_1, \dots, \omega_n\}$	+	model
singular information	generic information		

Common problems in one sentence

- Learning: use singular information to estimate generic information
- Inference: interrogate model and observations to deduce information on quantity of interest (~ inference in logical sense)
- Information fusion: merge multiple information pieces about same quantity
- Information revision: merge new information with old one

Plan

1 Introductory elements

2 How to represent uncertainty?

3 How to draw conclusions from information and decide?

4 Some final comments

Section goals

- Introduce main ideas of theories
- Provide elements about links between them
- Illustrate how to get uncertainty representations within each

< 17 ▶

Basic framework

Quantity *S* with possible **exclusive** states $S = \{s_1, \ldots, s_n\}$

 \triangleright S: data feature, model parameter, ...

Basic tools

A confidence degree $\mu : 2^{|S|} \rightarrow [0, 1]$ is such that

•
$$\mu(A)$$
: confidence $S \in A$

•
$$\mu(\emptyset) = 0, \, \mu(\mathcal{S}) = 1$$

•
$$A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$$

Uncertainty modelled by 2 degrees $\underline{\mu}, \overline{\mu}: 2^{|S|} \rightarrow [0, 1]$:

•
$$\underline{\mu}(A) \leq \overline{\mu}(A)$$
 (monotonicity)

•
$$\underline{\mu}(A) = 1 - \overline{\mu}(A^c)$$
 (duality)

Probability

Basic tool

A probability distribution $p : S \rightarrow [0, 1]$ from which

•
$$\underline{\mu}(\mathbf{A}) = \overline{\mu}(\mathbf{A}) = \mu(\mathbf{A}) = \sum_{s \in \mathbf{A}} p(s)$$

•
$$\mu(A) = 1 - \mu(A^{c})$$
: auto-dual

Main interpretations

- Frequentist [3]: μ(A)= number of times A observed in a population
 - > only applies when THERE IS a population
- Subjectivist [1]: μ(A)= price for gamble giving 1 if A happens, 0 if not
 - > applies to singular situation and populations

Probability and imprecision: short comment

- Probability often partially specified over S
- Probability on rest of S usually imprecise

A small example

•
$$S = \{s_1, s_2, s_3, s_4\}$$

•
$$p(s_1) = 0.1, p(s_2) = 0.4$$

• we deduce $p(s_i) \in [0, 0.5]$ for i = 3, 4

Sébastien Destercke (CNRS)

ECSQARU 2013 13 / 54

Probability and imprecision: short comment

- Probability often partially specified over S
- Probability on rest of S usually imprecise

Another (logical) example

• q, r two propositional variables

•
$$P(\neg q \lor r) = \alpha, P(q) = \beta$$

• we deduce $P(r) \in [\beta - 1 + \alpha, \alpha]$

Sets

Basic tool

A set $E \subseteq S$ with true value $S \in E$ from which

• $E \subseteq A \rightarrow \underline{\mu}(A) = \overline{\mu}(A) = 1$ (certainty truth in A)

•
$$E \cap A \neq \emptyset, E \cap A^c \neq \emptyset \rightarrow \underline{\mu}(A) = 0, \overline{\mu}(A) = 1$$
 (ignorance)

•
$$E \cap A = \emptyset \rightarrow \underline{\mu}(A) = \overline{\mu}(A) = 0$$
 (truth cannot be in A)

 $\mu, \overline{\mu}$ are binary \rightarrow limited expressiveness

Classical use of sets:

- Interval analysis [2] (E is a subset of \mathbb{R})
- Propositional logic (E is the set of models of a KB)

Other cases: robust optimisation, decision under risk, ...

< ロ > < 同 > < 回 > < 回 >

In summary

Probabilities ...

- (+) very informative quantification (do we need it?)
- (-) need lots of information (do we have it?)
- (-) if not enough, requires a choice (do we want to do that?)
- use probabilistic calculus (convolution, stoch. independence, ...)

Sets ...

- (+) need very few information
- (-) very rough quantification of uncertainty (Is it sufficient for us?)
- use set calculus (interval analysis, Cartesian product, ...)
- \rightarrow Need of frameworks bridging these two

Possibility theory

Basic tool

A distribution $\pi : S \to [0, 1]$, usually with s_i such that $\pi(s_i) = 1$, from which

• $\overline{\mu}(A) = \max_{s \in A} \pi(s)$ (Possibility measure)

•
$$\underline{\mu}(A) = 1 - \overline{\mu}(A^c) = \min_{s \in A^c}(1 - \pi(s))$$
 (Necessity measure)

Sets *E* captured by $\pi(s) = 1$ if $s \in E$, 0 otherwise

$[\underline{\mu},\overline{\mu}]$ as

- confidence degrees of possibility theory [9]
- bounds of an ill-known probability $\mu \Rightarrow \mu \leq \mu \leq \overline{\mu}$ [10]

A nice characteristic: Alpha-cut [5]

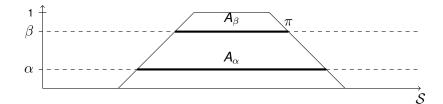
Definition

$$\boldsymbol{A}_{\alpha} = \{\boldsymbol{s} \in \mathcal{S} | \boldsymbol{\pi}(\boldsymbol{s}) \geq \alpha\}$$

•
$$\underline{\mu}(A_{\alpha}) = 1 - \alpha$$

• If
$$\beta \leq \alpha$$
, $A_{\alpha} \subseteq A_{\beta}$

Simulation: draw $\alpha \in [0, 1]$ and associate A_{α}



 \Rightarrow Possibilistic approach ideal to model **nested structures**

A basic distribution: simple support

A set *E* of most plausible values

A confidence degree $\alpha = \underline{\mu}(E)$

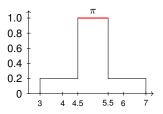
Two interesting cases:

- Expert providing most plausible values *E*
- E set of models of a formula ϕ

Both cases extend to multiple sets E_1, \ldots, E_p :

- confidence degrees over nested sets [36]
- hierarchical knowledge bases
 [33]

pH value \in [4.5, 5.5] with $\alpha =$ 0.8 (\sim "quite probable")



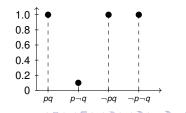
4 3 5 4 3

A basic distribution: simple support

- A set *E* of most plausible values A confidence degree $\alpha = \mu(E)$
- Two interesting cases:
 - Expert providing most plausible values *E*
 - E set of models of a formula ϕ
- Both cases extend to multiple sets E_1, \ldots, E_p :
 - confidence degrees over nested sets [36]
 - hierarchical knowledge bases
 [33]

variables p, q $\Omega = \{pq, \neg pq, p\neg q, \neg p\neg q\}$ $\underline{\mu}(p \Rightarrow q) = 0.9$ (~ "almost certain") $E = \{pq, p\neg q, \neg p\neg q\}$

•
$$\pi(pq) = \pi(p\neg q) = \pi(\neg p\neg q) = 1$$

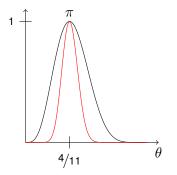


Normalized likelihood as possibilities [8] [26]

$$\pi(\theta) = \mathcal{L}(\theta|x) / \max_{\theta \in \Theta} \mathcal{L}(\theta|x)$$

Binomial situation:

- $\theta =$ success probability
- x number of observed successes
- x = 4 succ. out of 11
- x= 20 succ. out of 55



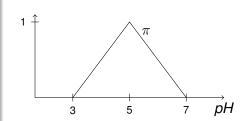
Partially specified probabilities [25] [32]

Triangular distribution: $[\underline{\mu}, \overline{\mu}]$ encompass all probabilities with

- mode/reference value M
- support domain [a, b].

Getting back to pH

• *M* = 5



ECSQARU 2013 20 / 54

Other examples

- Statistical inequalities (e.g., Chebyshev inequality) [32]
- Linguistic information (fuzzy sets) [28]
- Approaches based on nested models

Possibility: limitations

$$\underline{\mu}(A) > 0 \Rightarrow \overline{\mu}(A) = 1$$

 $\overline{\mu}(A) < 1 \Rightarrow \underline{\mu}(A) = 0$

⇒ interval [$\underline{\mu}(A), \overline{\mu}(A)$] with one trivial bound Does not include probabilities as special case:

- \Rightarrow possibility and probability at odds
- \Rightarrow respective calculus hard (sometimes impossible?) to reconcile

Going beyond

Extend the theory

- \Rightarrow by complementing π with a lower distribution δ ($\delta \leq \pi$) [11], [31]
- \Rightarrow by working with interval-valued possibility/necessity degrees [4]
- \Rightarrow by working with sets of possibility measures [7]

Use a more general model

 \Rightarrow Random sets and belief functions

Random sets and belief functions

Basic tool

A positive distribution $m : 2^{|S|} \to [0, 1]$, with $\sum_E m(E) = 1$ and usually $m(\emptyset = 0)$, from which

• $\overline{\mu}(A) = \sum_{E \cap A \neq \emptyset} m(E)$ (Plausibility measure)

• $\underline{\mu}(A) = \sum_{E \subseteq A} m(E) = 1 - \overline{\mu}(A^c)$ (Belief measure)

$[\underline{\mu},\overline{\mu}]$ as

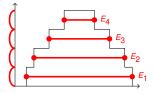
- confidence degrees of evidence theory [16], [17]
- bounds of an ill-known probability $\mu \Rightarrow \mu \le \mu \le \overline{\mu}$ [14]

ECSQARU Tutorial

special cases

Measures $[\underline{\mu}, \overline{\mu}]$ include:

- Probability distributions: mass on atoms/singletons
- Possibility distributions: mass on nested sets



Frequencies of imprecise observations

60 % replied $\{N, F, D\} \rightarrow m(\{N, F, D\}) = 0.6$ 15 % replied "I do not know" $\{N, F, D, M, O\} \rightarrow m(S) = 0.15$ 10 % replied Murray $\{M\} \rightarrow m(\{M\}) = 0.1$ 5 % replied others $\{O\} \rightarrow m(\{O\}) = 0.05$

P-box [34]

A pair $[\underline{F}, \overline{F}]$ of cumulative distributions

Bounds over events $[-\infty, x]$

- Percentiles by experts;
- Kolmogorov-Smirnov bounds;

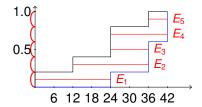
Can be extended to any pre-ordered space [30], [37] \Rightarrow multivariate spaces!

Expert providing percentiles

 $0 \leq P([-\infty, 12]) \leq 0.2$

$$0.2 \leq P([-\infty, 24]) \leq 0.4$$

$$\textbf{0.6} \leq \textit{P}([-\infty, 36]) \leq 0.8$$



The Sec. 74

Other means to get random sets/belief functions

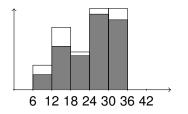
- Extending modal logic: probability of provability [18]
- Parameter estimation using pivotal quantities [15]
- Statistical confidence regions [29]
- Modify source information by its reliability [35]

Ο...

4 3 5 4 3 5 5

Limits of random sets

- Not yet satisfactory extension of Bayesian/subjective approach
- Still some items of information it cannot model in a simple way, e.g.,
 - probabilistic bounds over atoms *s_i* (imprecise histograms, ...) [27];
 - comparative assessments such as $2P(B) \le P(A)$



Imprecise probabilities

Basic tool

A set \mathcal{P} of probabilities on \mathcal{S} or an equivalent representation

- $\overline{\mu}(A) = \sup_{P \in \mathcal{P}} P(A)$ (Upper probability)
- $\underline{\mu}(A) = \inf_{P \in \mathcal{P}} P(A) = 1 \overline{\mu}(A^c)$ (Lower probability)

Note: lower/upper bounds on events alone cannot model any convex ${\mathcal P}$

$[\underline{\mu},\overline{\mu}]$ as

- subjective lower and upper betting rates [23]
- bounds of an **ill-known probability measure** $\mu \Rightarrow \underline{\mu} \le \mu \le \overline{\mu}$ [19] [24]

Means to get Imprecise probabilistic models

- Include all representations seen so far ...
- ... and a couple of others
 - probabilistic comparisons
 - density ratio-class
 - expectation bounds
 - ...
- fully coherent extension of Bayesian approach

$$\mathcal{P}(\theta|\mathbf{x}) = L(\theta|\mathbf{x})\mathcal{P}(\theta)$$

- \rightarrow often easy for "conjugate prior" [22]
- make probabilistic logic approaches imprecise [21, 20]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A crude summary

Possibility distributions

- +: very simple, natural in many situations (nestedness), extend set-based approach
- -: at odds with probability theory, limited expressiveness

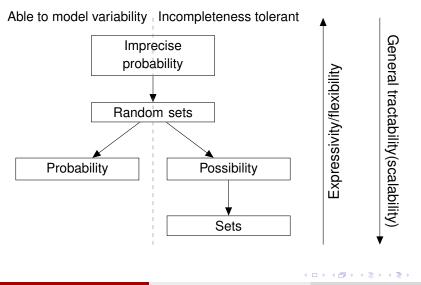
Random sets

- +: include probabilities and possibilities, include many models used in practice
- -: general models can be intractable, limited expressiveness

Imprecise probabilities

- +: most consistent extension of probabilistic approach, very flexible
- -: general models can be intractable

A not completely accurate but useful picture



Sébastien Destercke (CNRS)

Plan

2 How to represent uncertainty?

How to draw conclusions from information and decide?

Section goals

- Introduce the inference problem
- Introduce the notion of joint models
- Introduce how (basic) decision can be done
- Give some basic illustrations, mainly from regression/classification/reliability

The problem

datum: ω	data (population): $\{\omega_1, \dots, \omega_n\}$	+	model	
singular information	generic info	ormati	on	

- **uncertain Input**: marginal pieces of information on a part of the data space and the model
- Step 1: build a joint model from marginal information (need {in}dependence concept)
- Step 2: deduce information (by propagation, conditioning, ...) on data

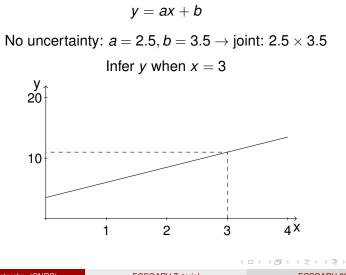
Closeness requirement

datum: ω	data (population): $\{\omega_1, \dots, \omega_n\}$	+	model		
singular information	generic information				

- partial/marginal pieces of information are x
- joint model is x
- deduced information is x

where $x \in \{\text{Prob. distribution, Poss. distribution, Belief function, Prob. set}\}$

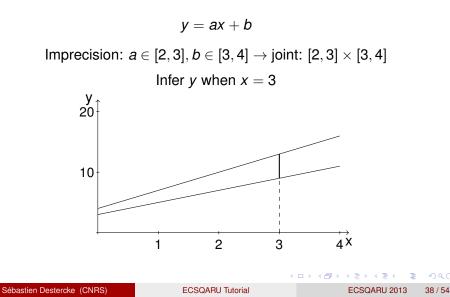
Straight ahead



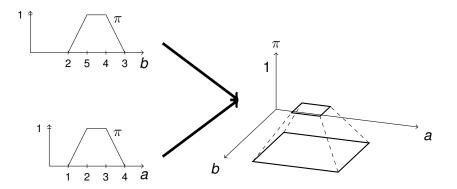
Sébastien Destercke (CNRS)

ECSQARU 2013 38 / 54

Straight ahead

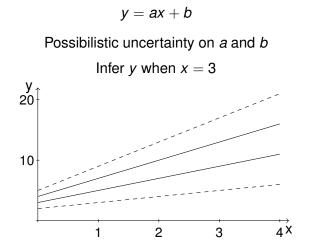


Joint models: possibilistic illustration



A >

Fuzzy straight ahead

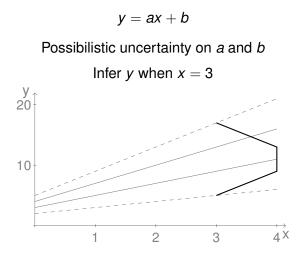


Sébastien Destercke (CNRS)

ECSQARU 2013 40 / 54

A >

Fuzzy straight ahead



Sébastien Destercke (CNRS)

ECSQARU Tutorial

ECSQARU 2013 40 / 54

Reliable or not?

Model: structure function $\phi : C_1 \times C_2 \rightarrow S$

$$\begin{array}{c} p(0)=0.1\\ p(1)=0.9 \end{array} & \hline C_1 : \{0,1\} \\ & \\ p(0 \times 0) = 0.01\\ p(0 \times 1) = 0.09\\ p(1 \times 0) = 0.09\\ p(1 \times 1) = 0.81 \end{array} \\ \hline S : \{0,1\} \\ p(0) = 0.01\\ p(1) = 0.99 \end{array}$$

Reliable or not?

Model: structure function $\phi : C_1 \times C_2 \to S$ $m(\{0\}) = 0.05$ $C_1: \{0, 1\}$ $m(\{1\}) = 0.75$ $m(\{0,1\}) = 0.2$ $m(\{0\} \times \{0\}) = 0.025$ $m(\{1\} \times \{1\}) = 0.5625$ *S* : {0, 1} $m(\{0\} \times \{0,1\}) = 0.01$ $m(\{0,1\} \times \{0,1\}) = 0.04$ $m(\{0\}) = 0.0025$ $m(\{1\}) = 0.9575$ $m(\{0\}) = 0.05$ $C_2: \{0, 1\}$ $m(\{0,1\}) = 0.04$ $m(\{1\}) = 0.75$ $m(\{0,1\}) = 0.2$

・ロト ・ 四ト ・ ヨト ・ ヨト

Two kinds of decision

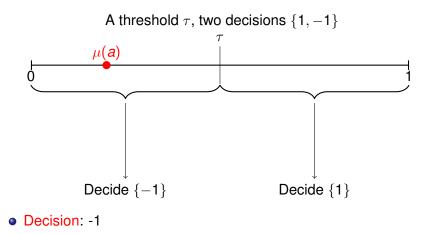
• Binary: whether to take an action or not

- risk/reliability analysis (take the risk or not)
- logic (decide if a sentence is true)
- binary classification
- Non-binary: decide among multiple choices
 - classification
 - control, planing, ...

Introducing imprecision \simeq allowing for incomparability

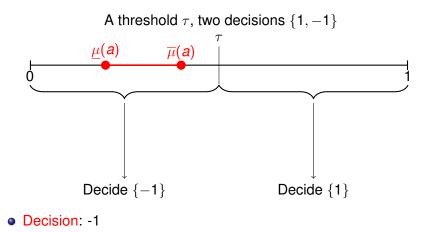
・ 同 ト ・ ヨ ト ・ ヨ ト

Binary case



< ロ > < 同 > < 回 > < 回 >

Binary case



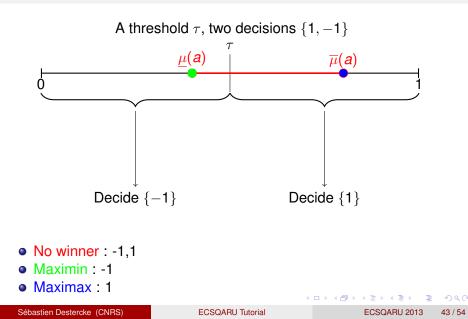
Sébastien Destercke (CNRS)

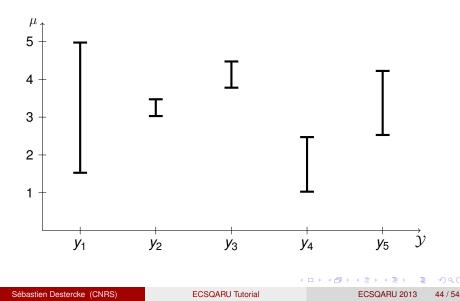
ECSQARU 2013 43 / 54

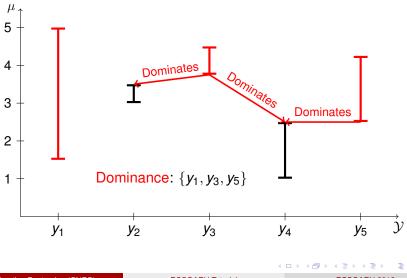
★ ∃ > < ∃ >

Image: A matrix and a matrix

Binary case

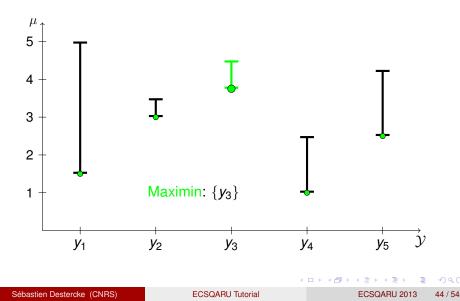


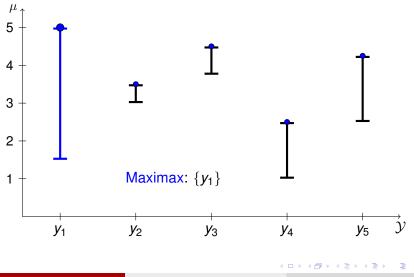




Sébastien Destercke (CNRS)

ECSQARU 2013 44 / 54



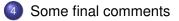


Sébastien Destercke (CNRS)

ECSQARU 2013 44 / 54

Plan

How to represent uncertainty?



4 3 > 4 3

Why modelling uncertainty (outside intellectual satisfaction)?

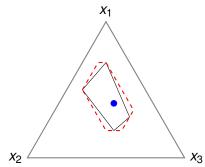
Because ...

- ... you should (risk/reliability analysis)
- ... it solves existing issues (non-monotonic reasoning)
- ... it gives better/more robust results with acceptable computational burden

< 口 > < 同 > < 回 > < 回 > < 回 > <

One advantage of incompleteness

Using imprecision: choice between outer/inner approximation



References I

General bibliography

 B.de Finetti. *Theory of probability*, volume 1-2. Wiley, NY, 1974. Translation of 1970 book.

- [2] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis. London, 2001.
- R. von Mises. Probability, Statistics and Truth. Dover books explaining science. Dover Publications, 1981.

Possibility theory

- [4] Salem Benferhat, Julien Hué, Sylvain Lagrue, and Julien Rossit. Interval-based possibilistic logic. In *IJCAI*, pages 750–755, 2011.
- [5] I. Couso, S. Montes, and P. Gil. The necessity of the strong alpha-cuts of a fuzzy set. Int. J. on Uncertainty, Fuzziness and Knowledge-Based Systems, 9:249–262, 2001.
- [6] G. de Cooman and D. Aeyels. Supremum-preserving upper probabilities. Information Sciences, 118:173–212, 1999.
- [7] D. Dubois. Fuzzy measures on finite scales as families of possibility measures. In Proc. European Society for Fuzzy Logic and Technology conference, 2011.

References II

- [8] D. Dubois, S. Moral, and H. Prade. A semantics for possibility theory based on likelihoods,. *Journal of Mathematical Analysis and Applications*, 205(2):359 – 380, 1997.
- D. Dubois and H. Prade.
 Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press, New York, 1988.
- [10] D. Dubois and H. Prade. When upper probabilities are possibility measures. *Fuzzy Sets and Systems*, 49:65–74, 1992.
- [11] Didier Dubois and Henri Prade. An overview of the asymmetric bipolar representation of positive and negative information in possibility theory. *Fuzzy Sets and Systems*. 160(10):1355–1366. 2009.
- [12] G. L. S. Shackle. Decision, Order and Time in Human Affairs. Cambridge University Press, Cambridge, 1961.
- [13] L.A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1:3–28, 1978.

Random sets and belief functions

- [14] A.P. Dempster. Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 38:325–339, 1967.
- [15] Ryan Martin, Jianchun Zhang, and Chuanhai Liu. Dempster-shafer theory and statistical inference with weak beliefs. Technical report, 2008.

References III

[16] G. Shafer. A mathematical Theory of Evidence. Princeton University Press, New Jersey, 1976.

- [17] P. Smets. The transferable belief model and other interpretations of dempster-shafer's model. In Proc. of the Sixth Annual Confernce on Uncertainty in Artifical Intelligence, pages 375–384, 1990.
- [18] Philippe Smets. Probability of provability and belief functions. Logique et Analyse, 133-134:177–195, 1991.
- Imprecise probability
- [19] J. O. Berger. An overview of robust Bayesian analysis. *Test*, 3:5–124, 1994. With discussion.
- [20] Gert de Cooman. Belief models: An order-theoretic investigation. Ann. Math. Artif. Intell., 45(1-2):5–34, 2005.
- [21] Pierre Hansen, Brigitte Jaumard, Marcus Poggi de Aragão, Fabien Chauny, and Sylvain Perron. Probabilistic satisfiability with imprecise probabilities. Int. J. Approx. Reasoning. 24(2-3):171–189, 2000.
- [22] Erik Quaeghebeur and Gert de Cooman. Imprecise probability models for inference in exponential families. In ISIPTA, pages 287–296, 2005.

References IV

[23] P. Walley.

Statistical reasoning with imprecise Probabilities. Chapman and Hall, New York, 1991.

[24] Kurt Weichselberger. The theory of interval-probability as a unifying concept for uncertainty. International Journal of Approximate Reasoning, 24(2–3):149 – 170, 2000.

Practical representations

[25] C. Baudrit and D. Dubois.

Practical representations of incomplete probabilistic knowledge. Computational Statistics and Data Analysis, 51(1):86–108, 2006,

[26] M. Cattaneo.

Likelihood-based statistical decisions.

In Proc. 4th International Symposium on Imprecise Probabilities and Their Applications, pages 107–116, 2005.

- [27] L.M. de Campos, J.F. Huete, and S. Moral. Probability intervals: a tool for uncertain reasoning. I. J. of Uncertainty, Fuzziness and Knowledge-Based Systems, 2:167–196, 1994.
- [28] G. de Cooman and P. Walley. A possibilistic hierarchical model for behaviour under uncertainty. *Theory and Decision*, 52:327–374, 2002.
- [29] T. Denoeux. Constructing belief functions from sample data using multinomial confidence regions. I. J. of Approximate Reasoning, 42:228–252, 2006.
- [30] S. Destercke, D. Dubois, and E. Chojnacki. Unifying practical uncertainty representations: I generalized p-boxes. Int. J. of Approximate Reasoning, 49:649–663, 2008.

Sébastien Destercke (CNRS)

ECSQARU Tutorial

ECSQARU 2013

51/54

References V

- [31] S. Destercke, D. Dubois, and E. Chojnacki. Unifying practical uncertainty representations: II clouds. Int. J. of Approximate Reasoning (in press), pages 664–677, 2008.
- [32] D. Dubois, L. Foulloy, G. Mauris, and H. Prade. Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities. *Reliable Computing*, 10:273–297, 2004.
- [33] Didier Dubois and Henri Prade. Possibilistic logic: a retrospective and prospective view. Fuzzy Sets and Systems, 144(1):3 – 23, 2004.
- [34] S. Ferson, L. Ginzburg, V. Kreinovich, D.M. Myers, and K. Sentz. Constructing probability boxes and dempster-shafer structures. Technical report, Sandia National Laboratories, 2003.
- [35] Frédéric Pichon, Didier Dubois, and Thierry Denoeux. Relevance and truthfulness in information correction and fusion. *Int. J. Approx. Reasoning*, 53(2):159–175, 2012.
- [36] S.A. Sandri, D. Dubois, and H.W. Kalfsbeek. Elicitation, assessment and pooling of expert judgments using possibility theory. *IEEE Trans. on Fuzzy Systems*, 3(3):313–335, August 1995.
- [37] Matthias C. M. Troffaes and Sébastien Destercke. Probability boxes on totally preordered spaces for multivariate modelling. *Int. J. Approx. Reasoning*, 52(6):767–791, 2011.
- Independence notions
- [38] B. Bouchon-Meunier, G. Coletti, and C. Marsala. Independence and possibilistic conditioning. Annals of Mathematics and Artificial Intelligence, 35:107–123, 2002.

Sébastien Destercke (CNRS)

ECSQARU Tutorial

ECSQARU 2013

52/54

References VI

- [39] I. Couso and S. Moral. Independence concepts in evidence theory. International Journal of Approximate Reasoning, 51:748-758, 2010.
- [40] I. Couso, S. Moral, and P. Walley. A survey of concepts of independence for imprecise probabilities. Risk Decision and Policy, 5:165-181, 2000.
- [41] L. de Campos and J. Huete. Independence concepts in possibility theory: Part ii. Fuzzy Sets and Systems, 103:487-505, 1999.
- [42] G. de Cooman. Possibility theory III: possibilistic independence. International Journal of General Systems, 25:353-371, 1997.
- [43] G. de Cooman and E. Miranda. Independent natural extension for sets of desirable gambles. In F. Coolen, G. de Cooman, T. Fetz, and M. Oberguggenberger, editors, ISIPTA '11: Proceedings of the Seventh International Symposium on Imprecise Probabilities: Theories and Applications, pages 169–178, Innsbruck, 2011. Action M Agency for SIPTA.
- [44] G. de Cooman, E. Miranda, and M. Zaffalon. Independent natural extension. Artificial Intelligence, 174:1911-1950, 2011.
- [45] D. Dubois, L. Farinas del Cerro, A. Herzig, and H. Prade. A roadmap of qualitative independence. In D. Dubois, H. Prade, and E.P. Klement, editors, Fuzzy sets, logics, and reasoning about knowledge, Springer, 1999.

Sébastien Destercke (CNRS)

ECSQARU 2013 53/54

References VII

- [46] B. Ben Yaghlane, P. Smets, and K. Mellouli. Belief function independence: I. the marginal case. I. J. of Approximate Reasoning, 29(1):47–70, 2002.

Inference

- [47] C. Baudrit, I. Couso, and D. Dubois. Joint propagation of probability and possibility in risk analysis: towards a formal framework. Int. J. of Approximate Reasoning, 45:82–105, 2007.
- [48] T. Fetz and M. Oberguggenberger. Propagation of uncertainty through multivariate functions in the framework of sets of probability measures. *Reliability Engineering and System Safety*, 85:73–87, 2004.
- [49] Pierre Hansen, Brigitte Jaumard, Marcus Poggi de Aragão, Fabien Chauny, and Sylvain Perron. Probabilistic satisfiability with imprecise probabilities.

Int. J. Approx. Reasoning, 24(2-3):171-189, 2000.

Decision

- [50] Didier Dubois, Hélène Fargier, and Patrice Perny. Qualitative decision theory with preference relations and comparative uncertainty: An axiomatic approach. *Artif. Intell.*, 148(1-2):219–260, 2003.
- [51] P. Smets.

Decision making in the tbm: the necessity of the pignistic transformation. *I.J. of Approximate Reasoning*, 38:133–147, 2005.

[52] M.C.M. Troffaes.

Decision making under uncertainty using imprecise probabilities. Int. J. of Approximate Reasoning, 45:17–29, 2007.