

for training and

GATE Vision Meeting Thema II

innovation for life

GATE Thema II: Virtual Characters Cognitive Behavior Crowd Behavior Motor Behavior

Trend: Virtual characters become more autonomous and goal-directed rather than scripted only

State of the art in Virtual Characters > Motor Behavior

- Virtual characters increasingly display realistic body movements but lack adequate models to control these movements in-situ
- Virtual characters are gaining means of expression and interaction but lack adequate models to control these in a natural way

State of the art in Virtual Characters > Cognitive Behavior

- Virtual characters are often uniform flat characters they do not have emotions nor personality traits
- Virtual characters are often unaware of their environment they do not recognize bodily or social behavior
- Virtual characters are often modeled in isolation from others they do not have capabilities to interact with others, e.g. they do not have emotional, social, team or instructional intelligence

State of the art in Virtual Characters > Crowd Behavior

- General path planning frameworks only exist for individual virtual characters – no general framework for planning motions of crowds exists
- Path planning frequently takes place in 2D it neglects the 3D nature of obstacles

Impact of results of the past five years of GATE research on applications > Motor Behavior

- Virtual characters can display realistic movements in situ (WP2.1: Simulating human movement)
- Virtual characters can interact with users in a continuous and multimodal way
 (WP2.1: Continuous Interactive dialogs with Embodies Conversational Agents)

Impact of results of the past five years of GATE research on applications > Cognitive Behavior

- Virtual characters can give elementary explanations of their behavior (WP2.2: Explaining Virtual Character Behavior)
- Virtual characters can extract an interpretation of intention from players' behavior

(WP2.2: Mindreading Virtual Characters)

Virtual characters will be able to have emotions
(WP2.2: Social Virtual Characters)

innovation for life

Impact of results of the past five years of GATE research on applications > Crowd Behavior

 Virtual characters are able to move as a crowd in a visually convincing way (WP2.3: Virtual Crowds)

Impact during the coming five years

- General: Adoption of GATE results by (serious) gaming industry, incorporation into next-generation products
- Motor Behavior:
 - Application of the Continuous Interaction concept and technology within projects (e.g. the Dutch Commit project (generation of social signals), or the EU Smarcos project).
 - More realistic manoeuvring and collision avoidance behavior in complex environments

Impact during the coming five years

- Cognitive Behavior:
 - Making virtual characters more believable to the player by increasing their cognitive abilities and enabling intuitive interaction
 - Designing control mechanisms that direct the behavior of virtual characters to the benefit of training
- Crowd Behavior:
 - Integration of results into simulations of evacuations and pedestrian flows to enhance realism, immersion, and/or learning experience
 - Evolution of current solutions to larger crowds, 3D obstacles, and improved realism of interaction between characters

Challenges for the coming ten years

- > Virtual characters that:
 - have and display emotions and personality traits
 - > display social and collaborative behavior
 - interact in a believable way with humans by showing integrated cognitive and bodily behavior
 - interact in an intuitive way with humans by an enhanced level of freedom for interactions, both for the content as for the mode of interaction
 - have advanced instructional facilities
 - have advanced task-support facilities
 - > can function in mixed-reality settings

Evaluation of virtual characters

Impact of solutions to the challenges

- Improved learning and task performance of humans because:
 - > Humans better understand virtual character behavior
 - > Humans can interact more naturally with virtual characters
 - > Humans trust virtual characters more
 - Virtual characters display behavior supportive of training
- Improved human interaction with systems because:
 - Virtual characters function as intelligent interfaces
 - > Virtual characters increase enjoyment and trust
- Improved development process because:
 - Generic frameworks exist for developing models of motor, cognitive and crowd behavior
 - > Standards exist for integrating these models into virtual environments
- > Improved acceptance of virtual characters because:
 - > Evidence exist that virtual characters enhance learning and task performance

Main players in the Netherlands and abroad

Companies

- Serious game companies: Ranj (NL), Vstep (NL), E-semble (NL), ...
- > Crowd behavior companies: Legion (UK), Golaem (F), ...
- Research Institutes
 - Institute for creative technologies (USC at LA), TNO (NL), INRIA Rennes (F), …
- Universities
 - Utrecht University (NL), Twente University (NL), Trinity College Dublin (IRL), University of Cyprus, UNC Chapel Hill (USA), UCLA (USA), ...