

Cognition-based Learning Principles (WP4.3)

Theme 4:

Learning with simulated worlds

What makes a well designed serious game, from the angle of cognitive psychology?

- Goal is achieving deep understanding of the situation and being able to apply knowledge.
- That demands the construction of an elaborated mental model
- Problems: Cognitive load imposed on players, information presentation rate, and extent of processing

We identified three design guidelines:

- 1. Guiding attention,
- 2. Information regulation, and
- **3. Extending the depth of processing**

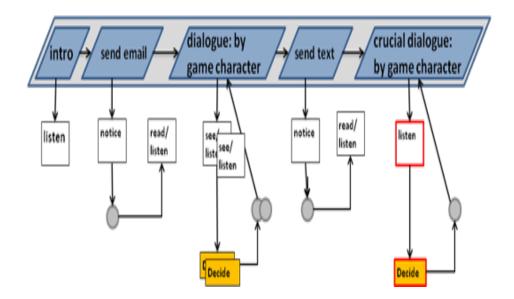
Game Code Red Triage

Game Code Red Triage was created, which trains medical first responders in a crisis situation.

• Guiding attention: cueing

- Auditory cues

- no positive effects on learning (only for experienced players useful);
- Information regulation: Gradual presentation of
 - More complex interface: (slight) positive learning effect
 - More difficult cases: no learning effect
- Extending depth of processing by variation in narrative structure:
 - Introduction of surprising events: deeper comprehension
 - Introduction of foreshadowing and backstory: more curiosity, but no significant learning effect (but positive tendens)



GameDNA (Game Discourse Notation and Analysis):

Development of a method and graphical way of describing the information flow, actions of the player and the system and their interaction.

(in cooperation with Ranj and GITP)

Example of one scene:

Methodological

- Involving eye-registration research: it is very important to know whether players pay attention to certain areas, e.g. where the cues were manipulated.
- Assessment of deeper levels of knowledge (mental model assessment by determining knowledge representations in terms of semantic networks)
- Assessment of transfer effects (see WP4.4 Transfer of gaming)
- Framework to align game genre (e.g., action, puzzle), type of design (e.g., schematic, photorealistic) and circumstances (e.g., domain, type of knowledge)

Optimalization of outcomes

- Role of adaptivity (fitting level of difficulty to ability level, in order to optimize motivation) (see WP 4.1 Adapting the game to the world)
- Design of support mechanisms while playing a game
 - E.g. by simplifying the game presented, schematizing the simulated world, or providing dynamic support

Enhancement of intrinsic motivation

- By strengthening narrativity in games and manipulating components (see also WP 4.2 Design rules for learning through simulated worlds)
- By implementing curiosity, challenge, and surprise

GameDNA

- Validation of GameDNA in other situations (and usefulness for different stakeholders)
- Development of GameDNA as a software package, a tool that incorporates notation, layering, adjustable views and features

Impact

- Better design tools
- Evidence based guidelines

enable creation of more effective and engaging serious games

Invitation to meeting

Special Meeting for

Companies who are interested in Theme Learning with Simulated Worlds

Aim: to examine ways to cooperate with us

Tuesday, 21 June 15-17

BuysBallot Lab, Institute of Information and Computing Sciences, UU, Room 445, Princetonplein 5, Utrecht

Information: Herre@cs.uu.nl

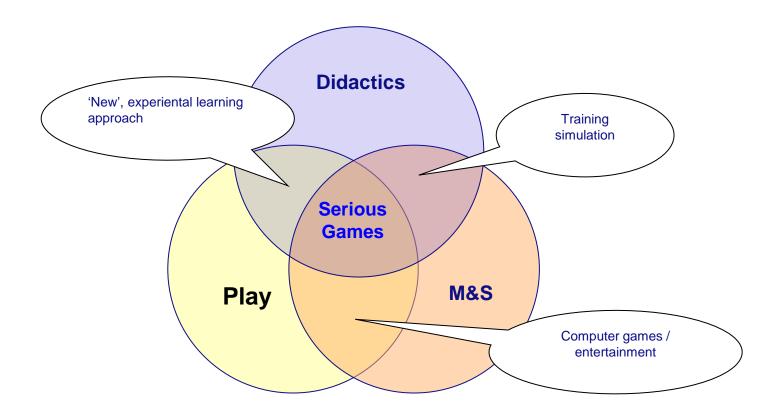
Transfer of gaming

Theme 4: Learning with simulated worlds Transfer of Gaming

Definition

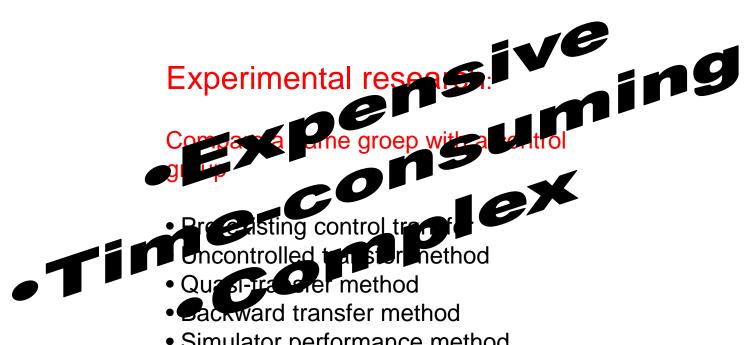
Transfer of Gaming

To what extent skills, learned by playing a game, can be effectively used in the real world.



- Methods and measures for determination of Transfer of Gaming (ToG)
- Transfer studies comparing ToG in games (Falcon 4, MS Flight)
- Development and validation of the JOT method (VBS2)
- Stepwise method for the development of cost-effective games with optimal transfer of training
- Taxonomy
- Overview with best practices focussing at SG at the workplace

Three knowledge area's / perspectives



Impact so far:

- higher awareness of didactical aspects
- validation is high on the agenda

Validation is still an issue

Simulator performance method

Challenge:

- comprehensive framework
- generic tool (type, applications, target groups, educational context)

Challenge

Impact:

- better games with higher training value

Impact

- more trust/acceptance in the educational world

Relevant factors

- market failure
- government failure
- system failure

PC gaming transfer taxonomy (outline)

Attitudes

	Motivation		++
•	Initiative		+++
•	Integrity		+
Soci	al skills		
	Communication		+++
•	Cooperation		+++
•	Leadership		+++
Cog	nitive skills		
•	Interpretation	+	
•	Problem solving, decision making		+++
•	Planning		+++
Kno	wledge		
•	Background, context, boundary conditions, specific facts	++	
•	Workig with rules and procedures (if, then)	+++	
•	Functionality (how it works, controls, interfaces)	++	
Perc	ceptual-motor skills		
•	Searching, detection, perception (different modalities)		-
•	Operation (controls, instruments, displays)		+/ -
•	Motor performance		