Statistical learning and the history of music perception

Richard Parncutt University of Graz

IMS Study Group on Musical Data and Computer Applications 9–10 July 2007, Zürich

15th-Century example
Okeghem: Missa Ecce ancilla domini

Aim

Explore history of music perception

- □ "history" = Medieval, Renaissance
 - origins of major-minor tonality
- "music" = Western polyphonic
 - statistical analysis of electronic scores
- "perception" = expectation
 - tonal-harmonic syntax

Specific objectives

Explore changing relative prevalence of music-structural elements such as:

- melodic fragments
 - e.g. cadential formulae
- sonorities expressed as Tn-sets
 - e.g. 047, 037
- specific polyphonic cadential formulae
 - e.g. double leading-tone cadence

The approach ignores:

- Enharmonics and microtonality
 - Chromatic scale steps as categories
- Musically interesting "abnormalities"
 - First identify the main trends
- Rhythm
 - Main focus is pitch

Spinoffs Music history document musical heritage revive interest in syntax Music theory and analysis history of syntax versus history of theory test claims about history of syntax "explain" major-minor tonality Music performance and education improve performing editions develop computer tools

Domain of research

- Notation (symbolic data)
- Polyphonic (no chant)
- Medieval Renaissance
- Pitch-time patterns
- Chromatic scale

Example of corpus analysis

Eberlein \$ (1994) sample (1700-1850):

- J. S. Bach: 7 Chorales
- Händel: Trio sonata Op. 5 No. 5
- Mozart: Missa brevis KV 65
- Beethoven: Mass in C
- Mendelssohn: Motets Op. 78

Prevalence of individual sonorities

(Eberlein, 1994)

Ranking:

- major triad
- minor triad
- major-minor (dominant) seventh
- diminished seventh
- minor added sixth chord
- triad with suspended fourth
- minor seventh
- diminished triad

Prevalence of two-chord progressions

Intervals between bass tones of root-position chords (Eberlein, 1994)

	rising P4	falling P4	rising 3rd	falling 3rd	rising M2	falling M2	total
maj-maj	64	19	0	0	6	2	91
maj-min	60	1	2	9	5	0	77
min-maj	5	20	1	15	5	3	49
min-min	21	5	0	0	1	0	27
total	150	45	3	24	17	5	244

Stylistic differences

- cf. Mozart, Schubert, Brahms:
 - Mozart more maj & dim triads, maj 7ths
 - Schubert: more dom 7ths
 - Brahms: more min triads, half-dim 7ths

Ferkova, E., Zdimal, M., & Sidlik, P. (2007). Statistical harmonic analysis in the piano music of Mozart and Schubert. IMS Zürich.

Procedure

- Choice and coding of scores
- Chromatic pitch categorisation
- Manual mark-up
- Transition probabilities of notes
- Chunking (segmentation)
- Transition probabilities of chunks

Choice and coding of scores

- Representative repertoire of each period
 - convert existing electronic scores
 - code new scores
- Common coding format
 - Include non-score parameters
 - note saliences, stream assignments…
 - define and count "patterns"
 - pattern definition: specificity versus generality
 - → Humdrum?
- Copyright issues
 - different degrees of accessibility (internet)

Editorial information

- "Urtext", copy or edition?
 - editorial aims? practice? criteria?
 - include this info in electronic scores
 - create historically reputable source
 - maintain distinction in statistical analyses?

Chromatic pitch categorisation

Chromatic scale as pitch categories

- Ficta problem
 - avoid tritones…
 - raise leading tones…
- Different versions of each piece
 - existing performance editions
 - subjective vs. objective formulation and application of ficta rules
- Expert evaluations
 - weighting of diff. versions in calculations

Rhythm Not a focus of the planned study Minimum requirement encode temporal order only Maximum requirement temporal categories of standard notation

Manual mark-up Streams (voices) according to score structure algorithm not necessary? Salience higher main melody primacy and recency (start and end of units) dissonances lower short tones (saturation function?)

Statistical learning Example: Preishit ("bargain") Segmentation depends on language German: known words "Preis" + "Hit" = "Preis Hit" no "sh" in German → s+h English: known word "shit" (tabu → emotive → salient) "sh" is mostly grouped (exception: mishap) Transition probabilities are high in known… letter combinations words

Transition probabilities

Corpus containing units V, W, X, Y, Z... What is transitional probability of XY?

$$n_{\rm X}$$
 = total number of X's
 $n_{\rm XY}$ = total number of XY's
 $p_{\rm XY\,I\,X}$ = $n_{\rm XY}/n_{\rm X}$

cf. 1st-order Markov model
Cf. Harris structural linguistics (1950s)

Statistical learning of syllables

- Problem
 - How do babies segment language? no reliable acoustic markers!
- Participants
 - 8-month-old infants
- Exposure phase
 - nonsense syllables e.g. bidakupadotigolabubidak
 - transitional probabilities:
 - high (1.0) within 3-syllable "words"
 - low (0.33) between words
 - 2 minutes only!
- Test phase
 - infants attend longer to "non-words" than "words"

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. *Science*, 274, 1926-1928.

Statistical learning of tones

- Stimuli
 - pure tones from C4 to B4
- Exposure phase
 - e.g. 2 minutes of DFEFCF#CC#DD#EDGG#A
- Participants
 - adults and infants
- Results
 - essentially same as for syllables
 - independent of streaming by pitch proximity
- Conclusion
 - same statistical learning mechanism

Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (199). Staistical learning of tone sequest by human infants and adults. *Cognition, 70,* 27-52.

Transition probabilities

- Count tones (pitches or pitch classes)
 - Distribution, probabilities
- Count local combinations of two tones
 - Successive
 - Simultaneous
- Calculate transition probabilities:
 - Given element A, probability that B will
 - follow
 - sound simultaneously

Definitions

Musical chunk

- categorically perceived pattern
 - melodic
 - harmonic
 - both

Musical syntax

■ conditional probabilities of chunks

Chunking and context

- Group elements with high trans. prob.
 - E.g. cadential formulae
- Repeat previous procedure
 - Count chunks
 - Distribution, probabilities
 - Count local chunk transitions?
 - Calculate transion probabilities?
- Accounts for context

Higher-level chunking

- Repetitions of 3 or more tones
 - Invariance under transposition
- Fuzzy definition
 - intervals <u>+</u> 1 semitone
 - durations reduced to short and long
- Similarity algorithms

Dealing with polyphony

- Chunk individual streams
 - Relatively easy
- Chunk harmonic progressions
 - At every note onset, identify Tn-set
 - weight of Tn-set = no. of simultaneous onsets
 - calc. transition probabilities between Tn-sets
- Study results, then attempt 2-D problem

Implications

- Music history
 - Digital history changes thinking
- Music theory
 - Pitch structures better defined and understood
- Music analysis
 - Statistical claims about syntax become testable
- Music psychology
 - Stops neglecting historical context

Problems

- Chunks have fuzzy boundaries
 - Mix objective statistical and subjective theoretical approaches?
- Getting a big picture means losing detail
 - E.g. microtonality
- Can taverage dissimilar styles
 - e.g. 12th century English & European styles

Interdisciplinarity

- Historical musicology
- Music performance
- History of music theory
- Computer science
- Music psychology
- Music education

Not all in one head!

→ Interaction between experts

Core project partners:

(Music···)

- historian or theorist
- psychologist
- computer scientist
- mathematician, statistician

Acknowledgments

- Nick Bailey (Glasgow)
- Margaret Bent (Oxford)
- Christian Berger (Freiburg)
- Tim Crawford (London)
- Ted Dumitrescu (Utrecht)
- Roland Eberlein (Köln)
- Ichiro Fujinaga (Montreal)
- David Hiley (Regensburg)
- Robert Höldrich (Graz)
- David Huron (Columbus Ohio)
- Frauke Jürgensen (Montreal)
- Hartmut Möller (Rostock)
- Eleanor Selfridge-Field (Palo Alto)
- John Stinson (Melbourne)
- W eyde Tillman (London)
- Geraint Wiggins (London)