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Abstract. Research in automatic music segmentation has been con-
ducted by subdividing the segmentation problem into a number of dif-
ferent tasks, the most fundamental one being segment boundary detec-
tion (i.e. automatically locating the time instants separating contiguous
segments). Traditionally, the evaluation of segment boundary detection
is treated as a binary classification problem. That is, automatic and hu-
man annotated boundaries are classified into hits, if they coincide or are
temporally close, or misses, if boundaries have no near neighbours. Most
often F-scores are used to evaluate the classification results. This eval-
uation method has two problems: first, no partial score is given to near
misses, and second, there is no way to assess the ‘veracity’ of full misses.
In this paper we discuss these two problems, and propose strategies to
tackle them.

Keywords: Automatic Music Segmentation, Melody Segmentation, Eval-
uation, Audio Music Processing, Symbolic Music Processing.

1 Introduction

In cognitive science, segmentation refers to a mechanism of human cognition
by which cognitively relevant ‘units of information’ are abstracted from sensory
information (e.g. words or phrases from spoken utterances and objects or parts
of objects from a visual scene). Segmentation is considered core to cognitive
activities such as learning, reasoning, and comprehension [1]. In the context of
music listening, segmentation allows listeners to break down a stream of acoustic
information into units such as notes, figures, phrases, sections, and so on. Au-
tomatic music segmentation is hence highly important for fields concerned with
simulating human-like music processing, such as Generative Arts (to determine
musical units in systems that include music generation stages, or to synchro-
nise music with other media), Music Information Retrieval (for music archiving,
retrieval, and visualisation), and Computational Musicology (for automatic or
computer-assisted music analysis).

Research in music segmentation modelling has been conducted by subdi-
viding the segmentation problem into a number of different tasks, the oldest
and most fundamental being segment boundary detection. Generally, two sce-
narios have been defined to evaluate segmentation tasks: a direct scenario, in
which automatic segmentations are evaluated by comparing them to manual
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(human annotated) segmentations; an indirect scenario, in which automatic seg-
mentations are evaluated by assessing the role of the produced segments within
other (larger) music processing tasks, such as retrieval or visualisation. Segment
boundary detection has been most often evaluated in a direct scenario, where
the problem of comparing automatic and manual segmentations is treated as a
binary classification problem. That is, first predicted boundaries are classified
as either hits or misses, and then the traditional Precision, Recall, and F-score
measures from information retrieval are used to evaluate the classification re-
sults. In the context of music, hits (true positives) correspond to predicted and
annotated boundaries that fully coincide or are in close temporal proximity.
Conversely, misses (false positives or false negatives) correspond to predicted or
annotated boundaries without close neighbours.

In this paper we centre our discussion on two issues related to the evalua-
tion of boundary detection in a direct scenario. First, currently no partial score
is given to near misses. If a near miss is considered to be a hit it receives full
score, and if not it receives a null score. This results in performance estimates
which are either too harsh or too permissive. We survey evaluation measures
proposed in the field of text segmentation that attempt to overcome this prob-
lem. In a case study we showed how these measures can deal with near misses
better than measures currently used in music segmentation. Second, the concept
of full miss is ill-defined. That is, due to the fact that the number human seg-
menters participating in the development of annotated databases is relatively
small, perceptually valid boundaries might not be present in the annotations.
Consequently, there is no way to assess the perceptual ‘veracity’ of a full miss.
We discuss a number of strategies (including new tasks and evaluation scenarios)
that can help to ameliorate this problem.

The remainder of this paper is structured as follows. In §2 we formally de-
scribe the task and evaluation of segment boundary detection. In §3 we discuss
alternatives to deal with the problem of near misses. In §4 we discuss strategies
(tasks and scenarios) to deal with the problem of full misses. Finally, in §5 we
summarise our conclusions.

2 Preliminaries: Task definition and Evaluation Scenario

Formal task definition: Segment boundary detection is the task of automati-
cally locating the time instants separating contiguous segments. The input to an
automatic segmenter is a piece or fragment of music, represented as a sequence
x = 〈x1 . . . xn〉 of ‘atomic’ events xi=1,...,n deemed appropriate for the description
of the music.1 The output is most often a vector of potential-boundary-locations
b = (b1, . . . , bn) where bi=1,...,n ∈ R are used as an indication of boundary pres-
ence strength.

1 More precisely, if the input data is a music recording, xi ∈ Rd,∀i = 1, . . . , n are
audio windows often lasting a few tens or hundreds of milliseconds represented using
d-dimensional feature vectors (commonly MFCCs or Chroma). If the input data is
a symbolic music encoding, xi ∈ ξ, where ξ is a finite and discrete attribute space
approximating the attribute space of music theoretic notes, i.e. the space defined by
ξ is at least onset⊗ offset⊗ pitch, with ⊗ denoting the Cartesian product.
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Evaluating automatic segmentation: Segment boundary detection is gener-
ally evaluated in a direct scenario, where automatically identified boundaries are
compared to manually identified boundaries (i.e. annotated by human listeners).2

Automatically and manually identified boundaries need to be made comparable,
and so both are encoded, respectively, as binary vectors a = (a1, . . . , an) and
m = (m1, . . . ,mn), where ai,mi ∈ {0, 1},∀i = 1, ..., n. Vector element positions
encode potential-boundary-locations, a 1 encodes boundary presence, and a 0
encodes boundary absence.

Once the binary encoding procedure is carried out, the most common evalua-
tion strategy is to first check for boundary misplacing, and then use misplacement
information to compute the similarity between a and m. A value of 0 should re-
flect that all boundaries in a are misplaced in respect to those of m, and a value
of 1 should reflect that all boundaries in a perfectly coincide with those of m.

3 Near Misses: Moving Away from Traditional Measures

The problem of near misses: Boundary perception studies show that, even
when listeners roughly agree on the total number of boundaries in a piece, con-
structing histograms of boundary indications reveals clusters of closely located
boundaries (e.g. see [2, 3] for boundaries of phrases in melodies, and [4][ch. 2] for
boundaries of sections in polyphonic music). The reasons for these differences are
diverse. To name one, different listeners might be using different strategies when
marking boundaries (one giving more importance to long musical rests, while
another one might be focusing on the repetition of melodic figures or harmonic
progressions). The presence of closely-located boundary clusters suggests that,
when checking for boundary misplacement, both full and near misses should be
considered. Figure 1 provides an example of near misses between two hypothet-
ical segmentations s1,2.

s2
s1

Fig. 1. Example of near misses

Traditional evaluation measures in music segmentation: Boundary mis-
placement is viewed as a classification problem. That is, taking a and m, each

2 The process of annotation requires human annotators to listen to a piece or frag-
ment of music, and ‘mark’ the time points where they believe segments have fin-
ished/begun. The marking process can be actual or notional. Actual marking refers
to the case when boundaries are identified by marking a visual (waveform, score,
other) depiction of the music. Notional marking refers to the case when no visual
aid is provided, and listeners are required simply to ‘press a button’ to indicate
the times when boundaries occur. Manually identified boundaries are stored as a
sequence of time values (in some cases absolute and in others relative).
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pair of corresponding vector elements is classified as either a true positive tp
(ai = 1 ∧ mi = 1), true negative tn (ai = 0 ∧ mi = 0), false positive fp
(ai = 1 ∧mi = 0), or false negative fn (ai = 0 ∧mi = 1). Then, the similarity
between a and m is most often computed using the Fβ measure (with β = 1)

Fβ =
(1 + β2) · P ·R

(β2 · P ) +R
∈ [0, 1], (1)

where Precision P and Recall R are defined as

P =
TP

TP + FP
, (2)

R =
TP

TP + FN
, (3)

and TP , FP , and FN correspond to the total number of tp, fp, and fn
occurrences, respectively.

Benefits of the F1, Precision, and Recall measures: Quantifying binary
vector similarity using the F1, P , and R measures has the benefit of not consider-
ing information on true negatives, which due to the strongly unequal proportions
of boundary presence/absence values in music segmentation data would result
in biased performance estimates.3 Moreover, the P and R measures allow two
interpretations of boundary misplacing: ‘over-segmentation’, i.e. introducing too
many spurious boundaries (high R, low P ), and ‘under-segmentation’, i.e. miss-
ing too many annotated boundaries (high P , low R).

3.1 Evaluation of Near Misses Using Traditional Measures

The most common strategy to handle the near miss problem is to allow for a
small tolerance δ when determining boundary matches.

In an ideal situation, a significant number of human listeners would have
annotated the pieces, and this would allow to compute distributions of possible
boundary locations. These distributions could then be used to estimate how
large δ should be, and what score should be awarded to near misses. Some
measures that formalise these ideas have been proposed (see [2, 3]). However, at
present large benchmark datasets for segmentation have been annotated by at
most three human listeners, which impedes a reliable estimation of boundary
location distributions. Since segment boundary annotation is a time consuming

3 Segment boundaries are sparse. For example, in [5] is indicated that in a melodic
dataset adding up to ∼79000 notes, only about 12% of the note locations corre-
spond to phrase level segment boundaries. Thus, standard evaluation measures in
information retrieval using TN information, such as accuracy = TP+TN

TP+TN+FP+FN
,

would result in a biased assessment value. For instance, if a manual segmentation
for a piece marks 20% of possible-boundary-locations with boundary presence, a
näıve automatic segmentation predicting only boundary absences (an all-zero vec-
tor) would still receive an accuracy score of 80%.
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and costly process, it is unrealistic to expect densely annotated datasets to be
created in the short term.

At present, δ is most often set according to intuition. In the MIREX Struc-
tural Segmentation track (audio input) two tolerance settings have been used:
narrow δ = ±0.5 seconds and broad δ = ±3 seconds. In comparative studies of
melody segmentation (symbolic input) three tolerance settings have been used:
no tolerance δ = 0, narrow δ = ±1 note events, and broad δ = ±2 note events.
Moreover, no partial score is awarded to near misses, i.e. if the automatically de-
termined boundary falls within the interval set for δ then it is classified as a true
positive, otherwise it is classified as a false positive. As a result of not awarding
partial scores to near misses, narrow tolerance intervals result in overly pes-
simistic performance estimates, while broad tolerance intervals result in overly
optimistic estimates. These inaccurate estimates complicate the interpretation of
the ‘true’ performance of an automatic segmenter, directly affecting the ranking
of the segmenters participating in the evaluation. Additionally, inaccurate esti-
mates might also affect subsequent analyses of performance, such as correlation
analyses or outlier analyses.

Alternative performance measures and near misses: In MIREX the mt2g
measure has been used as an alternative to evaluate boundary detection perfor-
mance. The mt2g computes the median distance from each annotated boundary
to the nearest predicted boundary. The mt2g can be interpreted in terms of
Recall (a high score corresponds to low Recall), and can also be seen to provide
a rough account of near misses (a low score indicates a dominance of close near
misses). However, assessing the influence of near misses on boundary detection
performance can only be achieved indirectly, i.e. by cross-analysing F1 and mt2g
scores, which makes the analysis complex and ultimately unreliable.

Other measures have been tested to complement/replace the F1, Precision,
and Recall measures, such as the kappa statistic and the sensitivity index d′

(tested in [5]), and also the 1 − f , 1 − m, mg2t, and mt2g measures (tested
in [6]). However, aside from the previously discussed mt2g, none of the measures
takes into account near misses.

3.2 Evaluation of Near Misses in Text Segmentation

In the field of text segmentation, the possibility of near misses also constitutes
a major problem when evaluating automatic segmenters [7–11]. In this section
we review two measures developed to handle the problem of near misses: Win-
dowDiff (WD) [9] and the Boundary Edit Distance based boundary Similarity
(BED-S) [12]. Our reasons to focus only on these two measures are: (1) WD
constitutes the current standard measure to quantitatively evaluate automatic
text segmenters, and (2) BED-S is a recently proposed measure that overcomes
a number of limitations of WD.

For the description of these measures we will assume that the automatically
and manually segmented text is encoded in the same way as done with music
segmentation, i.e. as binary vectors a and m of size n.
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Description of WindowDiff: WD [9] uses a sliding window of size k to simul-
taneously scan both a and m. If within the window the number of boundaries
in the manual segmentation differs from the number of boundaries in the auto-
matic segmentation, a penalty is given. The penalty score is assigned according
to Equation 4, where b(mi...j) and b(ai...j) represent the number of reference
(manual) and predicted (automatic) boundaries within a window of size k (from
position i to j), and n is the number of potential-boundary-locations. The value
of WD represents the degree of error between the segmentations, and so often
the segmentation score is given by taking 1−WD.

WD(m,a) =
1

n− k

n−k∑
i=1,j=i+k

(|b(mi...j)− b(ai...j)| > 0), (4)

WD is an improved version of a previously proposed measure (Pk [8]). The
proposed improvements of WD (in respect to Pk) were tested and validated
in [9]. WD is at present the standard measure for evaluation of text segmen-
tation. However, a number of issues with WD have been identified, the most
severe being (i) it under-penalizes errors at the beginning and end of a segmen-
tation [10]; (ii) it favours segmentations with few boundaries [11]; (iii) varying
the parameter k leads to difficulties in interpreting and comparingWD values [7].

Description of the Boundary Edit Distance based boundary Similar-
ity: BED-S [12] takes a different approach to comparing segmentations. Instead
of using a sliding window, it models the problem of identifying misplaced bound-
aries as an alignment problem. To this end [7] proposes a new edit distance called
boundary edit distance (BED) which differentiates between full and near misses
between a and m. BED uses two main edit operations to model boundary mis-
placements:

– additions/deletions (A) for full misses

– n-wise transpositions (T ) for near misses

BED is based on the Darmeau-Levenshtein edit distance, which formalises
A and T operations. An A type operation is a single-unit edit, which as seen
in Figure 2 can correspond to either a false positive or a false negative. A T
type operation is an adjacent-unit edit, i.e. the act of swapping one unit in a
sequence with adjacent units (e.g. the sequence of characters ‘ab’ becomes ‘ba’).
Figure 2 depicts a transposition spanning one unit. Since in text segmentation
(and also music segmentation) near misses can span more than one possible-
boundary-location unit, BED extends the Darmeau-Levenshtein edit distance,
which is limited to single-unit transpositions, to accommodate for multiple-unit
transpositions. Lastly, if ai = mi for i ∈ {1, . . . , n} (M in Figure 2), BED stores
it as a full match (true positive).
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m:
a:

T M A A

Fig. 2. Boundary edit operations, adapted from [12].

The counts of edit operations are then used to model boundary misplacement
penalties as specified in Table 1.

Operation Codomain Range Penalty-per-Edit Description

Ae N2
0 set of AD edits

Te N2
0 set of T edits

BM N2
0 set of matching boundaries

|Ae| N0 [0, n− 1] 1 number of AD edits
|Te| N0 [0, 1

2
bn− 1c] 1 number of T edits

|BM | N0 [0, 1
2
bn− 1c] 0 number of BM

WT (Te, nt) Q+ [0, 1
2
bn− 1c] [0, 1] Weighted Te operations

Table 1. Details for the edits determined using BED, adapted from [7].

Using the counts |Ae|, |Te|, and |BM |, BED-S can be defined as:

BED-S(m, a) = 1− |Ae|+WT (Te, nt)

|Ae|+ |Te|+ |BM |
, (5)

where

WT (Te, nt) =

|Te|∑
j=1

(
bct +

abs(Te[j][1]− Te[j][2])

max(nt)− 1

)
, (6)

and nt, bct are user defined parameters that control the maximum trans-
position distance (in potential-boundary-location units) and a bias constant,
respectively.

The intuition for using WT (Te, nt) is simple. It is assumed that penalties for
near misses should be proportional to the distance between the reference and
predicted boundaries. WT (Te, nt) then corresponds to a distance function whose
purpose is to scale transposition errors.

The output value of BED-S serves as a summary measure of the similarity
between a and m, just like the F1 score. However, during evaluation one might
also want to have higher interpretative power, e.g. in terms of over-segmentation
and under-segmentation. To achieve greater interpretability, in [12] a confusion
matrix is defined so that TP, TN, FP, and FP are computed using counts of |Ae|,
|Te|, and |BM |. The confusion matrix can then be used to compute BED-based
Precision, Recall, and F1-measures, which would have the advantage that near
misses are accounted for (i.e. TP= |BM |+WT (Te, nt)).
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Limitations of BED-S : While BED-S is conceptually simple, some of the
heuristics introduced to deal with multiple-unit transpositions make its imple-
mentation more complex than that of the WD or F1 measures. However, to
overcome this limitation, the authors of BED-S provide a python implementa-
tion4, and complement it with a detailed documentation (see [7]). The heuristics
used within BED-S also make the common dynamic programming solution to
edit distance computation non-viable, making BED-S’ time complexity to scale
poorly as a function of the number of potential-boundary-locations. For music
segmentation this is not problematic as long as the input consists of relatively
short sequences, such as melodies or harmonic progressions, but it might become
an obstacle if we wish to segment whole musical pieces where each potential-
boundary-location is in the order of note events or beats.

3.3 Case Study Evaluation: BED-S vs. WD vs. F1

In Figure 3 (left) we depict a hypothetical group of segmentations, adapted
from [12]. The group consists of one reference manual segmentation m and four
automatic segmentations a1-a4 produced by four different automatic segmenters.
Each of the first three segmentations contains a single type of error: a1 has
a false negative, a2 has a near miss, a3 has a false positive. Segmentation a4

contains two errors, a near miss next to a true positive (called a ‘cluster’ in
Figure 3), and a false positive. We consider that a reasonable ranking of the
automatic segmentations is (from ‘best’ to ‘worst’): a1, a2 ≈ a3, a4. We rank
a1 at top position based on the idea that a near miss should be preferable to
an insertion/deletion. We rank a4 at bottom position because it is the only
segmentation to contain more than one error type. For the case of a1 and a3, we
argue that the information provided in this case study is not sufficient to justify
giving preference to an insertion over a deletion (or vice-versa),5 and so we rank
both in second position.

m: BED‐S
nt=2

WD1‐k=2 F1
=0δ F1 1δ ±=

0.50.77 0.66 0.66
0.750.77 0.66 1.00
0.660.77 0.8 0.8

false negative
near miss

false positive
cluster

a :1
a :2
a :3
a :4 0.50.66 0.66 0.80

1 11

Fig. 3. Hypothetical case study evaluation

In Figure 3 (right) we present a table with the scores of 1-WD (window
size k = 2), F1 (with tolerance δ = 0 and δ = ±1), and BED-S (transposition

4 Freely available at http://segeval.readthedocs.org/en/latest/.
5 Deciding how to rank a1 in respect to a3 is not as intuitive as it might seem. How

to penalise misses or insertions ultimately depends on how confident we are that
the manual segmentation is correct (number of human annotators and their level of
agreement) and the specific application scenario in which the automatic segmenta-
tion will be used (we discuss this further in §4).
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parameter nt = 2), where nt, k, δ are measured in potential-boundary-location
units. 1-WD ranks a1–a3 equally, and thus is only able to discriminate between
relatively sparse (a1–a3) and clustered (a4) segmentations. F1 (δ = 0) ranks a1,
a2, and a4 equally, and, what its perhaps even less desirable, gives top rank to
a3 (false positive). F1 (δ = ±1) gives top rank to a1, which matches the rank
given to a1 in our preferred ranking. However, F1 (δ = ±1) also ranks a3 and
a4 higher than a2, showing a preference for correctly identifying the reference
(manual) boundaries, even if spurious boundaries are added, to missing reference
boundaries. Moreover, the score values are overly optimistic, a near miss should
not obtain the best possible score. Finally, BED-S scores result in the following
ranking: a1, a3, a2 ≈ a4, being the one that most closely resembles our preferred
ranking. Just like the F1 (δ = ±1), BED-S seems to prefer adding a spurious
boundary (a3) to missing a reference boundary (a2). That said, both BED-S and
the F measure provide parameters that allow the user to control this behaviour.
In the case of BED-S, the number of additions/deletion edit operation can be
weighted according to user preference. Likewise, the general version of the F
measure, defined in Equation 1, provides the parameter β, which can be tuned
to give preference to either Precision or Recall.

From this case study we can conclude that BED-S can be a suitable replace-
ment for the F -measure if near misses are to be considered during evaluation.
Also, 1−WD can be used to investigate if automatic segmenters are producing
clusters of true positives, which in music segmentation is most often undesirable.6

4 Full Misses: an Ill-Defined Concept

The problem of full misses: As mentioned at the beginning of §3, boundary
annotation studies have shown that, even when humans listeners agree on the
bulk of boundaries for a segmentation, the specific location of these boundaries
might still, to some extent, differ. This observation allowed us to argue that near
misses should receive a partial score when evaluating automatic segmenters.
However, the complications when evaluating boundary detection do not end
there. Boundary annotation studies have shown that humans often also disagree
on the total number of marked boundaries [4, 13]. If to that we add the fact
that large test databases are at present annotated only by a handful of human
listeners, then a major issue becomes apparent: the concept of full misses in
direct evaluation scenarios is ill-defined. That is, perceptually valid boundaries
might not be present in the annotations, and, consequently, there is no way to
assess the ‘veracity’ of a full miss.

6 It can be argued that, for text segmentation, deciding whether boundary clusters
are unwanted or not depends both on the granularity of segmentation and the units
used as potential-boundary-locations. This is because segment granularity can range
from syllables to paragraphs, and thus potential-boundary-locations can range from
phonemes to whole sentences. Conversely, in music segmentation test databases
have annotations only at the level of phrases and sections, and potential-boundary-
locations are either at the level of short-time windows (on the order of milliseconds),
note events (on the order of seconds), or beats (also on the order of seconds). Hence,
boundary clusters often result in cognitively unlikely segments and are thus most
often unwanted.
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4.1 Tackling Full Misses by Considering Hierarchical Organisation

In recent discussions at ISMIR’s late breaking sessions [14, 15], a way to tackle
the uncertainty associated to full misses has been suggested, namely to take into
account segment hierarchy. The motivation being that a false positive might
just be the result of an automatic segmenter producing boundaries at different
hierarchical levels, while the annotated boundaries are only at one hierarchical
level. This situation is depicted in Figure 4. The manual segmentation m marks
boundaries at level two of the hierarchy. The automatic segmentation a predicts
boundaries at levels one and two, and so in the absence of hierarchy information
the level one boundaries appear to be full misses (false positives).

1 21 1 1 123
12

3
12

3
12

m:
a:

Fig. 4. Full boundary misses explained by hierarchy mismatch.

If we take an automatic segmenter that produces a hierarchy of boundaries
(e.g. [16, 17]), each set of boundaries comprising one hierarchical level could
be compared against each hierarchical set of annotated boundaries (assuming
that the reference boundaries have also been annotated with hierarchy). The
similarity of the highest matching pair of automatic and manual segmentations
can be taken as an estimate of performance.

Issues with using segment hierarchy to disambiguate full misses: At
present, large annotated datasets consist of boundaries annotated with at most
two levels of hierarchy (see [18, 19]), which does not get us very far. Hence, if
we are to use segment hierarchy as a means to deal with full misses, hierarchy
annotations would need to be expanded.

Now, the situation depicted in Figure 4 is what we could call a ‘strict’ hi-
erarchy in that every segment is completely and exactly contained within every
larger segment, thus rejecting the possibility of overlapping segments. Also, Fig-
ure 4 represents only one possible hierarchical organisation of segments. Theories
of music cognition, on the other hand, do accept the possibility of both over-
lapping segments and multiple hierarchical organisations of segments (see for
example [20, p. 13] for a classic view on the topic of segment hierarchy, and [21,
pp. 134-139] for a more recent one).

Even for pieces of moderate length and a modest number of hierarchy layers,
annotating a segment hierarchy resembling that of Figure 4 would be a time con-
suming process, as it requires the annotator to consider the relational structure
of segments within and across the different layers of the hierarchy. If on top of
that we consider the possibility of overlapping segments and multiple hierarchi-
cal organisations, then not only the annotation time is expected to increase, but
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also a number of other issues. For instance, the annotators would need to de-
sign and use complex representational formalisms (i.e. hierarchies being formally
represented as multiple trees or semi latices), and as consequence we could also
expect low inter-annotator-agreement. It would then seem that the hierarchy
annotation problem escalates to the point that the complications of annotating
hierarchy overshadow its benefits as means to give more appropriate scores to
full misses.

4.2 Other Alternatives to Tackle the Problem of Full Misses

Below we present three alternatives to deal with full misses, which are perhaps
simpler (and hence better suited) than considering segment hierarchy.

Extend boundary annotations to account for boundary salience: By
boundary salience we mean how ‘clear’ a listener might perceive the boundary
(starting or ending point) of a segment to be. There are three potential benefits
of boundary salience annotation over segment hierarchy annotation. First, the
former task seems relatively easy to communicate to human annotators (see for
instance the salience annotation study in [4][Ch. 4]). Second, there seems to be
relatively high inter-annotation-agreement for boundary salience annotation (see
ibid.). Third, the task of annotating boundary salience is in principle less time
consuming than hierarchy annotation.

From the perspective of scoring full misses, the motivation to encourage
boundary salience annotation is that it can be used to attenuate/strengthen
the score given to false negatives. That is, salience-based scoring functions can
be designed so that the penalty applied to false negatives is scaled by the an-
notated salience of the boundary. In consequence, by using salience annotations
the initially strong assumptions regarding the perceptual plausibility of ‘false
negative’ boundaries is ameliorated.

Extend boundary annotations to account for segmentation strategy:
By segmentation strategy we mean the musical ‘cues’ a given listener might use
to mark boundaries during a segment annotation study. To the best of our knowl-
edge segment strategy annotation has not been previously attempted. However,
a few studies in boundary perception [22, 23] have asked participant listeners
to document the segmentation strategies they employed after the segmentation
experiment was conducted. In these studies segment strategy classes have been
created by manually inspecting the participant data. These classes can hence be
used as a template or guide to enrich currently available boundary annotated
corpora with segmentation strategy labels. Moreover, enriching boundary an-
notations with segmentation strategy can also be assisted by automatic means.
That is, computational methods (e.g. see [24, 25]) can be used to suggest what
strategies might have been used for a particular segmentation.

From the perspective of scoring full misses, the motivation to encourage seg-
mentation strategy annotation is that it can be used to give partial scores to
false negatives. For instance, if a given boundary was annotated focusing mainly
on a cue that is not modelled by the automatic segmenter, a resulting false
negative on this boundary would be expected and thus should not be penalised.
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Segmentation strategy annotation can also be used to identify pieces that should
be excluded from the evaluation. For instance, if the boundary annotations for
a given piece of music indicate a majority of boundaries annotated with cue ‘A’
and a given automatic segmenter uses only cues of type ‘B’, then the piece can
be excluded from the evaluation on the grounds that many ‘unverifiable’ false
positives would be expected.

Complement direct with indirect evaluation scenarios: In an indirect
scenario automatic segmentations are evaluated by assessing the role of the pro-
duced segments within other (larger) music processing tasks, such as retrieval
or visualisation. The motivation for employing indirect scenarios is that having
a clear goal for the segmentations can result in having a more clear preference
for segment lengths, as well as for the quantity and quality of boundaries.

For instance, lets say we have a set of hour long improvised music record-
ings annotated with segment boundaries indicating the different parts of the
improvisations. Lets then assume a hypothetical situation where a digital audio
workstation (DAW) user wants to quickly edit the recordings. Lets also assume
that the user expects that, when one of the recordings is loaded into the DAW,
markers indicating the boundaries between different parts of the improvisation
are automatically displayed over the waveform. In this hypothetical scenario, the
user might prefer a segmentation which avoids visual clutter, so as to quickly
start editing. Taking this hypothetical scenario can then introduce an additional
constraint to evaluate what a ‘good’ segmentation should be: sparseness. That
is, we can evaluate the segmentations by comparing them to the annotations
and additionally by requiring them to be sparse. With the former (direct) eval-
uation we can focus only on determining whether automatic boundaries match
annotated ones (hits and near misses). With the latter (indirect) evaluation we
can evaluate those boundaries that did not match the human annotated ones
(full misses) in respect to the user-determined sparsity constraints. For instance,
a simple user-determined sparsity constraint could be that segments need to be
separated by at least 5 seconds. So, during evaluation all automatic boundaries
in a 5 second vicinity of a hit boundary are penalised. An appropriate measure
to set a score based on vicinity penalty is WD described in §3.2.

5 Conclusions

In this paper we have discussed two important issues related to the evaluation
of boundary detection. First, current evaluation measures do not award partial
scores to near misses, which results in performance estimates that are either
overly optimistic or overly pessimistic. We hence surveyed measures proposed
in the field of text segmentation, designed to deal with near misses. In a case
study we showed how these measures can deal with near misses better than
measures currently used in music segmentation. Second, we show the concept of
full miss is ill-defined, due to annotated data sparsity. Consequently there is no
way to assess the ‘veracity’ of a full miss from the point of view of perception
and cognition. We hence discussed three strategies that can help to ameliorate
this problem: (1) extend boundary annotations to account for boundary salience;



On the Evaluation of Automatic Segment Boundary Detection 13

(2) extend boundary annotations to account for segmentation strategy; (3) com-
plement direct with indirect evaluation scenarios. These strategies move away
from assessing the perceptual ‘veracity’ of full misses, thus helping to tackle the
evaluation problem from a different angle.
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