Formality beyond Kähler geometry

Gil Cavalcanti

Utrecht University

17 April 2013 Vrije Universiteit

The unanswerable question

DGAs

What is $\pi_k(M)$?

What is $\pi_k(S^n)$?

Formality

Outline of Topics

DGAs

- Differential graded algebras
- 2 Minimal models and Sullivan's theorem
- 3 Kähler manifolds & beyond

The symplectic red herring

Differential graded algebras (DGAs)

Definition

DGAs

A *DGA* is an \mathbb{N} -graded vector space \mathcal{A}^{\bullet} endowed with

• a graded commutative product:

$$\mathcal{A}^k \times \mathcal{A}^l \longrightarrow \mathcal{A}^{k+l};$$

$$a \cdot b = (-1)^{|a||b|} b \cdot a.$$

- a degree 1 differential $d : \mathcal{A}^k \longrightarrow \mathcal{A}^{k+1}, d^2 = 0;$
- (Leibniz rule) $d(a \cdot b) = (da) \cdot b + (-1)^{|a|} a \cdot (db)$.

Formality

Examples

DGAs

- Given a manifold $(\Omega^{\bullet}(M), \wedge, d)$;
- Any graded algebra (A, \cdot) with the trivial differential d := 0;
- The cohomology algebra of a manifold $(H^{\bullet}(M; \mathbb{R}), \cup, 0)$.

Basics

Given a DGA \mathcal{A} we can always form its cohomology

$$H^{k}(\mathcal{A}) = rac{ker(d: \mathcal{A}^{k} \longrightarrow \mathcal{A}^{k+1})}{\operatorname{Im} (d: \mathcal{A}^{k-1} \longrightarrow \mathcal{A}^{k})}$$

Definition

A DGA is *connected* if $H^0(\mathcal{A}) = \mathbb{R}$. A DGA is *1-connected* if it is connected and $H^1(\mathcal{A}) = \{0\}$.

Formality

- Basics
 - A map of DGAs is a linear map $f : \mathcal{A} \longrightarrow \mathcal{B}$ such that 2 $f(a \cdot b) = f(a) \cdot f(b);$
 - A map of DGAs $f : \mathcal{A} \longrightarrow \mathcal{B}$ induces a map in cohomology

$$f^*: H^{ullet}(\mathcal{A}) \longrightarrow H^{ullet}(\mathcal{B}).$$

Definition

A *quasi isomorphism* is a map of DGAs $f : \mathcal{A} \longrightarrow \mathcal{B}$ which induces an isomorphism in cohomology.

Minimal DGAs

DGAs

Definition

A DGA M is *minimal* if it is freely generated as a graded algebra and has an ordered set of generators $\{a_i\}_{i \in I}$ such that

1
$$|a_i| \le |a_j|$$
 if $i < j$;

2
$$|a_i| > 0;$$

Example

Let
$$\mathcal{M} = \langle a_1 : |a_1| = 2n - 1; da_1 = 0 \rangle$$

$$\varphi: \mathcal{M}^{\bullet} \longrightarrow \Omega^{\bullet}(S^{2n-1}), \qquad \varphi(a_1) = \sigma.$$

 φ is a q.i.

Formality

Examples

Example

DGAs

Let
$$\mathcal{M} = \langle a_1, a_2 : |a_1| = 2n; |a_2| = 4n - 1; da_1 = 0; da_2 = a_1^2 \rangle$$

 $\varphi : \mathcal{M}^{\bullet} \longrightarrow \Omega^{\bullet}(S^{2n}), \qquad \varphi(a_1) = \sigma, \ \varphi(a_2) = 0.$

 φ is a q.i.

Example

Let
$$\mathcal{M} = \langle a_1, a_2 : |a_1| = 2; |a_2| = 2n + 1; da_1 = 0; da_2 = a_1^{n+1}$$

$$\varphi: \mathcal{M}^{\bullet} \longrightarrow \Omega^{\bullet}(\mathbb{C}P^n), \qquad \varphi(a_1) = \omega, \ \varphi(a_2) = 0.$$

 φ is a q.i.

Formality

DGAs

Definition

A minimal model for a DGA \mathcal{A} is

1 a minimal DGA \mathcal{M} ;

2 a quasi isomorphism $\varphi : \mathcal{M} \longrightarrow \mathcal{A}$.

Examples 1–3 give minimal models for $\Omega(S^n)$ and $\Omega(\mathbb{C}P^n)$.

Theorem

Every 1-connected DGA has a minimal model.

Theorem ("The minimal model")

If A and B are quasi-isomorphic, then their minimal models are isomorphic.

Formality

DGAs

Remark

(Sullivan 74) The data needed to construct the minimal model of $\Omega(M)$ is precisely the same as that needed to construct the rational Postnikov tower of M.

Theorem (Sullivan 74)

Let M be a connected and simply connected manifold. Then

 $\pi_k(M) \otimes \mathbb{R} = span\{generators of \mathcal{M} of degree k\}$

Formality

DGAs

Corollary

- $\pi_k(S^{2n-1}) \otimes \mathbb{R} = \mathbb{R}$ if k = 2n 1 and zero otherwise;
- $\pi_k(S^{2n}) \otimes \mathbb{R} = \mathbb{R}$ if k = 2n or 4n 1 and zero otherwise;
- $\pi_k(\mathbb{C}P^n) \otimes \mathbb{R} = \mathbb{R}$ if k = 2 or 2n + 1 and zero otherwise;

Definition

A manifold *M* is *formal* if $\Omega(M)$ and H(M) have the same minimal model.

DGAs

Example

In symmetric spaces (G/H) the product of harmonic forms is again harmonic, hence we have a quasi-isomorphism

 $H(M) \longrightarrow \Omega(M).$

Hence all symmetric spaces are formal (e.g., spheres, $\mathbb{C}P^n$, grassmannians).

Example (Miller 79)

A compact *k*-connected manifold of dimension $\leq 4k + 2$ is formal.

Formality

Kähler manifolds

DGAs

Theorem (DGMS 75)

Any compact Kähler manifold is formal.

key ingredient: *dd^c*-lemma

 $\operatorname{Im} d \cap \ker d^{c} = \operatorname{Im} d^{c} \cap \ker d = \operatorname{Im} (dd^{c}).$

Proof.

Use the fact that d^c is a derivation and $dd^c = -d^c d$ to construct

 $(\Omega(M),d) \hookleftarrow (\Omega_{d^c}(M),d) \to (H_{d^c}(M),d).$

Use five times the dd^c -lemma to prove that the maps are quasi-isomorphisms and the differential in the rightmost algebra is trivial.

Formality

Kähler manifolds

DGAs

Proof.

For example, to show that $\iota : \Omega_{d^c}(M) \hookrightarrow \Omega(M)$ induces an injection in cohomology. Let $a \in H(\Omega_{d^c}(M))$ be such that $\iota^* a = 0$. Let $\alpha \in \Omega_{d^c}(M)$ be a rep.

$$\alpha \in \ker(d^c) \cap \operatorname{Im}(d) \Rightarrow \alpha \in \operatorname{Im}(dd^c) \Rightarrow \alpha = dd^c\beta$$

 $d^c\beta\in\Omega_{d^c}(M)$ & $d(d^c\beta)=\alpha$

Beyond Kähler

DGAs

Possible extention: manifolds with reduced holonomy. Berger's list of holonomy groups

Hol	name	formal
Н	Symmetric spaces (G/H)	\checkmark
U(n)	Kähler	\checkmark
SU(n)	Calabi–Yau	\checkmark
Sp(n)	Hyper-Kähler	\checkmark
$Sp(n) \times Sp(1)$	Quaternionic Kähler	√ (Amann 2009)
G ₂	G ₂	?
Spin(7)	Spin(7)	?

Extention: Generalized Kähler geometry (Cavalcanti 2007).

DGAs

Red herring

something, especially a clue that is or is intended to be misleading or distracting: the book is fast paced, exciting and full of red herrings.

Formality

DGAs

Question: Are compact symplectic manifolds formal? This question is silly: Thurston's first example of nonKähler symplectic manifold (1974) is not formal. Why? Because it has a nontrivial Massey product.

Massey products

Let $a_i \in H(\mathcal{A})$, i = 1, 2, 3 be such that $a_1 \cup a_2 = a_2 \cup a_3 = 0$. Let α_i represent a_i and define $\alpha_{i,j}$ by the identities

 $d\alpha_{1,2} = \alpha_1 \wedge \alpha_2; \qquad d\alpha_{2,3} = \alpha_2 \wedge \alpha_3.$

Then

$$\langle a_1, a_2, a_3 \rangle = [\alpha_{1,2} \wedge \alpha_3 + (-1)^{|a_1|+1} \alpha_1 \wedge \alpha_{2,3}] \in H(\mathcal{A})/\mathcal{I}(a_1, a_3).$$

The form

$$\alpha_{1,2} \wedge \alpha_3 + (-1)^{|a_1|+1} \alpha_1 \wedge \alpha_{2,3}$$

is closed for purely combinatorial reasons and the vanishing (or not) of its cohomology class is preserved by q.i.

Formality

Massey products

DGAs

Theorem

If M is formal, all its Massey products vanish.

Formality

DGAs

Back to Thurston's example, $M = \mathbb{H} \times S^1$, where $\mathbb{H} = H^3/\Gamma$. And \mathbb{H} has a nontrivial Massey product (this is a simple Lie algebra computation).

DGAs

Question (Lupton-Oprea 94)

Are compact 1-connected symplectic manifolds formal?

This was also silly. In 94 there was only one source of 1-connected symplectic non Kähler manifolds (McDuff 84).

 $M \hookrightarrow \mathbb{C}P^n$

symplectic blow-up: $\widetilde{\mathbb{C}P^n}$.

Formality

The symplectic red herring

DGAs

Babenko–Taimanov (00) showed that McDuff's manifolds are not formal. For dimensions 10 and 8, examples were constructed by Fernandez–Muñoz in (02 & 05).

Formality

DGAs

In symplectic geometry the analogue of d^c is

$$\delta = \pi d - d\pi$$

Is there a $d\delta$ -lemma?

Theorem (Merkulov 98)

In a compact symplectic manifold (M^{2n}, ω) the following properties are equivalent:

1 $d\delta$ -lemma:

DGAs

 $\operatorname{Im} d \cap \ker \delta = \operatorname{Im} \delta \cap \ker d = \operatorname{Im} (d\delta);$

2 (hard) Lefschetz property:

 $[\omega]^k: H^{n-k}(M) \longrightarrow H^{n+k}(M)$

is an isomorphism for every k.

Formality

DGAs

Since δ is not a derivation, $\Omega_{\delta}(M)$ is not a DGA and formality does not follow.

Question (Babenko–Taimanov 00)

Does the Lefschetz property imply formality?

Cohomology of \tilde{X} , the blow-up of X along $M^{2n-2k} \hookrightarrow X^{2n}$, was described by Porteous (60).

$$H(\tilde{X}) = H(X) + aH(M) + a^2H(M) + \dots + a^{k-1}H(M); \quad |a| = 2.$$

with the relation

DGAs

$$a^{k} = -c_{1}a^{k-1} - c_{2}a^{k-2} - \dots - c_{k-1}a - t.$$

Formality

Theorem

DGAs

Let \tilde{X} be the blow-up of X along $M^{2n-2k} \hookrightarrow X^{2n}$. Then

- (Babenko–Taimanov 00) If M has a nontrivial Massey product and k > 3, X has a nontrivial Massey product;
- (Cavalcanti 04) If X has a nontrivial Massey product, X has a nontrivial Massey product.

Roughly, if *M* or *X* are not formal, neither is *X*.

DGAs

(McDuff 84) The symplectic form on the blow-up represents the class $[\omega] + \varepsilon a$. Even if $\Sigma^2 \subset X^{2n}$ we can compute:

$$([\omega] + \varepsilon a)^{n-2} : H^2(X) \oplus aH^0(\Sigma) \longrightarrow H^{2n-2}(X) \oplus a^{n-2}H^2(\Sigma)$$

$$(\xi,\eta)\mapsto ([\omega]^{n-2}\xi-\varepsilon^{n-2}\eta t,\varepsilon^{n-3}(\sigma\eta+\varepsilon(\xi|_{\Sigma}-c_{1}\eta))),$$

This is a deformation of the "expected map"

$$(\xi,\eta)\mapsto ([\omega]^{n-2}\xi,\varepsilon^{n-3}\sigma\eta),$$

And it can have less kernel... can even become an isomorphism!

Formality

DGAs

In 2004, symplectic manifolds which were not formal and did not satisfy Lefschetz came a dime a dozen.

DGAs

Example (Cavalcanti 04)

 $\mathbb{H} \times \mathbb{H}$ has a symplectic structure, a nontrivial Massey product and does not satisfy the Lefschetz property. After blowing up a torus

$$T^2 \hookrightarrow \mathbb{H} \times \mathbb{H}$$

we get a manifold \hat{X} which *does* satisfy the Lefschetz property and has a nontrivial triple product. This is a non simply connected counter-example to BT question.

DGAs

Example (Cavalcanti 04)

Embedding $\tilde{X} \hookrightarrow \mathbb{C}P^7$ and blowing up we get that $\mathbb{C}P^7$ is a simply connected counter-example to the BT question.

DGAs

Theorem (Cavalcanti 04; Cavalcanti–Fernandez–Muñoz 08)

- *In any dimension the Lefschetz property is not related to formality.*
- For 1-connected manifolds, in any dimension greater than 6 the Lefschetz property is not related to formality.

DGAs

Red herring

something, especially a clue that is or is intended to be misleading or distracting: the book is fast paced, exciting and full of red herrings.

Formality