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Introduction

Ralph Klaasse, January 24, 2014

This talk is the first in a reading seminar during Friday Fish, set-up to study the book by

Gompf and Stipsicz - 4-manifolds and Kirby calculus [4], roughly from front to finish. In this

talk I will introduce the topic and discuss the aim of the seminar. I will then discuss some

results, mainly before the introduction of Seiberg-Witten gauge theory into the subject. The

contents of this latter portion of the talk can mostly be found in Chapter 1 of [4].

1 Overview

The structure of this talk is as follows.

• Introduction: aim of the seminar;

• The intersection form;

• Freedman’s and Donaldson’s theorems and consequences;

• Closing: characteristic classes;

• Distribution of upcoming talks.

2 Introduction: aim of the seminar

As is mentioned in the outline of this seminar, the aim is to understand the study of four-

manifolds mainly through a technique called Kirby calculus. Essentially, one decomposes a

given four-manifold into balls and studies the attaching maps. The resulting handlebody

decomposition can then be viewed as a diagram, a Kirby diagram, and the Kirby calculus

(1970s) consists of “Kirby moves” on such diagrams with which one can prove two four-

manifolds are isomorphic. The study of handlebodies is equivalent to Morse theory. However,

this will have to wait until Part II of the book, i.e. Chapter 4.

Let me first mention my personal interest in the book. As was mentioned in the outline, much

progress in the study of four-manifolds was made using Donaldson and Seiberg-Witten gauge

theory. Indeed, the following is a direct quote of the first sentences from the preface of [4]:

The past two decades represent a period of explosive growth in 4-manifold theory. From a

desert of nearly complete ignorance, the theory has flourished into a virtual rain forest of

ideas and techniques, a lush ecosystem supporting complex interactions between diverse fields

such as gauge theory, algebraic geometry and symplectic topology, in addition to more

topological ideas.
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Very roughly, as the more classical algebro-topology invariants such as the homology and coho-

mology groups of the four-manifold are in fact homotopy invariants of the manifold and hence

cannot be used to distinguish the diffeomorphism type, one instead considers the space of so-

lutions to a PDE on sections of a vector bundle on the manifold, and studies its (co)homology

pairing. Donaldson theory does this on an SU(2)-bundle E → X with PDE given by the anti-

self-duality equations F+
A = 0 for A ∈ Conn(E) a unitary connection, while Seiberg-Witten

theory instead uses a Spinc-structure to create two U(2)-bundles S+ and S− called spinor

bundles, and then studies solutions (A,ψ) to the equations F+
A = q(ψ,ψ), DAψ = 0, where

A ∈ Conn(
∧2 S+) and ψ ∈ Γ(S+), and DA is the Dirac operator on S+.

Donaldson theory was started around 1983 when he proved what is now called Donaldson’s

theorem, while Seiberg-Witten theory began in 1994. Soon after Witten wrote his famous

paper, experts on Donaldson theory realized the resemblance and used the new equations to

quickly reprove results attained by Donaldson theory and more. In this sense, for most of the

applications covered in this book, Donaldson theory has been superseded by Seiberg-Witten

theory. You will see quite some mention of results from Seiberg-Witten theory in the book,

which even includes an (albeit very brief) introduction. However, gauge theory is not our

main concern in this seminar. If there is interest I can provide references for an introduction

to either gauge theory, and perhaps later on it might be nice to give a more modern proof of

Donaldson’s theorem using Seiberg-Witten theory.

Nevertheless, the gauge theoretic results are mostly negative, in that they show that certain

combinations of geometric structures are incompatible, or indeed that certain four-manifolds

are not diffeomorphic. In contrast, Kirby calculus provides a way of arriving at positive exis-

tence results, by quite explicit constructions. Kirby calculus was around before gauge theory,

but got revived after gauge theory showed what was not attainable, thus guiding the way by

showing what route not to take.

I should also perhaps mention the following book,

• A. Scorpan - The wild world of 4-manifolds (2005),

which describes itself not as a textbook but as a travel guide through the techniques and flavor

of the theory on four-manifolds. Its author was a graduate student of Kirby at Berkeley along

with David.

3 The intersection form

From now on we restrict ourselves to compact orientable four-manifolds X without bound-

ary, in principle just topological. First off, let us note that classifying such X even up to

homeomorphism can never be done, as the following theorem exists, along with the negative

solution of the word problem for groups1.

1This is the Novikov-Boone theorem, which states that given a finite presentation of a group there is no

algorithmic procedure to decide when two words describe the same element.
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Theorem 3.1. Any finitely-presented group is the fundamental group of a compact (even

symplectic) four-manifold.

Hence we will sometimes assume X to be simply-connected, but we will explicitly state this.

Let us first describe the integral (co)homology ofX. We know thatH0(X;Z) ∼= H4(X;Z) ∼= Z.

If we assume X simply-connected, π1(X) = 0, then by Hurewicz’ theorem we get after

abenializing also H1(X;Z) = 0. But then from Poincaré duality we get H3(X;Z) = 0, so

that all that remains is H2(X;Z). But now note that by the universal coefficient theorem

H2(X;Z) ∼= Hom(H2(X;Z),Z), so H2(X;Z) = Zb2(X), whence by Poincaré duality we also

have H2(X;Z) = Zb2(X).2 Let us now define what is called the intersection form, which

essentially uses that for n = 4 we have 2 + 2 = 4. Recall that X be compact oriented means

it has a fundamental class [X] ∈ H4(X;Z).

Definition 3.2. [4, Definition 1.2.1] Let X be a compact oriented topological four-manifold.

The symmetric bilinear form QX : H2(X;Z)×H2(X;Z)→ Z, defined by

QX(a, b) = 〈a ∪ b, [X]〉 = a · b ∈ Z, a, b ∈ H2(X;Z), (3.2)

is called the intersection form of X.

Note that through Poincaré duality we could have defined it on H2(X;Z) × H2(X;Z) or

H2(X;Z)×H2(X;Z) as well. Note that QX is defined using purely topological information.

Remark 3.3. Note that by bilinearity we have QX(a, b) = 0 if either a or b is torsion. Indeed,

if na = 0 for some n ∈ N then by bilinearity we have

0 = QX(0, b) = QX(na, b) = nQX(a, b). (3.3)

Hence QX descends to H2(X;Z)/Torsion. But then we can represent QX by a matrix; we

denote the determinant of this matrix by detQX .

Let us be a bit more explicit about the definition of QX in the smooth case.

Theorem 3.4. [4, Proposition 1.2.3] Let X be a compact oriented smooth four-manifold.

Then every element α ∈ H2(X;Z) can be represented by an embedded surface, i.e. there exists

a compact oriented surface Σ and an embedding i : Σ ↪→ X such that i∗([Σ]) = α, where

[Σ] ∈ H2(Σ;Z) is the fundamental class of Σ.

Proof. Let α ∈ H2(X;Z) be given, and let PD(α) ∈ H2(X;Z) be its Poincaré dual. Then

by the classification of U(1)-bundles over X by their first Chern class, elements of H2(X;Z)

are in fact in one-to-one correspondence with such U(1)-bundles over X. Let Lα → X be

the one corresponding to PD(α) and consider a generic section s ∈ Γ(Lα). Then the zero set

Zα = {x ∈ X : s(x) = 0} will be a smooth surface with [Zα] = α.

2In general, we have Hi(X;Z) ∼= Zbi(X) ⊕ Ti where Ti is the torsion, and then

Hom(Hi(X;Z),Z) ∼= Hom(Zbi(X),Z) ⊕ Hom(Ti,Z) ∼= Zbi(X),

Ext(Hi(X;Z),Z) ∼= Ext(Zbi(X),Z) ⊕ Ext(Ti,Z) ∼= Ti.
(3.1)

The universal coefficient theorem then implies that Hi(X;Z) ∼= Zbi(X) ⊕ Ti−1, but for i = 2 we know T1

vanishes by simply-connectedness.
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We see that there is some freedom here, and in fact this will be studied using the genus

function by Joey when he covers Chapter 2.

Remark 3.5. Note that if X is simply-connected, then by the Hurewicz theorem we get

π2(X) ∼= H2(X;Z), so that for compact simply-connected four-manifolds all elements α ∈
H2(X;Z) can be represented by immersed spheres. These are in general not embeddings, but

one can assume that S2 → X4 has only transverse double points of self-intersection.

So now given a, b ∈ H2(X;Z), Poincaré duals α = PD(a), β = PD(b) ∈ H2(X;Z) and surface

representatives Σα and Σβ respectively, note that both these surfaces inherit orientations from

their respective abstract surfaces.

Definition 3.6. Given generic Σα,Σβ, i.e. all their intersections are transverse, for each point

x ∈ Σα ∩ Σβ, consider the decomposition of tangent spaces

TxΣα ⊕ TxΣβ = TxX. (3.4)

All three terms above now have orientations, and we can by concatenating bases compare

orientations on both sides. We define ε(x) = ±1 depending on whether these orientations

agree or disagree. The intersection of Σα,Σβ is then defined to be

Σα · Σβ =
∑

x∈Σα∩Σβ

ε(x) ∈ Z. (3.5)

Note that the definition of ε does not depend on the order of {α, β}. We then have the

following result explaining the name for QX .

Proposition 3.7. [4, Proposition 1.2.5] Let X be a compact oriented smooth four-manifold.

Given a, b ∈ H2(X;Z) and α, β,Σα,Σβ as above, with the latter two having transverse inter-

sections, we have

Q(a, b) = Σα · Σβ. (3.6)

Consider now the map i : H2(X;Z)→ H2(X;R) induced by the inclusion Z ↪→ R. If we let

ω, η ∈ Ω2(X;Z) be closed forms such that [ω] = i(a) and [η] = i(b), we further have that

QX(a, b) =

∫
X
ω ∧ η =

∫
Σα

η =

∫
Σβ

ω. (3.7)

The next important result easily proven using Poincaré duality is the following.

Theorem 3.8. Let X be a compact oriented topological four-manifold. Then the intersection

form QX is non-degenerate on H2(X;Z)/Torsion.

It is time for some examples of intersection forms of well-known manifolds.

Example 3.9. • S4 has b2 = 0, so that Q = 0;

• CP 2 has a well-known cell-decomposition with one cell in dimension 0, 2 and 4, so that

H2(CP 2;Z) = Z. We then get Q = 〈1〉, as all complex submanifolds intersect positively,

and lines intersect at exactly one point.
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• CP 2
, the complex projective plane with reversed orientation, then has Q = 〈−1〉;

• S2×S2, which has H2(S2×S2;Z), and we can generate it by the classes of a = S2×{p}
and b = {q}×S2, where p, q are arbitrary points. Hence a · a = b · b = 0 as there are no

intersection points after adjusting to p 7→ p′, q 7→ q′. Further, a · b = 1 = b · a as there

is just the point of intersection (q, p). We conclude that Q =

(
0 1

1 0

)
=: H;

• K3, the Calabi-Yau manifold of lowest dimension, has Q = 3H + 2E8, where E8 is the

matrix

E8 =



2 0 1

0 2 0 1

1 0 2 1

1 1 2 1

1 2 1

1 2 1

1 2 1

1 2


. (3.8)

We see that b2(K3) = 22.

• Given two compact oriented smooth manifolds X1, X2, one can consider their connected

sum X = X1#X2, which has using Mayer-Vietoris

H2(X;Z) ∼= H2(X1;Z)⊕H2(X2;Z) and QX =

(
QX1 0

0 QX2

)
, (3.9)

after picking bases for Xi. This uses the fact that the cycles or surfaces representing the

homology classes generically miss the point used for the connected sum. Generically,

then, the intersection form will be diagonal as there is no intersection between cycles

from different summands.

Recall that we can represent QX by a b2 × b2-matrix, which will have coefficients in Z. We

now briefly discuss some notions from the theory of integral forms. Note that symmetric

matrices with real entries are diagonalizable over R.

Definition 3.10. Given a symmetric bilinear form Q on a finitely generated abelian group

A, considers its extension over A ⊗Z R. Let b±2 denote the number of ±1’s on the diagonal,

and call the difference

σ(Q) = b+2 − b2− (3.10)

the signature of Q. Moreover, call the dimension of A the rank of Q, rk(Q). We call Q

positive/negative definite if rk(Q) = ±σ(Q), and indefinite otherwise. The form Q is called

unimodular if det(Q) = ±1, even if Q(a, a) ≡ 0 mod 2 for all a ∈ A and odd otherwise.

Corollary 3.11. Let X be a compact oriented topological four-manifold. Then the intersec-

tion form QX on H2(X;Z)/Torsion is unimodular, and b2(X) = b+2 (QX) + b−2 (QX). If one

changes orientation of X, b±2 swap.
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We wish to study what type of unimodular forms can arise as the intersection form of a

four-manifold. Let us first note the following classification theorem.

Theorem 3.12. [4, Theorem 1.2.14] Let Q1, Q2 be two indefinite unimodular forms such

that they have the same rank, signature and parity. Then Q1 and Q2 are equivalent.

Now one may ask if any triple can be realized for indefinite unimodular forms. Note firstly

that |σ(Q)| < rk(Q) and σ(Q) ≡ rk(Q) mod 2. But there are more restrictions.

Definition 3.13. Given a unimodular form Q on A, an element a ∈ A is called characteristic

if Q(a, a) = Q(a, x) mod 2 for all x ∈ A.

Proposition 3.14. [4, Lemma 1.2.20] Let Q be a unimodular form Q on A and a ∈ A

characteristic. Then Q(a, a) = σ(Q) mod 8. In particular, if Q is even, σ(Q) is divisible by

8.

Proof. If a is characteristic for (A,Q), then a+ e+ + e− is characteristic for (A⊕ Z⊕ Z, Q⊕
(1)⊕ (−1)). But by Theorem 3.12, we then have

Q′ = Q⊕ (1)⊕ (−1) ∼= (b+2 + 1)〈1〉 ⊕ (b−2 + 1)〈−1〉, (3.11)

and we note that any characteristic element for Q′ has odd components. Now note that the

square of any odd number is equal to 1 modulo 8. This means that

Q(a, a) = Q′(a+ e+ + e−, a+ e+ + e−) = (b+2 + 1)− (b−2 + 1) = σ(Q) mod 8. (3.12)

If Q is even, 0 is characteristic, so that σ(Q) ≡ 0 mod 8.

Now note we have found all such indefinite intersection forms. Let Q be an indefinite uni-

modular form.

• If Q is odd, then we have

b+2 =
1

2
(rk(Q) + σ(Q)) =: m,

b−2 =
1

2
(rk(Q)− σ(Q)) =: n,

Q ∼= m〈1〉 ⊕ n〈−1〉,

Q = QX for X = mCP 2#nCP 2
.

(3.13)

• If Q is even, we have

Q ∼=
rk(Q)− |σ(Q)|

2
H ⊕ σ(Q)

8
E8. (3.14)

Remark 3.15. One can show that H ∼= −H and E8 ⊕ (−E8) ∼= 8H.

Sadly there is no nice classification of definite unimodular forms, other than for any given

rank there are only finitely many. This number may be very large: there are for example

more than 1050 definite forms of rank 40.
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4 Freedman’s and Donaldson’s theorems and consequences

Now let X be a compact oriented simply-connected four-manifold. We ask ourselves how

much information about X is contained in its intersection form QX . Whitehead was able to

prove the following.

Theorem 4.1. [4, Theorem 1.2.25](Whitehead, Milnor, 1958) Let X1, X2 be compact ori-

ented simply-connected four-manifolds. Then X1 and X2 are homotopy equivalent if and only

if QX1
∼= QX2.

However, the following theorem by Freedman from 1981 greatly strengthens this theorem.

Theorem 4.2. [4, Theorem 1.2.27](Freedman, 1981 [2]) For every unimodular symmetric

bilinear form Q there exists a compact simply-connected topological four-manifold X such that

QX ∼= Q. If Q is even, X is unique up to homeomorphism. If Q is odd, there are exactly two

homeomorphism types of four-manifolds with Q as their intersection form. At most one of

these types carries a smooth structure.

Corollary 4.3. Compact simply-connected smooth four-manifolds are determined up to home-

omorphism by their intersection form.

Corollary 4.4. If a topological four-manifold X is homotopy equivalent to S4, then X is

homeomorphic to S4.

This is a very nice result. Now we may ask which simply-connected topological manifolds carry

smooth structures, and if a given intersection form Q is represented by a smooth manifold,

how many non-diffeomorphic smooth manifolds are there with that same intersection form?

One result in this direction, restricting the possible intersection forms of smooth manifolds

was already known earlier.

Theorem 4.5. [4, Theorem 1.2.29](Rohlin, 1952 [7]) Let X be a compact simply-connected

smooth four-manifold. Then if QX is even, equivalently if X is Spin, we have σ(X) ≡ 0

mod 16.

In other words, Q = E8 with σ(E8) cannot be represented by a smooth manifold. This

was known before Freedman, but people did not know whether it was representable by a

topological manifold. By Freedman’s theorem it is, by some topological manifold XE8 say.

Note that by Rohlin’s theorem, XE8#XE8 might still admit smooth structures, as its signature

is 16. The next big breakthrough after Freedman came in 1982 when Donaldson introduced

instantons to the study of four-manifolds.

Theorem 4.6. [4, Theorem 1.2.30](Donaldson, 1982 [1]) Let X be a compact simply-

connected smooth four-manifold. If QX is positive/negative definite, then QX is equivalent to

n〈±1〉.

This deals with what definite intersection forms arise from smooth manifolds. As mentioned

I could give a proof of this theorem using Seiberg-Witten theory. For indefinite intersection

forms arising from smooth manifolds, we know already that the coefficient of E8 must be

even. Before Seiberg-Witten theory the following was already known.
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Theorem 4.7. If the intersection form 2mE8⊕nH is realized by a compact simply-connected

smooth four-manifold, then if m > 0 we have n ≥ 3.

Remark 4.8. Note that for m = 1 we have already shown that n = 3 is attained, by the

example of X = K3.

Note that Donaldson’s theorem implies that XE8#XE8 does not admit smooth structures.

This last theorem has since been extended to the following result.

Theorem 4.9. [4, Theorem 1.2.31](Furuta 10/8, 2001 [3]) let X be a compact simply-

connected smooth four-manifold. If QX ∼= 2mE8 ⊕ nH (i.e. if Q is even / X is spin, then

n ≥ 2|m|+ 1. (4.1)

This is called the 10/8 theorem as it says that b2(X) ≥ 10/8|σ(X)| + 1. It is proven using

Seiberg-Witten theory. There is a conjecture by Matsumoto called the 11/8-conjecture saying

that this inequality should read b2(X) ≥ 11/8|σ(X)| instead. To show some of the weirdness

of four-manifolds, we note the following two results.

Theorem 4.10. There are uncountably many pairwise non-diffeomorphic smooth four-manifolds

all homeomorphic to R4.

Theorem 4.11. [4, Theorem 1.2.32] There are infinitely many pairwise non-diffeomorphic

simply-connected smooth four-manifolds corresponding to the intersection forms

2n(−E8)⊕ (4n− 1)H, n ≥ 1 and (2k − 1)〈1〉 ⊕ n〈−1〉, k ≥ 2, n ≥ 10k − 1. (4.2)

Finally, there is the results of Fintushel-Stern giving uncountably many smooth structures by

knot surgery.

5 Closing: characteristic classes

Chapter 1 of [4] also contains an appendix, section 1.4, which deals with characteristic classes.

I suppose most of these results will be known. I wish to mention the following two results.

Theorem 5.1. [4, Theorem 1.4.15] For a given four-manifold X and almost-complex struc-

ture J , we have

c2(X) = e(X) ∈ H4(X;Z), c1(X) ≡ w2(X) mod 2, c2
1(X, J) = 3σ(X) + 2χ(X).

(5.1)

Conversely, if we are given an h ∈ H2(X;Z) with h2 = 3σ(X) + 2χ(X) and h ≡ w2(X)

mod 2, there is an almost-complex structure J on X with h = c1(X, J).

Corollary 5.2. S4, (S2×S2)#(S2×S2) and CP 2#CP 2 do not admit almost-complex struc-

tures. A compact simply-connected four-manifold X admits an almost-complex structure if

and only if b+2 (X) is odd.

Lastly we mention the following result related to the genus function mentioned earlier.
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Theorem 5.3. [4, Theorem 1.4.17] Let X be a compact complex four-dimensional manifold,

and i : C ↪→ X a smooth (non-singular) connected complex curve. Then we have

2g(C)− 2 = [C]2 − c1(X)[C], (5.2)

where g(C) is the genus of C.

Perhaps later on we will need to recall some of the results in this section, but as we will

mostly skip the section on gauge theory I chose to skip it for now.
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