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2 PEDRO FREJLICH

1. LECTURE ONE. PROPAGANDA. POINCARE CONJECTURE IN DIMENSIONS > 5.

1.1. Singularities of smooth maps. Let M, M’ be smooth manifolds!, and f :
M — M’ a smooth map. We define

Crit(f) := {& € M : rankd, f < min(dim M, dim M")}

the set of critical points of f, and f Crit(f) C M’ the set of critical values of
f. M\ Crit(f) and R\ f Crit(f) are then said to consist of regular points and
regular values, respectively.

Note that Crit(f) C M is closed.

1.1.1. Abundance of reqular values : Sard’s theorem. Recall that a subspace X C
R™ is said to have measure zero if, for all € > 0 there is a sequence of balls
(Bn)n207 Wlth

Zvol(Bn) <e, UB" D X. vol(By):= / dz
n n Bn

One immediately checks that :

¢ (X,)n>0 have measure zero = | J,, X,, has measure zero;
e g : R™ — R™ smooth, X C R™ of measure zero = ¢g(X) C R™ has
measure zero.

Hence the following notion is well-defined : a subspace X C M is said to have
measure zero if there exists a smooth atlas 2l = {(U;, ¢;)} of M, with each

of measure zero.

Recall now :
Theorem 1 (Sard). If f : M — M’ is smooth, f Crit(f) C M’ has measure zero.
Proof. See [10] or [30]. O

Hence ’almost all’ values are regular.

When dim M < dim M’, there is a ’lot of space’ to deform f inside M’, and
we can always remove the singularities of f — i.e., perturb it slightly to a f’ with
Crit(f') = @.

Theorem 2 (Whitney). Fvery f: M — M’ is C*-close to a injective immersion
if dim M’ > 2dim M, and every M™ embeds in R?™.

In the other extreme, if M is compact, without boundary, Crit(f) # @.
So we cannot get rid of singularities of functions.

1.1.2. Singularities of Functions. We consider the assignement M — C>°(M).
Meta-principle 1 : Min-Max: ”The more complicated the topology of M,
the greater the number of critical points of functions on it.”

Example 1. If f: T" — R, then | Crit(f)| > n+ 1.

For more, see Min-Max theory ®.

Meta-principle 2 : Morse-Smale: "The dynamics of a nice enough f €
C*°(M) reconstructs M smoothly.”

Example 2. Suppose M™ is compact without boundary, and f : M — R has
exactly two critical points. Then M™ is homeomorphic to S™.

1Throughout these notes, by a manifold, we mean a Hausdorff, second-countable topological
space, equipped with a maximal smooth atlas.
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Aside : Poincaré Conjecture & Homotopy Spheres

Remark 1. [t is not claimed that M™ is diffeomorphic to S™, with its standard
smooth structure. In fact, in [15], Milnor constructs smooth S®-bundlesp : M — S*,
for which there cannot exist B® with

OB=M, H*B;Z)=0,
and carries a smooth f € C®°(M) with exactly two non-degenerate critical points.

This implies that M7 is homeomorphic to S7, but not diffeomorphic to it; such
manifolds are called exotic spheres.

Definition 1. A homotopy sphere is a smooth, oriented manifold M™, homotopy-
equivalent to S™.

Note that if M™ is a homotopy sphere, then w1 (M) = {1}, and He(M;Z) ~
H.(S™;Z). Conversely, if M™ is simply connected and He(M;Z) ~ H.(S™;Z),
then M™ is a homotopy sphere; indeed, in that case me (M) =~ me(S™) by Hurewicz’
theorem. Now, a generator o] € 7, (S™), a : S™ — M, gives rise to a homotopy
equivalence S™ —» M.

Homotopy spheres are the object of the famous

Theorem 3 (Poincaré Conjecture). A homotopy sphere M™ is homeomorphic to
Sm.

Observe that the smooth version of the theorem, claiming that homotopy spheres
are diffeomorphic to S™, is decidedly false in light of the existence of exotic spheres.
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Example 3. Milnor’s stand-up torus... ®. How does one make a drawing ?
o Present (T2, f) and its 4 critical points;
e ’Non-degenerate’ allows normal forms around the points; describe them;
e Show how the topology of f~1(—o0,t] changes ast varies. (‘reconstruction’).

Note that :
(1) If [a,b] contains no critical values of f, then the diffeomorphism type of
f~1(—o0,1] is independent of t € [a, b];
(2) When ¢ crosses a critical value t = ¢, we have

fﬁl(_oovc—’_s] = fﬁl(_oovc_d UH}\?
where H, denotes a “handle” Hy ~ D* x D™~ A,

In view of Sard’s theorem, (1) suggests that we subdivide our task of understanding
the topology of M.

Definition 2. A cobordism C = (W; My, fo, M1, f1) from M to M{" is a
smooth manifold W™, together with a decomposition of its boundary as OW =
W ] 1W, together with diffeomorphisms f; : O;W = M.

If M; are oriented (as will usually be the case), we assume further that W is
oriented, and that fy be orientation-preserving, while fi is orientation-reversing;
we refer to C as an oriented cobordism between M, and M;. We will also refer
to oW as the incoming boundary of W, and to 9; W as the outgoing boundary
of W.
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We regard a cobordism C as a 'morphism’ My ~» M; of sorts. The maps will be
suppressed from the notation when no confusion can arise.

Definition 3. Two cobordisms C = (W, My, fo, M1, f1) andC = (W', M{, f§, M1, f1)
are said to be equivalent over M if there exists an oriented diffeomorphism

F:W W, filoF=f
A cobordism C = (W, My, fo, M1, f1) is called :

e trivial if it is equivalent over My to (Mg x [0,1]; Mo, My);
e an h-cobordism if ;W — W are homotopy equivalences.

One of the goals of this course is to prove the following fundamental

Theorem 4 (Smale’s h-cobordism theorem). If 71 My = {1} and dim M > 5, any
h-cobordism over My is trivial.

Corollary 1 (Characterization of disks). If M™ is a contractible, smooth, compact
manifold, and m (OM) = {1}, then M ~ D™ if m > 6.

Proof. Choose an embedding j : D™ < M™, and let
M = MN\j(Dm™).

Then j : D™ — M induces a long exact sequence

s = Hiyr (M, §(0D™); Z) — Hy(j(0D™); Z) — Hy(M; Z) — Hi (M, j(0D™);Z) — - --

But note that M ~ ]\//.T/j((?ID)m), so
Hy(M,j(0D™): 2) = Ho(M/(0D™; Z) = Hy(M;Z).
By hypothesis, He(M;Z) = 0, so we conclude that He(jg) : He(j(0D™);Z) —
Hy(M;Z) is an isomorphism. Hence by Whitehead’s theorem, and the fact that
m (M) = {1}, we see that jy : D™ — M is a homotopy equivalence. Thus
(M;0D™ 9M) is an h-cobordism.
By Smale’s theorem, there is an equivalence
F: M =5 0D™ x [0,1];0D™ x {0},0D™ x {1}).

But M is clearly recovered as

Dy vy
I
I
A
D" — — =M
so M ~ (S™1 x [0,1]) Ugm-1 D™ ~ D™, O

Corollary 2 (Poincaré conjecture in high dimensions). M™ homotopy sphere,
m = 6 = M is homeomorphic to S™.

Proof. Asbefore, start with an embedding j : D™ < M™, and let M= MNG(D ™),
so that Hyg(M,j(D™);Z) = Hi(M;Z) still holds. The long exact sequence of the
pair (M, j(0D™)) implies that

Hy(j(D™);Z) = Hy(M;Z), k<n-2,
since Hy(M;Z) = Hy(S™;Z) = 0 for k # 0, m. For the case k = m — 1 we have
0= Hpy(M);Z) = Hp1(j(D™); Z) = Hyp 1 (M;Z) — 0

2Note that this is the homotopy-theoretic version of (1) above.
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but note that maps the fundamental class of M to that of j(9D™):
Hin(M);Z) 3 [M] = [j(D™)] € Hpna (5(D™); Z),

and thus Hm_l(]/\/[\; Z)=0.

Hence (81/\4\) = {1}, H.(]/\/[\; Z) = 0, so by Corollary 1, there is a diffeomor-
phism 7 : D™ =5 M.

Consider the diffeomorphism f := joi~! :i(dD™) =% j(OD™). In general, it is
not possible to extend f to a diffeomorphism

Fi(D™) = §(D™);
however, we can extend f to a homeomorphism f: i(D™) = §(D™) by the so-

called ’Alexander trick’ :
~ . x
Frito) o lalf ()
We can now define a homeomorphism F' : S™ — M™ by

DMC—s §™ <—D7
|
\F I~ /
foi % J
M

O

1.2. Exercises.

(1) Recall the definition of the weak and strong topologies in the function spaces
Ck(M, M'"), and that Cl;,(M, M') has a complete metric.

(2) Show that Prop(M, M’) C C%(M,M’) is a connected component.

(3) Let U C M be open. The restriction map C"(M,M') — C"(U,M"), 0 <
r < oo, is continuous for the weak topology, but not always the strong.
However, it is an open map for the strong topologies, and not always for
the weak topology.

(4) A submanifold X C W of a manifold with boundary is called neat if
0X = X NOW, and X is not tangent to OW at any point x € 0X. Show
that if y € M is a regular value for f : W — M and f|ow : OW — M, then
f~1(y) C W is a neat submanifold.

(5) If f: M — M’ is smooth, and X C M’ is a submanifold, we say that f is
transverse to X, written f M X, if

imd, f + Ty X = TpyM', z€ f1(X).

Suppose now that W is a manifold with boundary, and f : W — M’ is
smooth. If f, flaw M X, then f~'1X C W is a neat submanifold, and
codim(f~tX C W) = codim(X c M’).

(6) Every closed subpace X C M can be described as X = f~1(0), where
f: M — R is a smooth function.

(7) Can you find a smooth f : T? — R with exactly three critical points ?

(8) Show that if W if a compact manifold with boundary, there can be no
continuous map r : W — OW extending idgyy -
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2. LECTURE Two. NORMAL FORMS OF SMOOTH MAPS. MORSE FUNCTIONS.

A general goal of this course is to understand how to extract information about
the topology of M by means 'good’ functions f : M — R.

We will be mostly concerned with compact manifolds without boundary, but
many natural constructions lead us away from this more manageable case. When
M is non-compact, we will typically demand that f: M — R be proper.

PR RRRLLRRL

Aside : proper maps

Recall that a map f : M — M’ is said to be proper if f~! takes compact sets to
compact sets. The subspace Prop® (M, M’) ¢ C*(M, M’) of proper maps is open
in the strong C*-topology, for every k > 0.

Exercise : if f is proper, then f Crit(f) C M’ is closed.

One very strong reason to deal exclusively with proper maps is that non-proper
maps may not reflect any of the topology of M. As an illustration, let us convene
that an open manifold is a manifold, none of whose connected components is
compact without boundary. Then we have

Theorem 5 (Gromov). On every open manifold M, there is f € C*°(M) with
Crit(f) = 2.

The catch is that such f cannot be proper.
RRRRRRRRRRRRRRRRRRRRRRD

ORI LRI RRLRL

Let us go back to our f: M — R (proper if M is non-compact). We inaugurate
the notation

My = f~'(—o0,t] C M.

Exercise : this is a smooth manifold with boundary OM; = f~1(t) when t is a
regular value for f.

Assume now that [a,b] C R consists only of regular values for f. Our first goal
in this lecture is to prove the

Theorem 6 (Structure Theorem I). M, is diffeomorphic to My, and the inclusion
M, — M, is a strong deformation retraction.

Before we give the proof, a short reminder comes in handy.

666566660066 0606606060066065666660660666666606660
Aside : Vector fields and their flows

Recall that, by the Fundamental Theorem of ODEs, a vector field w € X(M)
defines a local flow. That is, there is

¢: M x R D dom(¢) — M,

where dom(¢) is an open containing M x {0}, with the property that, for each
x € M, c(t) := ¢!(x) is the maximal trajectory of w with initial condition ¢(0) = z.
Being a trajectory of w means that % = w o ¢; by 'maximal trajectory’ we mean
that
¢:dom(¢) N{x} xR =: (az,b,) = M

cannot be extended any further.

Note that ¢*(¢%(x)) = ¢'T*(x) whenever either side of the equation is defined.

When dom(¢) = M xR, we say that ¢ is the flow of wj; in this case, ¢ determines
a group homomorphism ¢ : (R,+) — (Diff(M),o), and we will say that w is
complete. Exercise : w is complete if it is compactly supported.

However,
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Example 4. Neither 9/0t € X(R\0) nor (1+2)0/0t € X(R) are complete®.

There is a classical condition to be imposed on w to ensure that it give rise to a
flow.

Definition 4. A Riemannian metric g on a manifold M is called complete if the
geodesics of its Levi-Civita connection are defined at all times.

Complete Riemannian metrics exist on all manifolds of finite dimension.

Definition 5. A vector field w € X(M) is said to have bounded velocity if there
exists a complete Riemannian metric g on M, for which |w|| is bounded by some
real number K :

sup |lw. || € K < 4oc.

reM

Lemma 1. Let (M, g) be complete.
(1) (a,b) CR a bounded interval, and ¢ : (a,b) — M a curve of finite length :

b
/ I/ ()|t < oo.

Then imc C M 1is precompact.
(2) Suppose c(t) is a mazimal trajectory of w € X(M), ¢ : J — M, where
J C R is an interval containing 0. Then :
o [0,400) F J = [ [I/(8)]|dt = o0;
o (00,01 ¢ J = [} (1)l|dt = oo

Proof. (1) : It suffices to show that, for every ¢ > 0, there exist x, ...,zy € Climc
such that the e-balls around z; cover it : UY B.(x;) D Clime. But

b tit1
/ I @)ldt < o0 — Ja—to<ti<---<ty=b, / I/ ()| dt < e,
a t;

SO N
Cl(im¢) C | J Be(e(t:)).
0

(2) : If ¢ is maximal, and [0,00) € J, then ¢(¢) has no limit point as ¢t — b,
b:=sup{t:t € J} < oco. It then follows from the first part of the lemma that
fé) I/ (t)]|dt = co. The other case is completely analogous. O

Definition 6. An isotopy ¢ of a smooth manifold M is a smooth map
Y MxJ— M,

where J C R is an interval containing 0, each ¥y := ¥ (-,t) : M — M is a diffeo-
morphism, and 1y = idps.

3For the second example, note that a solution curve ¢(t) to (14 t2)9/8t with initial condition
¢(0) = 0 is ¢(t) = tant, which cannot be extended beyond (—7/2, +7/2).

4A metric space (X,d) is called totally bounded if, for every € > 0, X can be covered by
finitely many e-balls. A complete metric space is compact iff it is totally bounded. Indeed, it is
clear that any compact space is totally bounded. On the other hand, if a space is totally bounded,
to show that it is compact it is enough to show that every sequence (zn),n>o has a Cauchy
subsequence (Zn, )k>0. Cover X with finitely many balls By, ..., By of radius 1; then one of the
balls, say B1, must contain infinitely many terms of (z,). This defines a subsequence s1 C (zr),
and the distance between any two points in s; is no greater than 1. Now cover Bj by finitely
many balls of radius 1/2; again, we can select a subsequence s C s1 of points lying in one single
1/2-ball. Inductively, we define then a sequence of subsequences (zn) D -+ D Sk D Spy1 D -+ -,
with each sy, lying in a ball of radius 1/k; hence a sequence xp, € si\si, must be Cauchy.
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The flow of a complete vector field is an example of an isotopy.
An isotopy 1 gives rise to a time-dependent vector field, i.e., a one-parameter
family ¢ — w; of vector fields on M, defined by
iy
dt
Remark 2. A time-dependent vector field wy can of course be regarded as an au-
tonomous vector field w on M x J, to which the above discussion applies to produce
a local flow

:’thowt, ted

¢: (M xJ)xRDdom(¢) = M x J.

Note however that 5 gives rise to an isotopy of M x J, not of M alone. This can
be remedied as follows : consider the autonomous

@ = wy + 80t € X(M x J)

Let us assume for simplicity that @ is complete, and let us denote its flow by qAS:
(M xJ)xR— M x J. Then ¢ satisfies

bs(x,t) € M x {t + s},

50 $T+S(x, t) = QAST o (ES (x,t) wherever this makes sense; in particular, s — pry, o$s
gives rise to an isotopy of M.

We conclude that :
Lemma 2. Time-dependent vector fields of bounded velocity give rise to isotopies.

Proof. O

We conclude this aside by recalling a very useful formula from Calculus. Suppose
1 is an isotopy of M with corresponding time-dependent vector field w; € X(M).
Suppose t — 1, is a time-dependent section of some tensor bundle E := (A" TM)®
(ANYT*M).

Lemma 3. & (v7m) = vi (L(wo)m + % ).

Exercise : Prove the Lemma.

686666666666 66666686656666866686668666660

Proof of Structure Theorem I. Suppose
fCrit(f) Nla,b] = @.
Then f Crit(f) N[a —e,b+ e] = & for small enough € > 0. Choose
o:la—eb+el—[0,1]

such that
() 1 iftefa—e/3,b+¢/3];
AT N0 ittt fa—2¢/3,b+2¢/3).

- (00 1)

—(0o

w:i= ="V e X(M),

IVFI?

where || - || refers to some auxiliary (complete) Riemannian metric g on M and V f

denotes the vector field defined by g(V f,v) = df (v).
Observe that

(L(w) f)(z) = {—1 if f(z) €la—e/3,b+¢/3];

0 if f(x) ¢ [a—2¢/3,b+ 2¢/3].
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f being proper, w is compactly supported, and so gives rise to a flow
¢ My x R — My,  ¢(Mp) C My—y.
In particular, we have a diffeomorphism
(bbfa : Mb = Ma;
and
Bz, x[0,—a) * My X [0,0 —a] — M,
is a strong deformation retraction of M, onto M,. O

This idea that 'in the absence of critical points we can push down M;’ can be
turned around to detect critical points of a f € C°(M).

0000000000000000000000000000000000000000NQ0NN0NNN

Aside : Palais-Smale Condition C
Fix a complete Riemannian manifold (M, g), and let f : M — R be given.

Definition 7. We say that [ satisfies Condition C if, whenever a sequence
(Tn)n>0 in M is such that

e (|f(zn))nz0 C R is bounded, and
o |[Vf(zn)|| — 0 asn— oo,

then there is a subsequence (T, )k>0) converging in M.

Observe that any proper f satisfies Condition C' automatically.

0000000000000000000000000000000000000000N0NN0NN0N

Lemma 4. Suppose f is bounded below, and f sastisfies Condition C. Then the
flow ¢t of =V f is defined for all positive times, and for every x € M, tl}T o' (z)

exists and is a critical point of f.

Proof. Let B := in]{[ f(x) > —o0, and consider the maximal trajectory
xeM

c(t) :==¢'(z), c:J— M;

we wish to show that [0,400) C J.
First define F': (a,b) = R by F(t) := f(c(t)). Then

t t
BP0 =FO)+ [ Flo)is=F0O) - [ [95(co)|ds
0 0
t
— [ I9felslPds < F(O) - B
0
Since the RHS is independent of ¢, we conclude that

b
/0 IV £(c(s))|%ds < F(0) - B.

Let us argue by contradiction, and assume that b were finite. By Schwarz’s inequal-
ity,

b b b
/ ||Vf<c<s>>||ds<\/ / dS\/ / IV £(e(s)) 2ds < /B(E(0) — B).
0 0 0

This implies that fé) IV f(c(s))]|lds < +o0. But by Lemma 1, b < +oo implies that
f(f |V f(c(s))||ds is infinite; the contradiction shows that b = +oo.
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But then
|19 < FO) - B = [Vhl 0, st oc,
0

so [[Vfewll — 0. By Condition C, we can find (t,)n>0 with c(t,) = = € M; by
continuity of df, we have
x € Crit(f).

O

We will return to this sort of argument in more detail when we deal with Min-
Max theory.

2.1. Normal Forms. Having dealt with the regular case, we wish to understand
the behavior of f around its singular points x € Crit(f). Ideally, we should be able
to provide a model for f around each critical point, depending only on the value of
a (a priori known) finite number of derivatives of f at .

For too badly behaved f, this is way too ambitious.

Example 5. The maps fo, f1 : R =R, fo(t) =0, and

et ift>0,
fi(t) = .
0 ift <O0.

both have 0 as a critical point, and their derivatives at 0 vanish to infinite order,
and they behave quite differently at zero.

To weed out such behavior, and still hope to model the singularities of f, we
should impose some non-degeneracy condition on the critical points @ € Crit(f).

teleleleleleleteloletelotetelotetelo o100 o0 0 o100 e 10 0 et o o e To 0 2ot e o e t0 0 e 0 10)

Aside : Germs

Recall that if M, M’ are smooth manifolds, and X C M is any subspace, we
denote by

C®(M,M")x ={[U,f]: X CU C M open, feC®(U,M)},
where [U, f] denotes the germ of f along X :
[U, f] = [U’,f’] <~ W' cUN U/7 f|U// = f,|U”-

Two germs [U, f],[U’, f'] € C*°(M, M')x will be called equivalent if there exist
U"cUNU’,V D f(X) opens, and embeddings j : U” < U and i : V — M’ with
iflor = f'lurg.

An equivalence class of germs around X formalizes the notion of 'behavior’
around X : two maps f, f' € C°°(M, M') have the same behavior around X C¢ M
iff their germs along X are equivalent.

We will typically be lazy, and write [f] (or just f) instead of [U, f].

We will mostly be concerned with £ := C>*(R™,R)g, the set of germs of real
functions around zero. Note that this is a ring, with the operations

ST+ =1+ - T=11]

with additive and multiplicative units [0] and [1] respectively. Observe that £ comes
equipped with a natural surjective ring homomorphism

ev:E& =R, [f]— f(0).
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Since £/R is a field, m := ker(ev) is a maximal ideal in &; observe that [f] ¢ m
implies that [f]™' = [f~!] € £, so m < & is the unique maximal ideal — that is, £
is a local ring.

Observe that [f] € m iff

ro= [ Sswna=3 ([ L) =

1
som = Y1" £ x;; in particular, m? = 1" € x;2; and thus [f] € m? iff 0 € Crit(f).
This implies that

m/m? = ToR™, - [f] +m® = dof,
is an isomorphism of £-modules.
This observation can be expanded by observing that ev extends to a ring homo-
morphism

1 lel
Tayl : € = R[[z1, ..., xm]], [f]+— Tayl(f) := E e fxa,
~ al Jzq
where for a multi-index o = (s, ..., ), @; = 0, we set

af m o TT o Hle
@ ::E «;, a!::”ai!, x':”xil, — = —a-
x "
1 1 Oxa 1 O

The homogencous part of degree k of Tayl(f), denoted by Tayl*(f), can be described
in a slightly less coordinate-dependent fashion. Indeed, if f : R™ — R is a smooth
map, then df can be regarded as a smooth map df : R™ — Hom(R™,R) ~ R™,
and as such we can take d(df) := d*f : R™ — Hom(R™, Hom(R™,R)). But recall
from Calculus that d?f lands inside Hom?(R™, R), i.e., d*f(v,w) is symmetric in
its arguments v, w € ToR™. More generally, we denote by d*f the map d(d*~'f) :
R™ — Hom" (R™,R); in this notation,

Tayl(f) = 3d* .
Lemma 5. Let [f] € m2. Then
dgf(v,w) = [, [, f1)(0) = [w, [, f]](0),

where v, w are any two germs of vector fields around zero extending v,w € TyR™,
respectively.

Proof. Note that

[0, [w, f1] = w, [0, 1] = [[v, @], f1(0) = do f([v, w]) = 0
since 0 € Crit(f). Hence [v, [w, f]](0) = [w, [0, f]](0). But the LHS can be expressed

[v, [w, f1](0) = d([w, f])(v),
which shows that it is independent of the choice of extension v, whereas

[w, [v, £11(0) = d([v, f])(w)
shows that it is independent of the extension w. Now express f in coordinates and
conclude that the quantity above equals d2 f(v,w) (exercise). O

Now recall if B : R™ x R™ — R is a symmetric bilinear form, there exist integers
0 < A\, v < m and a linear basis (e;)* of R™ with
—1 ifi=jandi<A\,
B(ei,ej) =q+1 ifi=jand A <i<m—v,
0 ifi£jori>m-—uv.
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The integer v is called the nullity of B; the form is called non-degenerate if
v = 0. The integer A, on the other hand, is called the index of B. Observe that
v, A, (m — XA — v) are the dimensions of the maximal subspaces W C R™ where B
restricts to zero, a negative-definite form, and a positive-definite form, respectively.

Lemma 6. Let [f] € m?, and let Jac(f) <1 € denote the ideal spanned by the partial

derivatives 6(?7{1 Then d3 f is non-degenerate only if Jac(f) = m.

Proof. Of course, [f] € m? implies that Jac(f) C m, so one inclusion always holds.

Suppose d3 f were non-singular. Then do(df) = d3f : R™ — Hom(R™,R) is a
linear isomorphism; hence by the Inverse Function Theorem, we can express the
coordinates x; as

x; =x;(0f/0x1,...,0f [0xy) = x; Zaij ' %f-’
- J
J

for some a;; € €. Since the z;’s span m, we have Jac(f) = m. O

BB3833833833533833333833333833333835830835850

Having described the local picture, we can transfer our definitions to the manifold
setting :

Definition 8. The Hessian Hess,(f) is the bilinear form
T, M x T,M — R, Hess,(f)(v,w) := d>f(v,w),

corresponding to the critical point x € Crit(f). A critical point x € Crit(f) is called
non-degenerate if Hess,(f) is non-singular. If x is a non-degenerate critical
point, its index A = \(f,z) is

M [, z) := max{dim W : Hess,.(f)|w is negative-definite.}

A function f € C°(M) will be called Morse if all of its critical points are non-
degenerate.

We will write Morse(M) C C*°(M) for the subspace of Morse functions.

Lemma 7. (1) Morse(M) is open in the strong C?-topology, Morse(M) C
(2) Af,2) + AM=f,z) = dim M.
Proof. Immediate. 0

We wish to prove now :

Theorem 7 (Morse Lemma). If f € m®>\am3, there exists an embedding
1
Yv:0eU =R, *f= iHessz(f) €€,

where we regard Hess,(f) as a smooth function Hess,(f) : T.M — R by the
rule v — Hess, (v, v).
We need a technical lemma first.

Lemma 8 (Auxiliary Lemma). If f € m>\um?, and § € m?, there exists a time-
dependent vector field w; around zero, t € [0,1], for which [wy, f + 18] = =6 and
we(0) = 0 for all t.
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Proof. Note that § € m3 implies that V4§ € m?, so
Vo = B(z)z, B(0)=0.
On the other hand, Jac(f) =m, so x = A(x)V f. Hence
T =A@ (V(f+10) =A@V A () = A(2)V(f +10).
Vo = B(x)z

Now, B(0) = 0 ensures that
= Cuz)V(f+10), Ciz):=(id+tA(z)B(z)) " A(z),
which means that each of germs of the coordinate functions x; can be written as
x; = [vi, [ + 0]

for some germ of time-dependent vector field v;.
Now write 6 = ) a;;x;x; and let

Wy = Zaijxjvi;
%
then [wy, f + ¢6] = —0 as promised, and w;(0) = 0 for all ¢. O

Proof of Theorem 7. First observe that
t 1
fi=0-8f+ iHess(f) =f+t) 0:= §Hess(f) —f, te]o,1],

defines a smooth family f; € m*\m?3. Note that § € m?.
We seek a germ of isotopy v; around 0, such that ¢;(0) = 0 and

w:ft:fu tE[O,l]

The latter condition is equivalent to

0= SWiR) = Lw)+d=0,

and the former to w:(0) = 0, where w; denotes the germ of time-dependent vector
field corresponding to ;.
But by the Auxiliary Lemma 8, such w; exists. (|

Definition 9. If f € C°°(M) and p € Crit(f) is non-degenerate, « Morse chart
around p is an embedding ¥ : U — M of an open around 0 € R™ putting f in
normal form :

O f = Qxisp) + [(),

where Qx(f,p) stands for the standard quadratic form of index X = A(f,p), Qx(f,p) =
A m
=12+ N o
2.2. Exercises.
(1) If f € Morse(M) and f’ € Morse(M’) i =0, 1, then F := pry, f+pry, [’ €
Morse(M x M'). Determine the critical points of F' and their indices in
terms of those of f, f’.
(2) Give an example of isolated and non-isolated degenerate critical points.
(3) Show that if [f] € m\im?, then f has the same behavior as d, f.
(4) Show that if f € Morse(M™) and | Crit(f)| = 2, then M is homeomorphic
to S™.
(5) Show that every symmetric bilinear form B : R® x R™ — R is equivalent to
(exactly) one of the form — 21\ x4+ N2, 0< A< n.
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Let § be a family of closed subsets in a manifold M, with the property
that, for every isotopy ¢* of M, we have

Fed = o¢Y(F)e3.
(a) Let f: M — R be any smooth function, and define

inf sup
minmax(f,§) :=F € §x € F f(x).

Show that minmax(f,§) € Crit(f).
(b) Show that (a) remains true if we drop the assumption that M be

compact, and have instead that M has a complete Riemannian metric,

and f is bounded below and satisfies Palais’ Condition C.[24].
The Ljusternik-Schnirrelman category of a topological space X is the
least number of contractible, closed sets needed to cover X :

cat(X) := inf {]U] : 4 closed cover by contractibles} ;

if no finite such cover exists, cat(X) := oo.

Show that any smooth function f: M — R on a compact M has at least
cat(M) critical points.
The cuplength of a topological space X is the largest number of non-trivial
cup-products on X. That is, it is the largest k£ for which there exist :

e A ring A;

e Cohomology classes a; € H¥(X;A), 1 <i<k—1,
with ay U+~ Uag_1 # 0 € HY(X;A), d = ¥ " d;. Show that if X is a
connected, cuplength(X) is bound above by cat(X).
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3. LECTURE THREE. ABUNDANCE OF MORSE FUNCTIONS.

3.1. Thom Transversality Theorem. Recall that if M, M’ are smooth mani-
folds, we say that f, f' € C°°(M,M’) have the same k-jet at © € M iff all the
partial derivatives of f and f’ at x agree up to order k, in which case we write

Jef(x) = jrf'(x).

The collection
Je(M, M) == {jif(z): f € C®°(U,M"),x € U}

of all k-jets of (partially defined) maps M — M’ has a natural structure of smooth
manifold. It comes equipped with source- and target maps,

s:JJy(M,M')y = M, jif(z)—=z
teJo(M, M) = M, f(x) = f(2);
which are fibre bundles, and bundle maps
Pt s Je(M, M) = Ji o (M, M), i f(2) = G f(2)
so that we have commuting diagrams

Jk(Ma M/)

N
e

J—1(M, M")

M/

M\pﬁ—l

There is also an assignment
Jr s O (M, M) — C®(M, Jo(M,M")), [~ [z~ jrf(z)],

which we refer to as the k-jet map.
Recall that a subspace A of a topological space X is called residual if it is the
countable intersection of open, dense subspaces :

A= (U U,CXopenand ClU, =X, Vn.

n=0
A topological space X is called Baire if every residual subspace is dense.

Theorem 8. A residual subspace of a complete metric space is dense. Every weakly
closed subspace of C5(M,M") is a Baire space.

Proof. See [10]. O
We can now remind the reader of :

Theorem 9 (Thom Transversality Theorem, v. 1). If X C Jp(M,M') is a sub-
manifold, then the space of f € C"(M,M") with jif MX is residual in Cg(M, M')
forr >k, and is open if X is closed.

R ILILILIIILILILILIL LIS LT

Aside : Multijet bundles
We will make good use of an extension of Thom Transversality, whose setting
we describe.
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Fix an integer [ > 0 and consider
l k
T My < [T e m), 50 (i, M) = ([ )7 M@,
1 1

where
M D> MY = {(xy, ..., x;) i # j = x; # x4}

Then clearly J,gl)(M7 M) is a bundle over M®, with projection
sO (rfr(@n), o e fi(m)) = (1,0 20),

and there is an induced multijet map
iR, MYy = O ®, g (v, M)
G F MO 3 (@1, my) = Grf (@1)s o g f (@) € T8 (M, M)
LIILILIILILILIILILILIIIL LI ILIL LI ILIL LI IL I, LI I I SIS SIS

Theorem 10 (Thom Transversality Theorem, v. 2). If X C J,gl)(M7 M) is a sub-
manifold, then the space of f € C" (M, M') with j,gl)f M X is residual in C5(M, M")
forr >k, and is open if X is closed.

Proof. See [7]. O

Now we put these ideas to use.
Definition 10. The singularity set S; C J1(M,R) is the subspace defined by
Sy ={j1f(x):d,f =0}
Lemma 9. S; is a closed submanifold, of codimension codim(S, C J1(M,R)) =

dim M.
x € Crit(f) iff j1f(x) € S1. Moreover, x is non-degenerate iff j1f MSy at x.

Corollary 3. Morse(M) C C4(M,R) is open and dense. If f € Morse(M), Crit(f)
1s discrete.

Proof. Combine Lemma 9 with Theorem 9 for the first statement. For the sec-
ond, observe that codim(Crit(f) C M) = dim M, so Crit(f) is a zero-dimensional
submanifold. 0

Definition 11. A Morse function f € Morse(M) is called resonant if there exist
distinct critical points x,y € Crit(f) at the same critical value : f(x) = f(y).
Otherwise it is called non-resonant, and the space of all such will be written
Morse(M).

Lemma 10. Morse (M) C C%(M,R) is open and dense.

Proof. First observe that Morse (M) C C%(M,R) is clearly open, so we need only
show that it contains a dense subspace.
Consider the multijet bundle Jl(z)(M7 R) — M®) = M x MN\A)y, and let S+ C

JI(Q)(M, R) be the subspace defined by
Ss = (S1 x S1) N (t x )" (Ag).
One readily sees that S« is a submanifold of codimension 2dim M + 1, and hence
j}Q)fFﬁS;ﬁ at (z1,x2) means jig)f(xl,xg) ¢ S
By Theorem 10, the subspace U C CZ(M,R) of those f with j?)f M .S, is open

and dense; thus Morse(M) N U is open and dense. But j§2)f maps (21, 22) into Sx
iff dy, f=0=dg,f and f(z1) = f(z2), so Morse(M) D Morse(M)NU. O
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3.2. Concatenating and Factorizing Cobordisms.

In view of Lemma 10, any f € C°°(M) can be perturbed ever so slightly to a
non-resonant Morse function.

Suppose M is compact, so that Crit(f) is finite. Order the critical values

{Cl < g << CN} = fCrit(f),
and let —co = ap < a1 < ---ay-1 < ay = 400, with ¢; € (a;—1,a;) for every
1<i<N.
Then
Ci = (Wi,ffl(ai_l),ffl(ai)) , Wl = fﬁl[ai_l,ai].
are cobordisms, and M = U;W;. Note that f M a; for every 0 < ¢ < N, and
fi = flw, contains a single critical point. We give this situation a special name :

Definition 12. A cobordism C = (W; My, M1) is called elementary if there exists
a smooth function f: W — [a,b], with f M [a,b], f~1(a) = W, f~1(b) = "W,
and Crit(f) = {p}, with a < f(p) < b.

Definition 13. Let W be a manifold with boundary OW <— W. By a distin-
guished submanifold X C W we will refer to either a connected component of
the boundary X C OW, or to a cooriented interior submanifold X C (WN\OW).

A collar of a distinguished submanifold X is an embedding c: X x I(X,e) = W
with c|x = idx, and c.(9/0t) pointing inwards if X C OW, and in the posi-
tive coorientation if X C (WN\OW); here I(X,e) = (—e,¢) if X is interior and
I(X,e) =[0,¢) if X lies in the boundary.

Lemma 11 (Collars).

(1) Collars exist.

(2) If e, : X x I(X,e) — W are collars, there is 0 < § < € and a homotopy
of collars C': X x I(X,0) x [0,1] = W joining c|x xr(x,5) to €| xx1(x,5)-

(3) If C: X x I(X,0) x [0,1] = W is a homotopy of collars, there is a collar
¢ X x I(X,8) = W with

Clxxrx,5/3) = Cilxxr(x.,6/3)
Clx < (1(x,61(x,25/3)) = Colx % (1(X,5)\1(X,26/3))

Proof. (1) Using a partition of unity, one constructs on an open U C W con-
taining X a vector field w € X(U) with w pointing inwards if X C oW,
and w in the positive coorientation if X is interior.

Let ¢ : U x R D dom(¢) — U denote the local flow of w, and choose
any embedding ¢ : X x I(X,e) — dom(¢) with ¢|x (0} the inclusion
X < dom(¢). Then c:= ¢ o1 is a collar.
(2) Let v := ¢.(9/0t),v" := ¢, (0/0t) be defined in a common open X C U.
Define vs := (1 — s)v + sv’ € X(U), for s € [0,1], and let

¢u, : U xR D dom(g,,) — U

denote the local flow of vs. Choose a homotopy of embeddings ¥ : X X
I(X,e) < dom(g,,), 0 < s < 1, with t,|x the inclusion, and set C, :=
o, 05 1 X X I(X, ) = W.

(3) Let s — w, denote the time-dependent vector field ““= € X(im Cy), and
note that ws(x) = 0 for all x € X and s € [0, 1]; hence w, has bounded
velocity on some U, D X. Choose then a smooth function ¢ : X x I(X, ) x
[0,1] —» R, with g5 = 1 on a smaller open U C U} around X, and set
W = psws € X(W). Then w has bounded velocity, and thus generates
an isotopy ¢° of W with d,¢, = id for all z € X and s € [0,1], and ¢'Cy
agrees with Cy away from X, and with C7 around it.
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O

Corollary 4. Suppose W, W' are smooth manifolds with boundary, that X C OW
be a sum of outgoing connected, and that h : X < OW' embeds X as a sum
of incoming connected compopnents of OW'. Then the topological space W Uy, W'
carries a canonical structure of smooth manifold with boundary, and

AW U W) = (0WNX) [ ] (OW'\h(X))

Proof. Suppose for simplicity that X is connected; the general case is argued
component-by-component.
We need first introduce a smooth structure on W U, W’. Choose collars

c: X X (—&,00 =W, :h(X)x][0,e) =W
and define the space W Uy, . W' according to the diagram

X x ((—&,6)\0) e (W) LTV R(X))
|
l y
Xx(-ge)-———-————-— =W UpW

where

d(h(z),t) if¢t>0.

This exhibits W Uy, . W’ as a smooth manifold with the boundary as in the state-
ment.

‘We need now show that the recipe above is independent of the choices of collars
¢, c up to a diffeomorphism.

So suppose v, are two different choices of collars, and let WUy, , W' denote the
manifold arising from those choices. Then note that the identity maps idy , idw-,
glue to a homeomorphism

G:W Uh,c W — W Un,~ w'.
On the X x (—¢,+¢) part of those manifolds, G reads

G- {'ycl on img;

Hiz,t) = {c(x,t) ift <0

~'¢d=1 on imc.

According to Lemma 11, ¢, ¢’ can be modified to a collars ¢, ¢/, with

__Jec on X x(-¢/3,0]; = ) onh(X)x[0,¢/3);
‘T v on X x (—,—2¢/3). “= v on h(X) x (2¢/3,¢).

We then modify G to a diffeomorphism G : W Up . W' =5 W Uy, , W,
G outside X X (—¢,¢);
G = 76_1 on img;
71 c
e on imc.
U

Definition 14. We refer to W U, W' as the concatenation of W, W’ along h.

Example 6. Let W be any manifold with boundary, and define 2W := W Uiq,,, W,
the double of W. Note that 0(2W) = @.
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Note that, by its very construction, concatenation is ’distributive’, in the sense
that if we are given a further manifold with boundary W” Y C W’ is outgoing,
and &' : Y < OW"” is an incoming embedding, then there is a natural identification

(W Up W’) Up W'~ W Uy, (W/ Up/ W”) .
Definition 15. A factorization of a manifold with boundary W is a presentation
as a concatenation of manifolds with boundary :
W =Wy Up, Wi Up, -+ Un, Wh.
Lemma 12. FEvery cobordism C can be factorized into elementary cobordisms.

Proof. Let C = (W; My, M1) be a cobordism. Double W to the manifold (without
boundary) 2W, and note that OW embeds as a compact submanifold of 2W.
Choose any f’: 2W — [—1,+1] with f/ MoD! and f'~'9D! = W. Use Lemma
10 to perturb f” to f” € Morsex(2W); choose f” so C'-close to f’ so that D' are
regular values for f} := (1 —¢)f" +¢f”, 0 <t < 1. Then there is a homotopy of
embeddings 1 : OW x [0, 1] — 2W tracking f;~'oD' :
five(OW) =4, i=0,1.

By the Isotopy Extension Lemma 13 below, ¢ can be extended to an isotopy ¢ :
2W x [0,1] — 2W; then
f=1"0 <P1|2W\(W\W) € C=(W)

is transverse to D! and pulls it back to OW, and is a non-resonant Morse function
in the interior of W. Now choose a; € R\ f Crit(f) such that every ¢ € f Crit(f)
lies in exactly one interval (a;, a;+1); then the concatenation of the cobordisms

Ci = (Wi, fHai—1), fHa))
is diffeomorphic to W. O

Lemma 13 (Isotopy Extension Lemma). Let W be a manifold with boundary, and
X C W a closed submanifold, with either X C (WN\OW) or X C OW. Then every
homotopy of embeddings ¢ : X x [0,1] = W, ¢y : X — W, whose velocity % 18
bounded, extends to an isotopy ¢ : W x [0,1] — W.

Proof. Case 1 : X C (W\OW).
Consider

o~

X x[0,1] — W x [0,1], h(z,t) = (e(a),1).
The hypotheses ensure that QZ is a closed embedding, and that

o dyy
= ——+4+0/0t
w gt +9/
is defined along its image and has bounded velocity.

Choose :
e a tubular neighborhood

(WNOW) x I D E -2 (X % [0,1]);

e a smooth function p € C®(E), with ¢ = 1 around ¢ (X x [0,1]), and whose
support meets every fibre of p in a compact set;

o~

e an Ehresmann connection hor : X(¢(X x [0,1])) — X(E).
Then set w := phor(w) € X(W x [0,1]) and observe that w = w; + f0/0t, where
w € X(W) is supported in the interior of W, and extends %. Hence wy gives rise
to an isotopy of W extending ).
Case 2 : X C OW.
Apply Case 1 twice, first to X C OW, and then to OW C W. O
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3.3. Exercises.

(1)

Show that Jx (M, M') is indeed a smooth manifold, and compute its dimen-

sion.

Show that ji : C*(M, M") — C°(M, Jp(M, M')) is continuous in both the

weak and the strong topologies, and has closed image in the weak topology.

Let M C RY be a submanifold. For each y € RV let f, : M — R denote

z + ||y — z||%. Show that for y generic, f, € Morse(M).(Meaning that the

set of points for which the stated property holds is residual).

Compute 7, (S™) for all m >n > 0.

Two compact manifolds M§*, M{" are called (oriented) cobordant if

there exists a (oriented) cobordism C = (W; My, M;). Show that :

(a) Being (oriented) cobordant to is an equivalence relation.

(b) The sets Ny, Qn of equivalence classes under cobordism and ori-
ented cobordism relations, respectively, are abelian groups under dis-
joint union .

(c) If f, f': M — M’ are homotopic, and transverse to a closed submani-
fold X ¢ M’, then f~'X and f’~!X are cobordant. If M, M’ and X
are orientable, f~'X and f'~!X are oriented cobordant.

(d) Compute N; and Q;, for i =0, 1.

Let M, M’ be compact smooth manifolds, and let G := Diff (M") x Diff (M)

act on C*°(M, M') by

(¥, 9): frodpofop™,
where G is endowed with the C'°*° topology. A map f is called stable if

every f’ close enough to f lies in the same orbit as f.
Show that f € C°°(M,R) is stable only if f € Morse(M).?

5We will see later that Morse (M) is precisely the space of stable functions on M.
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4. LECTURE FOUR. PASSING A CRITICAL LEVEL SET

4.1. Surgery. For every 1 < A < m, consider the ”standard” diffeomorphisms
stdy : S x (D ™ATIN0) &5 (D AN 0) x S™*
stdy : (u, 0v) = (Bu,v), (u,v) €SP xS™A 9€(0,1).
Fix an embedding
@ : S DML o My

and consider the smooth manifold Surg(M, ¢) defined by the pushout diagram

SA-1 (]IO)) m7A+1\0) i M\go(SAfl)
\
Std)\\L ‘
o ]
DAXxS™ - — — — — — — > Surg(M, ¢)

Observe that Surg(M, ) comes equipped with a canonical embedding Surg(yp) :

D * x S™A — Surg(M, ). Producing Surg(M, ) out of M has the effect of
removing a (A—1)-sphere, embedded with trivial normal bundle in M, and replacing
it by a (m — A)-sphere, also embedded with trivial normal bundle.

Definition 16. We say that Surg(M, ) is obtained from M by a surgery of type
A

Lemma 14. If ¢, : S* 1 x D ™21 <5 M is a homotopy of embeddings, then
Surg(M, po) ~ Surg(M, ¢1).

Proof. Extend % € X(im ;) to a globally defined (time-dependent) vector field
wy € X(M). We can further demand that the support of w; be a small neighborhood
of im ¢;. Denote by @' the isotopy it generates, and observe that

¢t((pt (u’ 61})) = Pt (u’ 61})

Then
' TTid: (Mo H D * x 87> = (M ($* ) [[D* x 5™
descends to a diffeomorphism Surg(M, ¢g) = Surg(M, ¢1). O

4.2. A closer look at model singularities. Let Ly C R* x R™ **! be the
subspace defined by

Ly :={(z,y) : -1 < Qx(z,y) < +1,|z||y| < sinh1coshl},

where as usual Q) denotes Qx(z,y) = —|z|? + |y|2.
Note that Ly is a smooth manifold with boundary 0Ly = OieseLx [ [ Oright L,
where

8lef‘cL/\ = {(.’E,y) S L)\ : Q)\(xay) = _1}
6rightL/\ = {(SL’,y) eLy: Q)\(m,y) = +1}.

We let Ry denote
Ry := (RM\0) x (R™*TIN0) € R* x R™AHL,
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Lemma 15. There exist diffeomorphisms

Gt : ST X D ™A 2 9,0 Ly

[e]
. A -~
Pright - D X Sm > arightL)\

StdA : aleftL)\ N Rx l> am’ghtL)\ N RX?

such that
PPt
eft
OrepeLx NRy M\ p(S$*1)
|
stdkl [
Y
am’ghtLA 777777 > Surg(M, 90)
Surg(0) @,
Orighe Ly N R "5 Surg(M, @)\ Surg () (S™ )
|
std)‘l [
\
Deptln —————=——————-——-— - =M

Proof. Define std : R, =5 R by the formula

std? : (z,y) — ('SC:E |yy> ,

lyl ||
and observe that std* is an involution, std® = (std)‘)_l. Moreover, it induces a
diffeomorphism
Oete Ly N Ry = Origne Lx N Ry,

which we still denote by std”*.
Now define the diffeomorphisms

Prete : SN XD ™M 25 gk Ly, @rers(u, 0v) = (ucosh 6, vsinh 6)
Pright 1 D X S™7 25 Oigne L, @rigne (Ou,v) = (usinh 6, v cosh6).

Then

Pleft

SrA1 x (D m_/\+1\0) Ot Ly NRy

~

stdy \LN ~ | gtd?

~

(DMN\0) X S™"* —————— Jyigne L N Ry

Pright
commutes. Hence

-1
PPleft

Olett Ly N Ry M\ p(S*1)

std*l

I

I

A
arightL)\ 777777777 > Surg(Mv 90)
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is also a pushout diagram. On the other hand, the pushout of the outer diagram in

SA1 (D AN — s Blere Ly N Ry Phen MNp($M)
Stdxl std?
o right Surg(#) ¢ igne _
(D AN\0) x S Drighe L N R = Surg(M, )\ Surg() (™)

Std)\l std?

SML x (D m=AIN0) et Lx N R

Pright

is clearly M\ (S*~1), as the top horizontal arrow equals ¢ and the left vertical
one is identical. Hence

—1
Surg(W)(prigllt

Bright Ly N Ry, Surg(M, o)\ Surg(p)(S™ )
\
stdAl !
%
O =M

O

Theorem 11. There is an elementary cobordism (C, f) of index A between M and
Surg(M, ¢).

Proof. For every (z,y) € Ly, the curve
t (tx,t7ly),t >0,

is orthogonal to the level sets Q) = ¢, ¢ # 0.
Observe that

1+ /1 + 4|z|?|y|? _
t= t(l’,y) = \/ 2|.’I}|2 g Q)\(txat ly) = 717

hence we obtain a diffeomorphism
¥ Ly NRy &5 (Qess La NRy) % [—1,4+1],
¥ (@y) o (e y)a, ta,y) " y), Qal,y) -
We can thus form the smooth manifold W by

(Pprog, xid)y

LyNRy (MN\p(S*1) x [-1,41]
l 1
Y
Ly—- - - - - -—-———-———— - =W

and note that
oW =W [ oW,

where

Oleft Ly N Ry (M\p(S*1)
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and
OrigntLa N R (MN\p($*1)
\
l ‘
Y
Orignt Ly — — — — — — — = =W

so QW =~ M and O, W ~ Surg(M, ¢).

Hence W is a cobordism between M and Surg(M, ¢); to finish we must indicate
the pertinent elementary Morse function f € Morse(W). But observe that under
the above identifications, the smooth map

FreS* Y x L+ ][ Ly — R

Flovr s 1)x[=1,41] = P2, flo, = Qa
descends to a smooth f € C°°(W) with the required properties.
O

On the other hand, suppose (C, f) is an elementary cobordism, where f: W —
D! is an elementary Morse function with a unique critical point p of index X at the
level set 0.

We wish to define an embedding

@: S D™ AL oW
Fix a Morse chart e : By* ™' < W™+ centred at p,

e(0) =p € Crit(f), e"f=Qa.

Then

o S 1 x D™= (=),

(u, 0v) — e(v/zu cosh 8, \/eusinh 6)
embeds S*1 x D ™M1 in the reqular level set f = —e. The (local) flow ¢' of
the vector field w := —% € X(MN\p), ¢ : (M\p) x R D dom(¢) — M\p,

determines a homotopy of embeddings
ol 1 x D™ W,

S DAL 0,1 - VE = W, ((u,0v),t) — ¢ (u, Ov)),

and we set
pi=¢)_ g SN XD A o gW
Observe that the choice of € > 0 is immaterial, since the embeddings determined
by any two choices according to the recipe above must coincide.
By the same token, we can drag the embedding
O SMIx D™ A s f7e),  (u,0v) = e(y/Eusinh @, \/zu cosh §)

along the flow of w from time ¢t = 0 to t = 1 — /¢ to obtain an embedding

O:SMx DAL 9 WL

Definition 17. We call the embeddings ¢, ® characteristic- and cocharacter-
istic embeddings of (C, f).

Remark 3. Note that the (co-)characteristic embedding depends on the choice of
Morse chart, and also on the vector field V f which we used to drag objects around.
Such choices will be implicit whenever we speak of such embeddings.
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Theorem 12. If (C, f) is elementary of index \, then O1W ~ Surg(9yW, ¢), for
some characteristic embedding ¢ : S x D ™M~y 9.
Proof. In terms of the notation above, one argues as in Theorem 11 to deduce

that f=1(e) ~ Surg(f~!(—¢),¢'), and W =~ f~1(—e), W =~ f~1(e) under
prWe1), O

Let (C, f) be an elementary cobordism of index A, with characteristic and cochar-
acteristic embeddings ¢, @, respectively.

Definition 18. The core disk Corey(p) of the critical point p is the union of
trajectories of V f beginning in (S 1) C OgW and ending at p.

Its cocore disk Cocore™ *(p) is the union of trajectories of V.f beginning in p
and ending in ®(S™) C OW.

Note that it follows from the above discussion that these are smoothly embedded
disks, meeting transversally at p, and determining the decomposition

T,W = T, Corey(p) @ T, Cocore™ *(p)
into negative-definite and positive-definite subpaces for Hess,(f).
Corollary 5. If (C, f) be an elementary cobordism of index X,

(OoW U Coreyx(p)) — LW
is a deformation retraction. In particular

Z ifk=X\

0 otherwise.

Ho(W,00W;Z) = {

and so, in particular, the index of an elementary cobordism C is independent of the
choice of elementary Morse function.

Corollary 6. Every compact manifold M has the homotopy type of a finite CW -
complez.

Proof. Follows from the previous corollary, and the following fact : given a homo-
topy equivalence h : X — Y between topological spaces, and any f : ODF — X,
there is a homotopy equivalence

H:XU;DF - Y Uy D
extending h. O
In particular, H,(M) is finitely generated.

4.2.1. Ezercises.

(1) A gradient-like vector field for f € Morse(M) is a w € X(M) such that :
e wf >0 on M\ Crit(f);
e For every p € Crit(f), there is a Morse chart e : By, < M centred at
p, pulling w back to

TS S SN Sy
efw = — o — —.
—Ox; /\_Hyayi

(a) Convince yourself that, except for Lemma 4, all arguments involving
the gradient V f with respect to some Riemannian metric remain true
if Vf is replaced by a gradient-like vector field w.
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(b) Let w be a gradient-like vector field for f Morse on the compact man-
ifold M, and let ¢ : M x R — M denote its flow. For any = € M,
let w(x) be the collection of those points of M which are limit points
sequences of the form (¢ (z))n>0, where t,, — 4+00. Show that w(x)
is contained in a level set of f. Similarly, the limit points a(x) to
sequences of the form (¢ (z))n>0, tn — —0o0, lie in a single level set
of f.

) Show that a(x) and w(z) are invariant under the flow of w.

(d) Show that a(z) C Crit(f) D w(z).

) Show that a(z) = {p} and w(z) = {q}. Conclude that, for every

e M, tlgnoogzﬁt(x) exists and is a critical point.

(2) Prove Corollary 5.

— —
@ o
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5. LECTURE FIVE. MORSE INEQUALITIES.
Let M be a compact manifold, and k a field (usually Zs, Q or R).
Definition 19. The Poincaré polynomial of f € Morse(M) is

Pty ez, Pi)= S PUP =3 u(f e
peCrit(f) AZ>0
The Hilbert polynomial of M with respect to k is
Py(t) € Z[t], Pa(t) = dimy Hx(M;k)t.
A>0

Observe that both are polynomials with non-negative integer coefficients, and
that

Ps(1) = | Crit(f)|, Pm(—1) = x(M) = Euler characteristic of M.
Consider the following two orderings on polynomials in integer coefficients :
f=g <= g-fellt,
and
fgg <= g—f=0Q+1th, heZilt]
If we express f =Y, fat?, g =, gxt*, then
A

fsg = <Z(—1)k+A(9A = f/\)> t* € Z4[t].
A

k=0
From this last formula, it is clear that f < g implies f < g, but not conversely.
(E.g.,take g=1+t¢, f=1.)
We wish to prove :

Theorem 13 (Morse inequalities). For every field of coefficients k, and every
Morse function f € Morse(M), we have py < py.

Proof. Since py is stable under small perturbations of f, we can assume wlog that
f is non-resonant. Hence we may factorize M into elementary cobordisms M ~
Wo U ---Wj. Suppose we have shown that pw,u..w, < Pflwgo-w, for all « < j.
Write

DPflwouw,yy — PWou-Wigr = (pf|W0u-~W,;+1 7pf|woumw,;) +
+ <pf\wouuwi _pWOU~~W7;) + (pw(,umwi —pwoumwm)
By definition,
A

pf‘WUU"'W12+1 _pf‘WOUV[Q = ’

where A is the index of the unique critical point W, 1.
The second term in the sum is by hypothesis of the form (1 +t)h, h € Z[t].
To analyze the third term, note that

Ho(WoU -+ Wig1, Wo U+ Wisk) = He(Wo U -+ Wis1, 9o Wis1; k)
and write the long exact sequence of the pair (W;11,0oW;y1) :
oo = Higpr(Wig1, 00Wig1) = Hi(0oWig1) = Hy(Wip1) = Hip(Wip100Wigq) — -+
This shows that
Hy(Wit1;k) ~ Hy(0oWiy1: k), k#XAA—1
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The non-trivial portion of the long exact sequence is
0 — Hx(0oW;t1) =»— Hx(Wit1) —
— Hy(Wig1, 8Wis1) > Ha—1(0Wit1) = Hro1(Wig1) — 0
Since ~ H,(9oWiy1 U Core™, 0gWiy1;k), and so is generated by the class
[Core*] € Hyx(Wip1,00Wiy1)
There are two cases to consider :

(1) 8[Core*] = 0 in Hx(OgWit1) :
Then H)\,l(WZJrl,k) H)\ 1(60 i+15 k), and

O*)H)\(ao z+1)‘>HA(Wi+1)‘>k4)O
is exact.
(2) 6[Core*] # 0 in Hx(OgWit1) :
Then Hy(Wiy1;k) ~ Hx(OoWit1;k), and
O*)H{*)H)\ 1(80 1+1)4)H)\ 1(Wi+1)*>0
is exact.

In the first case, we have pw,u.w,,, — Pwou.-w; = t*, while in the second,
PWoU--Wipr — PWoU-W; = —t*~1. So the resulting difference is

pf|W0U~~W,;+1 —PWoU-- Wiy = {(

O

Definition 20. A Morse function is called k-completable if the core sphere
[0 Core)‘(f’p)] of each critical point p € Crit(f) bounds. It is called k-perfect if
by =DPmMm-

Proposition 1.

(1) A k-completable Morse function on a compact manifold is k-perfect.
(2) A Morse function on a compact manifold whose critical points assume no
two consecutive indices is k-perfect.

Example 7. The height function f, on S™ has ps, = 141", so it is perfect.
Dfoxfon = PfuDfn = LHE"+ "+ soif [n—m]| > 1, f,, X fm is also perfect.
On CP™, there is a perfect Morse function . For example,

Wz Zk‘ZkF

is S'-invariant, and so descends to a function on CP™. On the affine chart U; =
{[20s s 2] = 2j # 0, we express [ in terms of (wo,...,w;,...,w,) € C", w =
T + iy, = j— for k # j, we have

O 582 SR f(z0, .2

k#j
Hence [0, ...,0,1,0, ..., 0] (wz'th 1 in the jth position) is the unique critical point p;

of f on U;; by mspectwn one sees that Hess(f) has eigenvalues (0 — 7,0 — 5,1 —
g1 —g,om—j,n—j) (with (j — 4,5 — j) removed), and so A\(f,p;) = 2j. Thus
Pr=>0 t 27, and so f is perfect, and gives

H.(CP™) = Z[#]/(£2"+?).

(1+t)h if §[Core*
1+ tHh+ (1 + )Mt = 1 +t)(h+t)1)  if §[Core

=0



MORSE THEORY 29

5.0.2. FExercises.

(1) Show that the height function f, : S* — R is Q-perfect. If |n —m| > 1,
then (z,y) — fn(x)fm(y) is Q-perfect, and compute Hq(S™ x S™; Q).
(2) Let f:S?"*! - R be given by

F:Cl o8 4R, Fz,...,20) = Zk|2k|2~
1

(a) Show that F is invariant under the action of S' on C"*!, and thus
descends to f :€ C°(CP™).
(b) Show that Crit(f) = {p1,..,pn}, pi =[0,...,0,1,0.,,,.0] (ith position),
and show that f is Morse.
(c) Show that the index of f at p; is 2j. Conclude that f is Q-perfect,
and compute Ho(CP™; Q).
(3) Show that if M is compact and of odd dimension, its Euler characteristic
X (M) vanishes.
(4) Knowing that Hi(RP™;Zy) = Zs for all 0 < k < n, conclude that the least
number of critical points of a Morse function on RP" is n + 1.
(5) If a Morse function on a compact M™ has exactly three critical points,
then their indices are 0, m/2, m. In particular, M has even dimension.
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6. LECTURE SIX. THE MORSE-SMALE CONDITION AND GENERICITY.

Let (W,M_y, M;) be a cobordism, f : W — D! a Morse function. We have
seen earlier how, upon perturbing f ever so slightly, we can arrange that no two
critical points lie at the same regular set. We then saw in Lemma 12 that this
allowed us to factor any cobordism as a composition of elementary cobordisms,
W~WyU---UWyg.

In this lecture we introduce the problem of rearrangements of cobordisms. The
model situation is the following : suppose W is a composition of two cobordisms
W = Wy U Wy, where W; only contains critical points of index A;. Can we express
W as a composition of cobordisms WJUW/, where W} only contains points of index
A1 and W1 of index Ag ? (It is useful to keep in perspective that CW complexes
are defined by successively attaching cells in increasing order of dimension).

We saw in Lecture 4 that if (W, M_;, M;) is an elementary cobordism, it is
diffeomorphic to the trace of a surgery on M_; corresponding to some embedding
@ : S x D™ MLy M and we concluded that W ~ M_; x [~1,+1] U Ly,
the attachment of a A-handle Ly to the trivial cobordism M_; x [—1,+1]. Of
course, the biggest difficulty in the rearrangement business is that the next handle
we attach to My x [—1, 1] in general intersects the previous handle. However, when
‘the handles do not meet’, we can rearrange the cobordisms.

Theorem 14. Any cobordism (W, M_1, M) can be written as a composition W =
WoU - UWyi1, where W; only contains critical points of index i.

We will prove something slightly stronger.

Definition 21. A Morse function f on a cobordism (W, My, My) is called nice if
f W = [=3,m+1], and all critical points of index i of f lie at the level set f = i.

Theorem 15. FEvery cobordism has a nice Morse function.

The path to prove this theorem is of independent interest.

First, we need to be able to be very definite about the critical values of our
critical points. The simplest case is when f has two (sets of) critical points p, p’
lying on two interior level sets f = a, f = a’, possibly the same. We would like to
modify f into some new Morse function ¢ so that p,p’ lie now at g = b and g = ¥/,
for a priori given —1 < b,b" < 1. It turns out that this is possible to accomplish if
'no critical trajectories of p intersect’.

Definition 22. A gradient pair is a pair (f,v), where f is a Morse function,
and v is a gradient-like vector field for f.
If (f,v) is a gradient pair, and « € Crit(f), in a neighborhood of = v looks like
0 0 0 0
=2 — ... = 2— +2—— 2 — € X(R™T);
v 0x1 8$>\ + 333,\4.1 * + &Um ( )

observe that if ¢; denotes the flow of the opposite of the vector field above, those
points y € R™*! for which ¢;(z) — x as t — —oo are precisely R* x 0, while those
for which ¢;(y) — x as t — +oo are exactly 0 x R™ 1=,

Definition 23. The stable manifold W*(x;v) of x € Crit(f) is the subspace
Wo(50) = {y: duly) = & as t > +00)

The unstable manifold W*(z;v) of x is
W*(z;v) :={y: $:(y) = ¢ as t » —oo}

The terminology is justified for the following reason :
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Lemma 16. If M is compact, (f,v) a gradient pair, and x € Crit(f), W"(x;v)
and W*(x;v) are the image of smooth, injective immersions

E*:T*M — M, E®:TSM — M.

Proof Sketch. We have a model for the singularities, and around x W*(z;v) meets
the boundary of a small disc D C M centred at z in a (A — 1)-sphere, which we
identify with the unit sphere in T, M. We can now check directly that the formula
Wi P1ig \w|(|w7|) is smooth at z, and injectively immerses T* M into M. O

Together with Exercise 1 of Lecture 4, we conclude that the open cells of (un)stable
manifolds cover the whole manifold :

M = H W (x;v) = H W (z;0)
Crit(f) Crit(f)
Let v be a gradient-like vector field for f, and let K(z) C W denote the

W (x;v) U W#(2;v). Note that v vanishes nowhere on M\ Ucyig(y K (), and
the latter is saturated by trajectories of v.

Lemma 17. If Crit(f) = Crit_ [[ Crity, where fCrit_ = {a_}, f Crity = {a4},
and
x € Crit_,y € Crit, = K@)NnK(y) =g,

then given —1 < b, b’ < 1, there is a Morse function f: W — D for which € is still
gradient-like, and such that :

(1) agreeing with f around OW,

(2) having the same critical points as f,

(3) df = df around Crit(f),

(4) fCrit_ =0, fCrity =0
Proof. Let Ky := Ucyit, K (2); by hypothesis K_ N K, = &. Let o : M_; — D!
be a smooth function with

lopr_rm_, =—1, dloprinm_, =1.
Then there exists a unique extension o : W — D! of ¢ which is constant on
trajectories of &, that is, do(¢) = 0.
Consider now a smooth map H : D! x D! — D!, satisfying
(1) H(z,y) =z, for all z € Op dD! and all y € D*;
(2) 28(z,y) = 1 for x € OpCrit(f) and y € D!, and 2Z(z,y) > 0 for all
z,y € D;

(3) H(a—,—1)=b, H(ay,1) =V,

and set f:: Ho(f x o).
Observe that df = d'H o df + d*H o dp. Outside Crit(f), we have df(¢) > 0

and by condition (2) and dpo(§) = 0, df(§) > 0 outside Crit(f); in particular,
Crit(f) C Crit(f). Now, by construction,do vanishes around Crit(f), so df = df
around each critical point, and in particular Crit(f) = Crit(f). Note also that

condition (1) ensures that f = f around W, and that
z€Crit_ = f(z)=H(a_,—1) =b, =z € Crity = f(z) = H(ay,1) =V
U

Definition 24. A gradient pair (f,v) is called Morse-Smale if, for every two
critical points p,q € Crit(f), we have

W*(q) MW?*(p).

There are two crucial observations to be made :
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e The intersection W*(q) N W#(p) consists of trajectories of ¢; going from
q to p. Since t — f(¢(x)) is decreasing for every x, and strictly so if
x ¢ Crit(f), we see that

W (q) "W*(p) =2

if f(q) < f(p). So these are all transverse, and we may restrict our attention

to W*(q) N W*(p), for f(q) > f(p).
e The condition W¥(q) M W?*(p) holds iff, for some regular value ¢ €

(f(p), f(q)), we have
W (q) N fHe) MW (p) N F(e).
Lemma 18. Let f : W — D! be a Morse function, (f,v) a gradient pair, and

suppose [a,b] C D1 contains no critical values. Let hy be an isotopy of f~1(b).
There exists then a gradient-like vector field v for f, such that
(1) U agrees with v outside f~(a,b);
(2) the diffeomorphisms ¢, ¢ : f~1(a) — f~1(b) induced by the flows of v, are
related by @ = hyp.

Proof. Reparametrizing h;, we can assume it is stationary around 0, 1.
The flow ¢ of 7z =: U defines a diffeomorphism ¢ : [a, b] x 1) = f~1a,b),
where f(¢:(x)) = t. Define

H :[a,b] x f71(b) =5 [a,b] x f71(b), H(t,x) = (t, hy()),
and set @ = (¢H¢~!).0. Note that it is smooth on f~![a.b], agrees with ¥ near
f~'(a), and @wf = 1. Hence
] outside f~[a,b];
~ @H@ on fa,b)

defines a gradient-like vector field for f with the required properties. O

Theorem 16. Let M be compact and f € Morse.(M). Then there exists a Morse-
Smale pair (f,v).

Proof. Choose a gradient-like vector field v and order the critical values of f,
fCrit(f)=c1 <ca--- < en,

and let p; € Crit(f) N f~'(c;). As we observed before, W*(p;) N W?(p;) # @ only
if f(pj) = ¢; > ci = f(pi)-
Suppose then that, for a fixed 1 < k < N, we knew that
i<k = W"(p;) MW?*(p;).

Choose [a,b] C (ck—1,ck), and let V, := f~1(a), V, := f~1(b). Note that, if
W(pr) NV were transverse to each W#(p;) NV, i < k, we would be done.

Suppose this is not the case. We seek then to modify the gradient-like vector
field v so that the above intersections be transverse. For this purpose, choose an
isotopy hy : Vi — V3, with the property that

k—1
hy (U Ws(pi;v)> NV, MW (pr; ) N V.
1

Use Lemma 18 to produce another gradient-like vector field w for f, agreeing with
v outside @ < f < b, and whose corresponding diffeo ¢% , : Vo, = V4 reads
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h1¢?_,lv.. Note that the first condition says that we do not disturb the lower
ascending spheres, and the upper descending sphere :
W (pi;w) N Ve =Wo(pi;0) NV, i<k,
W (pr;w) NV = W*(p;v) N V.

Moreover, by the second property, we have for i < k
W (pisw) N Vi = ¢y, (W3 (pisw) N Vo) = haigg_, (W?(pi;0) N Vo) = ha (W?(pisv) N Vp)
SO

W (pg;w) MW (p;w), @ <k+1.
Proceeding inductively, we arrive at the desired conclusion.

Corollary 7. If (f,v) is Morse-Smale, and W*(q) "N W*(p) # &, then A(f,p) <
A(f.q)-

Theorem 17. If f : W — D' is a Morse function, there is f € Morse(W),
W= [%,er %], such that

(1) Crit(f) = Crit(f);

(2) A(f,p) = A(f.p) for all p € Crit(f);

(3) f(p) = Afp)
Proof. Perturb f to Morse non-resonant, and choose a Morse-Smale pair (v, f). If
Di, Pi+1 are to successive critical points of f — that is, if (f(p;), f(pi+1) is non-empty
and contains no critical values, and A\(f,p) > A(f, ¢), then critical trajectories do
not meet, and we can apply Lemma 17 to modify f to some Morse function ]?,
agreeing with f on the complement of the interior of W; UW, 1, in such a way that
f(pi+1) < f(pi). In that manner, we can assume without loss of generality that the
critical points of f occurr with increasing indices; that is, we can rearrange W as

W=WoUWiU---UWp41,
where all critical points of index A are contained in W,. Apply Lemma 17 repeatedly

to each W) until all critical points lie in the same level set, and compose with the
appropriate diffecomorphism f(M) = [—%, m+ %] O

Definition 25. A Morse function f satisfying f(p) = A(f,p) for all p € Crit(f) is
called nice, or self-indexing.

Corollary 8 (First Rearrangement Theorem). Any handle attachment can be per-
formed in increasing dimension.

6.1. Exercises.

(1) Show that the standard height function of the upstanding torus, with the
gradient vector field induced by the standard metric in R3, is not Morse-
Smale.

(2) Give an example of a gradient pair (f,v) for which the closure of some
unstable manifold is not homeomorphic to a closed disk.
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7. LECTURE SEVEN : THE CANCELLATION THEOREM

Let f : W — D! be a Morse function, v a gradient-like vector field, having
as unique critical points p, ¢, of indices A\, A + 1, with f(p) < ¢ < f(q), and let

V= f"1(c).

Theorem 18 (Cancellation Theorem). If W¥(q;v) NV intersects W*(p;v) NV
transversally at a single point, it is possible to alter v in a neighborhood of the
unique critical trajectory g — p to a vector field, all of whose trajectories go from
oW to O1W, which is gradient-like for a Morse function f without critical points,
which agrees with f around OW .

Suppose v C W is the critical trajectory p — ¢ of the gradient-like vector field v.
Let us say that a gradient pair (v, f) is good if there exist a neighborood U(y) C W
of v and an open embedding ¢ : U(y) — R™*! such that

(1) »(p) = (0,...,0), ©(q) = (1,...,0);
(2) @«v = u, where

o 0 0 0

u=alr1)7— — To7— — R
( 1)8$1 261‘2 637)_,.1 8%,\_;,_2 8xm+1

and a is a smooth function with

a(t)>0for0<t <1, a(0)=0=a(l)

a'(t)=ton Op0, a'(t)=—ton Opl, 2/0 a(t)dt = f(q) — f(p).

Lemma 19. Under the hypotheses of Theorem 18, we can modify v around f so
as that (f,v) be good.

Proof. Consider the function F : R™T! — R,

Tl
F(x1, ., Tmy1) :f(P)+2/ a(t)dt — a3 — - — a3, + T30+ T To,
0

which is Morse and has u as a gradient-like vector-field. Note that F'(0) = f(p)
and F(e) = f(q), where e = (1,0, ...,0).

Let 7 := {(¢,0,...,0) : 0 < ¢ < 1}, choose regular values f(p) < by < b2 < f(q),
and on small, disjoiint neighborhoods Uy and Us of 0, e, choose embeddings ; :
Ui — W, i =0,2, where , and ¢(0) = p, p2(q) = e and ¢} f = F, pfv = u.
Now, u induces an isotopy of a small neighborhood of ¥ N {F = b;} to a small
neighborhood of ¥ N {F = by}, mapping ¥ N {F = b1} to YN {F = by}; let then
o1 : OpyN{F < by} — W be the induced embedding. Note that ¢g; is uniquely
determined by requiring that it extend o and maps trajectories of u to trajectories
of v, and level sets of F' to level sets of f.

If o1 and @9 agree around ¥ N {F = by}, they glue into an embedding ¢ :
U(¥) — W preserving level sets and trajectories, and so

.u=e"v, heC®W).

Then (f,v) is good, where v := e/'v.

We conclude by observing that we can always make ¢g; and ¢y agree around
¥ NA{F = by}, since they are isotopic there, and thus, at the expense of changing v
around ¥ N {b; < F < bz}, Lemma 18 applies. O

According to the Lemma, we can assume wlog that (f,v) is good. Let ¢ :
U(y) = R™*! the embedding in the definition of ’good’.

Lemma 20. There exist opens U' C U C U(y) around v, ClU’ C U, such that no
trajectory of v which passes through U’ and goes outside U comes back inside U’.
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Proof. Choose any U, and suppose no U’ verified the claim. Choose then a sequence
U/, of neighborhoods, with v = (\U},; then for each n, there must be a trajectory
¢, connecting point x,, z, € U}, through a point y, € W\ U, with

dist(xy,y) — 0, dist(z,,7y) — 0.

Since WU is compact, we may assume that y,, — y. Now, y either comes from
OoW or goes to 1 W, since the only other option would be for it to be a trajectory
from p to ¢, and this is not the case since y ¢ U. Suppose y comes from dyW. Then
(by continuity of the flow), every point g’ sufficiently close to y also comes from
9oW. Now, for any such point, the trajectory from 9yW to 3’ is compact, and so
the distance dist(y,v(y’)) between v and the trajectory that contains ¢’ is bounded
away from zero in a small neighborhood of y. But y,, — y and 7(y,) contains x,,
contradicting dist(~y, z,) — 0. O

Proof of Theorem. We will break it down into a few steps, following Milnor as we
have been for a while now.

STEP ONE. With the same notation as in the previous Lemma, we claim that
there is a nowhere-vanishing vector field v on W, which agrees with v outside some
compact v C K C U’, with the property that every trajectory of v was outside of
U at some negative time, and will go outside of U at some positive time.
To achieve this, let @ : R x R be a smooth function, with a(¢, s) = a(t) for s away
from zero, and a(t,s) < a < 0 for |s| < e. Consider
0 0 0 0 0

wi=a(z,r(ze,....Tmy1)) 7— —T2p— — -+ —— F+ -+ ;
63:1 8332 8@“ 83:”2 8l‘m+1

where 7(22, ..., Tmi1) = 23 + - + 22, 4.

Note that, by construction, ¢*u defines a non-vanishing vector field v on W;
taking £ > 0 small enough, v will agree with v outside some compact K C U.

Let ¢(t) denote the trajectory of u with initial condition ¢(x) = (T, ..., T, ). If
some T;, A+ 2 < i < m+ 1 is non-zero, then |c(t)| increases exponentially, and so
the trajectory of v through x must leave U. Suppose on the other hand that z; = 0
for all A\+2 < i < m+ 1. Let us agrue by contradiction, and assume that ¢(t) does
not leave U. Then o(c(t)) = ¢(0)e™2, so o(c(t)) < ¢ for large enough ¢. But then
dcd(tt) < @, so ¢(t) cannot stay in U.

A symmetric argument shows that every trajectory comes from outside of U.

STEP TWO. We claim that ¥ induces a diffeomorphism dyW x [0,1] — W.
Note first that every trajectory of v goes from 9gW to 0;W. Indeed, there are two
cases : either the trajectory meets U’ or it does not. If it doesn’t, then the claim
follows essentially by hypothesis. So suppose a trajectory passes through U’. Then
it must leave U at some point, by Step One. Such trajectories cannot return to U’,
according to the previous Lemma, and so they must go from dyW to 9, W.

Let now 79,71 : W — R be the functions assigning to wach x € W the times
To(z), T1(x) taken by the flow of ¥ to reach 9yW, &1 W. That is,

Then consider p : W — 9yW given by p(z) = qﬁim(x)(x), and observe that now the
vector field

w(z) :=71(p(z))v € X(W)
has the same trajectories as v, which w sweeps in unit time, and so

O =" QW x [0,1] =W, (z,t) — ¢ (x),
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is a diffeomorphism, with inverse x — (p(x), 7o(x)).

STEP THREE. B

We conclude by producing a Morse function f : W — R, having no critical
points, and w as a gradient-like vector field, and agreeing with f around OW. But
according to Step Two, all we need to do is find a function

g:@OWx[O71]—>IR{,

satisfying
0
a—‘(z >0, g=®"f around W x 9[0, 1].
Since a‘ng > 0 along 9yW x 0[0,1], there is e > 0 such that 82? >0onte€

[0,¢] TI[1 — &,1]. Choose a smooth function ¢ : [0,1] — [0, 1] which is zero on
[e,1 — ¢] and one around 9|0, 1], and consider
_ 1=y o(9) 255t 5)ds
= - .
1— [, o(s)dt

Then note that, for € > 0 small enough, we have k. > 0 on 0W. For such small ¢,
let

ko(x) :

g, 1) = /O {g(s)ag’:f (@,5) + (1 — o(s))ke(z) | ds.

Then g(x,0) = 0, g(z,1) = 1 by the definition of g, and g(z,t) = ®*f near
oW x 9[0,1]. O
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Particularly useful were : Milnor, Bott, Golubitsky-Guillemin, Kosinski, Gualtieri,
Nicolaescu and Liick.

REFERENCES

[1] R. Abraham, J. Robbin, Transversal mappings and flows, Benjamin (1967)

[2] J. Boardman, Singularities of differentiable maps, IHES | 33 pp. 383419 (1967)

[3] R. Bott, Lectures on Morse theory, old and new, Bull. Amer. Math. Soc. (N.S.) 7, no. 2, 331
358 (1982)

[4] R. Bott, Morse Theory Indomitable, IHS 68, 99 114 (1988)

[5] R. Bott, L. Tu, Differential forms in algebraic topology, Springer (1982)

[6] A. Chenciner, F. Laudenbach, Morse 2-jet space and h-principle, Bull. Braz. Math. Soc., New
Ser. Vol. 40 (4), 455 — 463 (2009)

[7] M. Golubitsly, V. Guillemin, Stable mappings and their singularities, Springer (1973)

[8] M. Gromov, Partial Differential relations, Springer (1986)

[9] M. Gualtieri, Morse theory, MATH 1341HS, Toronto (2010)

[10] M. Hirsch, Differential topology, Springer (1976)

[11] M. Hirsch, S. Smale, R. Devaney, Differential equations, dynamical systems and an introduc-
tion to chaos, Elsevier (2004)

[12] M. Kervaire, J. Milnor, Groups of homotopy spheres: I, Ann. Math. 77 (3): 504 — 537 (1963)

[13] A. Kosinski, Differential manifolds, Academic Press (1993)

[14] W. Liick, A basic introduction to surgery theory, ICTP Lecture Notes 9 (2001)

[15] J. Milnor, On manifolds homeomorphic to the T-sphere, Ann. Math. 64 (2): 399 — 405 (1957)

[16] J. Milnor, A procedure for killing homotopy groups of differentiable manifolds, Proc. Sympos.
Pure Math. III, AMS 39 — 55 (1961)

[17] J. Milnor, Morse theory, PUP (1963)

[18] J. Milnor, Lectures on the h-cobordism theorem, PUP (1965)

[19] J. Milnor, Topology from the differentiable viewpoint, PUP (1965)

[20] J. Milnor, J. Stasheff, Characteristic classes, PUP (1974)

[21] M. Morse, The Calculus of Variations in the Large, AMS Colloquium 18 (1934)

[22] M. Morse, The behaviour of a function on its critical set, Ann. Math. 40 (1): 62 — 70 (1939)

[23] L. Nicolaescu, An invitation to Morse theory, Springer (2007)

[24] R. Palais, C. Terng, Critical point theory and submanifold geometry, Springer (1988)

[25] A. Sard, The measure of the critical values of differentiable maps, Bull. AMS 48 (12): 883 —
890 (1942)

[26] M. Schwarz, Morse Homology, Birkhduser (1993)

[27] S. Smale, Generalized Poincaré conjecture in dimensions greater than four, Ann. Math., 2nd
Ser., 74 no. 2, 391 — 406 (1961)

[28] S. Smale, An Infinite Dimensional Version of Sard’s Theorem, Am. Jour. Math. 87 (4), 861
~ 866 (1965)

[29] S. Smale, Differentiable dynamical systems, Bull. AMS 73 (1967), 747 — 817

[30] S. Sternberg, Lectures on differential geometry, Englewood Cliffs (1964)

[31] R. Stong, Notes on Cobordism Theory, Math. Notes, PUP (1968)

[32] D. Sullivan, René Thom’s Work on Geometric Homology and Bordism, Bull. Am. Math. Soc.
41 (2004), 341 — 350

[33] R. Thom, Quelques propriétés globales des variétés différentiables, Commentarii Mathematici
Helvetici 28, 17 86 (1954)

[34] R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier (Grenoble) , 6
(1955/6)

[35] A. Wallace, A geometric method in differential topology, Bull. AMS Volume 68, No. 6, 533 —
542 (1962)

[36] A. Wallace, Differential topology : first steps, Benjamin (1968)

E-mail address: frejlich@gmail.com, oriyudilevich@gmail.com



