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Gerstenhaber algebra, Gerstenhaber module.

A Gerstenhaber algebra is a graded vector space E , endowed with

1 a graded commutative product ∧ on E
2 a graded Lie algebra structure [., .] on E [−1],
3 + compatibility: [Q ∧ R,P] = [Q,P] ∧ R + (−1)q(p−1)Q ∧ [R,P] for

all P,Q,R of degrees p,q, r .

Relaxing Jacobi for [., .] leads to pre-Gerstenhaber algebra.

A Gerstenhaber algebra module is a graded vector space F endowed
with:

1 a structure ı of module for the graded algebra (E ,∧),
2 a structure L of module for the graded Lie algebra (E [−1], [., .])),
3 + compatibility: LP ◦ ıQ α− (−1)q(p−1)ıQ ◦ LP α = ı[P,Q] α.

Corresponding notion of a pre-Gerstenhaber module.

Poisson 2012 (C. Laurent-Gengoux) Intersection cohomology of coisotropic submanifolds Utrecht, August 2012 2 / 1



(Pre)-Lie algebroid

Definition
Let A→ M be a vector bundle. A pre-Lie algebroid structure on A is a
graded derivation of degree +1:

D : Γ(∧•A∗)→ Γ(∧•+1A∗),

said to be a Lie algebroid when it squares to 0.

The bracket of P ∈ Γ(∧pA) with Q ∈ Γ(∧qA) is the unique element
R := [P,Q]D ∈ Γ(∧p+q−1A) s.t.

[LP , ıQ] = ıR.

In the previous, LP := ıP ◦ D − (−1)pD ◦ ıP is the Lie derivative.
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Gerstenhaber algebra and Gerstenhaber module.

Proposition
Let A→ M be a vector bundle. For every Lie algebroid structure D, the
triple (Γ(∧•A),∧, [·, ·]D) is a Gerstenhaber algebra, and Γ(∧•A∗),
equipped with:

1 the action of (Γ(∧•A),∧) by contractions,
2 the action of (Γ(∧•A), [., .]) by Lie derivatives,

is a module over this Gerstenhaber algebra.

This can be weakened as follows.
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Gerstenhaber algebra and Gerstenhaber module.

Proposition
Let A→ M be a vector bundle. For every pre-Lie algebroid structure D,
the triple (Γ(∧•A),∧, [·, ·]D) is a pre-Gerstenhaber algebra, and
Γ(∧•A∗), equipped with:

1 the action of (Γ(∧•A),∧) by contractions,
2 the action of (Γ(∧•A), [., .]D) by Lie derivatives,

is a module over this pre-Gerstenhaber algebra.
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Koszul complex

Let A→ M be a vector bundle. Choose a section ϕ ∈ Γ(A∗).

1 Let ıϕ : Γ(∧•A)→ Γ(∧•−1A) be the contraction by ϕ
2 Let mϕ : Γ(∧•A∗)→ Γ(∧•+1A∗) be the (left) mutiplication by ϕ.

Both ıϕ and mϕ square to zero, hence define a homology H∗(ϕ) and a
cohomology H∗(ϕ), said to be attached to ϕ. The graded algebra
structure ∧ and module structure ı go down:

Proposition
1 The homology H∗(ϕ) is a graded commutative algebra.
2 The cohomology H∗(ϕ) is a module over the algebra H∗(ϕ).
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Gerstenhaber structure on the Koszul complex.

Question 1. Let A→ M be a vector bundle. Given

a section ϕ ∈ Γ(A∗),
a Lie algebroid D : Γ(∧•A∗) 7→ Γ(∧•+1A∗),

do the Gerstenhaber algebra (Γ(∧•A),∧, [., .]D) , and its module
(Γ(∧•A∗), ı,L), go to the quotient with respect to mϕ, ıϕ and define
structures of Gerstenhaber algebra and module on H∗(ϕ) and H∗(ϕ)
respectively ?

Answer: Yes, if D(ϕ) = 0.

Proposition
Let A→ M be a vector bundle. For every Lie algebroid D and 1-cocyle
ϕ ∈ Γ(A∗), H∗(ϕ) and H∗(ϕ) are Gerstenhaber algebras and modules
respectively.
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Gerstenhaber structure on the Koszul complex.

Question 1. Let A→ M be a vector bundle. Given

a section ϕ ∈ Γ(A∗),
a pre-Lie algebroid D : Γ(∧•A∗) 7→ Γ(∧•+1A∗),

do the pre-Gerstenhaber algebra (Γ(∧•A),∧, [., .]D) , and its module
(Γ(∧•A∗), ı,L), go to the quotient with respect to mϕ, ıϕ and define
structures of pre-Gerstenhaber algebra and module on H∗(ϕ) and
H∗(ϕ) respectively ?

Answer: Yes, if and only if D(ϕ) = 0.

Proposition
Let A→ M be a vector bundle. For every pre-Lie algebroid D and
1-cocyle ϕ ∈ Γ(A∗), H∗(ϕ) and H∗(ϕ) are pre-Gerstenhaber algebras
and modules respectively.
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Induced structures on Koszul complex-2.

Question 2. Could it be that D be only a pre-Lie algebroid but still the
induced structure is a (honnest) Gerstenhaber algebra ?

Answer:

Theorem
Let A→ M be a vector bundle. Given:

1 a section ϕ ∈ Γ(A∗)
2 a pre-Lie algebroid D : Γ(∧•A∗)→ Γ(∧•+1A∗),

such that
♣ D(ϕ) = 0,
♠ D2 = C ◦mϕ + mϕ ◦ C for some operator C (i.e. D2 homotopic to

zero - recall that mϕ(α) = ϕ ∧ α computes H∗(ϕ)),
then D induces a structure of Gerstenhaber algebra on the homology
H∗(ϕ) and a structure of Gerstenhaber module on the cohomology
H∗(ϕ).
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P∞-algebras

Question 3. Where do pre-Lie algebroid structures D and sections ϕ
satisfying ♣ (i.e. D(ϕ) = 0) and ♠ (i.e. D2 = C ◦mϕ + mϕ ◦ C) can
arise from?

Answer. From a Maurer-Cartan element in a P∞ algebras on ∧A∗.

Definition
Let A→ M be a vector bundle. A P∞-algebra structure on ∧A∗ a
sequence of n-ary “brackets” :

[Γ(∧a1A∗), . . . , Γ(∧anA∗)]n ⊂ Γ(∧a1+···+an−n+2A∗)

for all n ∈ N∗, such that
1 [· · · ]n skew-symmetric and is a derivation in each variable,
2 the “higher” Jacobi identities hold:∑

i+j=n+1

∑
σ∈Σi,j

(−1)σ,x [[xσ(1), . . . , xσ(i)]i , xσ(i+1), . . . , xσ(n+1)]j = 0.
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Precisions on the degrees.

By construction:
[Γ(A∗), Γ(A∗)]2 ⊂ Γ(∧2A∗)

(so sections of A∗ do not come equipped with a bracket !)

Remark. For every ϕ ∈ Γ(A∗) and every sequence (an)n≥1 in R, the
operator

D : α 7→
∑
n≥1

an[ϕ, . . . , ϕ, α]n

is a pre-Lie algebroid, provided that it converges.
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Let A→ M be a vector bundle, and ([. . . ]n)n∈N∗ be a P∞-structure on
∧A∗.

Definition
A section ϕ ∈ Γ(A∗) is said to be Maurer-Cartan when:∑

n∈N∗

[ϕ, . . . , ϕ]n
n!

= 0.

By construction:

Dϕ(α) :=
∑

n∈N∗

[ϕ, . . . , ϕ, α]n
n!

is a pre-Lie algebroid that satisfies ♣ (i.e. Dϕ(ϕ)).
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From P∞ algebra to pre-Gerstehanber algebra

Theorem
Let A→ M be a vector bundle, equipped with a P∞ structure on ∧A∗.
Let ϕ ∈ Γ(A∗) be a Maurer-Cartan element, then:

1 the operator

Dϕ(α) :=
∑
n≥1

1
n!

[ϕ, . . . , ϕ, α]n

is a pre-Lie algebroid (i.e. derivation of degree +1)
2 it satisfies the condition ♣, i.e Dϕ(ϕ) = 0,
3 If, moreover, the P∞-structure is quantizable by deformation in an

A∞-structure, then the condition ♠, i.e. D2
ϕ = C ◦mϕ + mϕ ◦ C, is

also satisfied.

Recall that mϕ : Γ(∧•A∗)→ Γ(∧•+1A∗) is left mutiplication by ϕ.

Important: no need to quantize the Maurer-Cartan element.
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From P∞ algebra to pre-Gerstehanber algebra-2

Corollary
Given:

1 a vector bundle A→ M,
2 a P∞ structure on ∧A∗,
3 a Maurer-Cartan element ϕ ∈ Γ(A∗),

then if:
1 the P∞ structure is quantizable by deformation,
2 all series considered converge,

then the operator Dϕ above induces a Gerstenhaber algebra structure
on H∗(ϕ) and a Gerstenhaber module structure on H∗(ϕ).
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Coisotropic submanifolds

Let (X , π) be a Poisson manifold. A submanifold M ⊂ X is said to be
coisotropic if one of the equivalent conditions is satisfied:

1 π#(TmM⊥) ⊂ TmM
2 the ideal of functions vanishing on M is closed under Poisson

bracket,
3 in a local adapted system of coordinates (x1, . . . , xn,p1, . . . ,pd ),

the Poisson structure is of the form

π =
∑
i,j

ai,j
∂

∂pi
∧ ∂

∂pj
+
∑
i,k

bi,k
∂

∂pi
∧ ∂

∂xk
+
∑
k ,l

ck ,l
∂

∂xk
∧ ∂

∂xl
,

where the functions ai,j vanish identically on M.

Facts:

1 (X , π) Poisson⇒ T ∗X Lie algebroid,⇒ the operator [π, ·] is a
derivation squaring to 0 of Γ(∧•TX ).

2 M ⊂ X coisotropic⇒ TM⊥ Lie sub-algebroid.
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P∞-algebras and coisotropic submanifolds

Important example [Oh-Park]. Given

1 a Poisson manifold (X , π),
2 a coisotropic submanifold M,
3 a global transverse linear structure,

there is an induced P∞ structure on ∧(TMX/TM), constructed as
follows:

[P1, . . . ,Pn]n := p(
[[
π, P̂1

]
, . . . , P̂n

]
)

where P̂1, . . . , P̂n are the unique multivector vector fields invariant by
translation along the fibers that extend P1, . . . ,Pn, and p is the
operator that projects on Γ(∧•TMX/TM) a multivector field on X .

Moreover, [Cattaneo-Felder] this P∞-structure admits a quantization
by deformation.
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Maurer-Cartan and coisotropic submanifolds.

Maurer-Cartan elements encodes (formal) deformations of coisotropic
submanifolds.

Example: Given two submanifolds M,N of the same dimension of a
algebraic Poisson manifold, there exists, in a neighborhood of every
point in M, adapted coordinates (x1, . . . , xn,p1, . . . ,pd ) for M such that:

1 M is given by p1 = · · · = pd = 0,
2 N is given by p1 − ϕ1(x1, . . . , xn) = · · · = pd − ϕd (x1, . . . , xn) = 0.

Assume M is coisotropic. Then

ϕ :=
∑

i

ϕi
∂

∂pi

is a Maurer-Cartan element w.r.t. the P∞-structure (when seen as a
section of Γ(TMX/TM)) iff N coisotropic [Schätz-Zambon].
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Conclusion 1

General idea:

1 X Poisson + M coisotropic P∞-structure on Γ(∧•TMX/TM).
2 N coisotropic Maurer-Cartan element ϕ ∈ Γ(TMX/TM).
3 Previous theorem Gerstenhaber algebra structure on H∗(ϕ)

and Gerstenhaber module on H∗(ϕ).

More precisely:

Corollary
Let (X , π) be an algebraic Poisson manifold. Let M,N be a coisotropic
submanifolds of the same dimension. Choose a system of adapted
coordinates in a neighborhood of a point in M ∩ N. Construct ϕ as
above. Then the homologies H∗(ϕ) and co-homologies H∗(ϕ) attached
to ϕ admits induced Gerstenhaber algebra structures and modules
respectively.
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Gluing of the previous homologies and structures.

Baranovski-Ginzburg (following Behrend-Fantechi) have constructed a
Gerstenhaber algebra structure on the sheafified TorX (M,N) and
ExtX (M,N) of coisotropic submanifolds of an algebraic Poisson
manifold.

Proposition
Let M,N be submanifolds of the same dimension in X . Let U ⊂ X be
an open subset on which there exists adapted coordinates, and let
ϕ =

∑
i ϕi

∂
∂pi

be as before. Then Tor(M ∩ U,N ∩ U) = H∗(ϕ) and
Ext(M ∩ U,N ∩ U) = H∗(ϕ).

Question. Does our construction match [BG] ?

Yes in the symplectic case (direct computation).

Yes in a Poisson case, due to the existence of symplectic realization ?
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