Moduli spaces of flat connections on colored surfaces

David Li-Bland joint work with Pavol Ševera

Tuesday, July 31, 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction

Moduli space of flat connections

Towards a finite dimensional construction

Flat connections on the 1-simplex Flat connections on the 2-simplex Main Theorem

Examples

Coloring Edges Domain Walls Coloring *n*-edges

Poisson Structures on Moduli spaces

Moduli space of flat connections

Let $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$ be a quadratic Lie algebra,

Theorem (Atiyah-Bott)

The moduli space

$$\mathcal{M}(\Sigma) = \mathcal{A}_{\textit{flat}}(\Sigma) / \mathcal{C}^{\infty}(\Sigma, G)$$

of flat connections over Σ carries a symplectic structure.

Proof.

Infinite dimensional symplectic reduction...

Introduction

Moduli space of flat connections

Towards a finite dimensional construction

Flat connections on the 1-simplex Flat connections on the 2-simplex Main Theorem

Examples

Coloring Edges Domain Walls Coloring *n*-edges

Poisson Structures on Moduli spaces

Triangulate the surface:

A flat connection assigns an element of G (the holonomy) to each edge. $\mathcal{M}(\Sigma)$ is collection of possible (coherent) assignments.

Triangulate the surface:

A flat connection assigns an element of G (the holonomy) to each edge. $\mathcal{M}(\Sigma)$ is collection of possible (coherent) assignments.

Triangulate the surface:

A flat connection assigns an element of G (the holonomy) to each edge. $\mathcal{M}(\Sigma)$ is collection of possible (coherent) assignments.

Triangulate the surface:

A flat connection assigns an element of G (the holonomy) to each edge. $\mathcal{M}(\Sigma)$ is collection of possible (coherent) assignments.

Triangulate the surface:

A flat connection assigns an element of G (the holonomy) to each edge. $\mathcal{M}(\Sigma)$ is collection of possible (coherent) assignments.

Flat connections and triangulations

A triangulation breaks our surface into

- vertices (0-dimensional simplex)
- edges (1-dimensional simplex)
- faces (2-dimensional simplex)

What does a flat connection look like over simplices of these dimensions?

Flat connections and triangulations

A triangulation breaks our surface into

- vertices (0-dimensional simplex)
- edges (1-dimensional simplex)
- faces (2-dimensional simplex)

What does a flat connection look like over simplices of these dimensions?

▶ $A_{flat}([0,1]) :=$ flat connections over [0,1]

• $C^{\infty}_{based}([0,1],G) := \{f \text{ such that } f(0) = f(1) = id\}$

hol : G

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A_{flat}([0,1]) := flat connections over [0,1]
 C[∞]_{based}([0,1], G) := {f such that f(0) = f(1) = id}

hol : G

▶ A_{flat}([0,1]) := flat connections over [0,1]

• $C^{\infty}_{based}([0,1],G) := \{f \text{ such that } f(0) = f(1) = id\}$

▶ A_{flat}([0,1]) := flat connections over [0,1]

• $C^{\infty}_{based}([0,1],G) := \{f \text{ such that } f(0) = f(1) = id\}$

 $\mathsf{hol}:\mathcal{A}_{\mathit{flat}}([0,1])\to \mathit{G}$

▶ A_{flat}([0,1]) := flat connections over [0,1]

• $C^{\infty}_{based}([0,1],G) := \{f \text{ such that } f(0) = f(1) = id\}$

 $\mathsf{hol}:\mathcal{A}_{\mathit{flat}}([0,1])\to \mathit{G}$

▶ A_{flat}([0,1]) := flat connections over [0,1]

• $C^{\infty}_{based}([0,1],G) := \{f \text{ such that } f(0) = f(1) = id\}$

 $\mathsf{hol}:\mathcal{A}_{\mathit{flat}}([0,1]) \to G$

▶ A_{flat}([0,1]) := flat connections over [0,1]

• $C^{\infty}_{based}([0,1],G) := \{f \text{ such that } f(0) = f(1) = id\}$

 $\mathsf{hol}: \mathcal{A}_{\mathit{flat}}([0,1])/C^{\infty}_{\mathit{based}}([0,1],G) \stackrel{\cong}{\longrightarrow} G$

(日)、

- 2

$$C^{\infty}([0,1],G)$$
$$\mathcal{A}_{flat}([0,1])$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

 $C^{\infty}([0,1],G)/C^{\infty}_{based}([0,1],G)$ $\mathcal{A}_{flat}([0,1])/C^{\infty}_{based}([0,1],G)$

・ロト ・聞ト ・ヨト ・ヨト

э

Pictoral Notation

Pictoral Notation

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → のへで

Pictoral Notation

 $\subseteq G$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

► $C^{\infty}_{based}(\Delta, G) := \{f \in \text{ such that } f(0) = f(1) = f(2) = \text{id}\}$

► $C^{\infty}_{based}(\Delta, G) := \{f \in \text{ such that } f(0) = f(1) = f(2) = \text{id}\}$

$$\mathcal{A}_{\textit{flat}}(\Delta)/\mathit{C}^\infty_{\textit{based}}(\Delta, G) \subseteq G^3$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

► $C^{\infty}_{\textit{based}}(\Delta, G) := \{f \in \text{ such that } f(0) = f(1) = f(2) = \text{id}\}$

$$\mathcal{A}_{flat}(\Delta)/\mathcal{C}^{\infty}_{based}(\Delta,G) = \{g_1g_2g_3 = \mathsf{id}\} \subseteq G^3$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

► $C^{\infty}_{\textit{based}}(\Delta, G) := \{f \in \text{ such that } f(0) = f(1) = f(2) = \text{id}\}$

$$\mathcal{M}(\Delta) = \{g_1g_2g_3 = \mathsf{id}\} \subseteq G^3$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

hol :
$$\mathcal{M}(\Delta)
ightarrow G^3$$

 $\mathfrak{g}^3\cong \mathfrak{g}_\Delta\subseteq (ar{\mathfrak{g}}\oplus \mathfrak{g})^3$ preserves $\mathcal{M}(\Delta)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

hol :
$$\mathcal{M}(\Delta)
ightarrow G^3$$

 $\mathfrak{g}^3\cong \mathfrak{g}_\Delta\subseteq (ar{\mathfrak{g}}\oplus\mathfrak{g})^3$ preserves $\mathcal{M}(\Delta)$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

hol :
$$\mathcal{M}(\Delta)
ightarrow G^3$$

 $\mathfrak{g}^3\cong\mathfrak{g}_{\Delta}\subseteq(\bar{\mathfrak{g}}\oplus\mathfrak{g})^3 \text{ preserves } \mathcal{M}(\Delta)$

イロト イポト イヨト イヨト

э

- イロト イヨト イヨト ・ヨー のへで

2-simplices

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Still need to take quotient by gauge transformations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Still need to take quotient by gauge transformations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Still need to take quotient by gauge transformations.

Still need to take quotient by gauge transformations.

Still need to take quotient by gauge transformations.

- $(\bar{\mathfrak{g}} \oplus \mathfrak{g}) \times G$ is a Courant algebroid.
- $\mathfrak{g}_{\Delta} \subseteq (\bar{\mathfrak{g}} \oplus \mathfrak{g})^3$ defines a Dirac structure.
- ► The action of g_△ on M(△) is Hamiltonian for the unique 2-form

$$\omega = rac{1}{2} \langle g_1^{-1} dg_1, dg_2 g_2^{-1} \rangle \in \Omega^2 \big(\mathcal{M} (\Delta) \big).$$

• $(\bar{\mathfrak{g}} \oplus \mathfrak{g}) \times G$ is a Courant algebroid.

- $\mathfrak{g}_{\Delta} \subseteq (\bar{\mathfrak{g}} \oplus \mathfrak{g})^3$ defines a Dirac structure.
- The action of g_Δ on M(Δ) is Hamiltonian for the unique 2-form

$$\omega = rac{1}{2} \langle g_1^{-1} dg_1, dg_2 g_2^{-1} \rangle \in \Omega^2 \big(\mathcal{M} (\Delta) \big).$$

- $(\bar{\mathfrak{g}} \oplus \mathfrak{g}) \times G$ is a Courant algebroid.
- $\mathfrak{g}_{\Delta} \subseteq (\bar{\mathfrak{g}} \oplus \mathfrak{g})^3$ defines a Dirac structure.
- ► The action of g_△ on M(△) is Hamiltonian for the unique 2-form

$$\omega = \frac{1}{2} \langle g_1^{-1} dg_1, dg_2 g_2^{-1} \rangle \in \Omega^2 \big(\mathcal{M}(\Delta) \big).$$

- $(\bar{\mathfrak{g}} \oplus \mathfrak{g}) \times G$ is a Courant algebroid.
- $\mathfrak{g}_{\Delta} \subseteq (\bar{\mathfrak{g}} \oplus \mathfrak{g})^3$ defines a Dirac structure.
- The action of g_Δ on M(Δ) is Hamiltonian for the unique 2-form

$$\omega = rac{1}{2} \langle g_1^{-1} dg_1, dg_2 g_2^{-1}
angle \in \Omega^2 ig(\mathcal{M} (\Delta) ig).$$

Reduction, part1

(moment map = holonomy)

Choose $\mathfrak{l} \subseteq (\bar{\mathfrak{g}} \oplus \mathfrak{g})^{3n}$.

(moment level $l \cdot id \subseteq G^{3n}$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Reduction, part1

(moment map = holonomy)

Choose $\mathfrak{l} \subseteq (\bar{\mathfrak{g}} \oplus \mathfrak{g})^{3n}$.

$$\begin{array}{c} \mathsf{hol}^{-1}(\mathfrak{l} \cdot \mathsf{id}) \xrightarrow{\mathsf{hol}} \mathfrak{l} \cdot \mathsf{id} \\ & & & & & \\ & & & & & \\ \mathfrak{l} \cap \mathfrak{g}_\Delta^n & & & \mathfrak{l} \cap \mathfrak{g}_\Delta^n \end{array}$$

(moment level $l \cdot id \subseteq G^{3n}$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Reduction, part2

Theorem (Li-Bland, Ševera)

Suppose $\mathfrak{l} \subseteq (\overline{\mathfrak{g}} \oplus \mathfrak{g})^{3n}$ is a Lagrangian Lie subalgebra. Then, under suitable transversality assumptions, the restriction of the 2-form to

$$\mathsf{hol}^{-1}(\mathfrak{l}\cdot\mathsf{id})\subseteq\mathcal{M}(\Delta)^n$$

descends to define a symplectic form on

 $\mathsf{hol}^{-1}(\mathfrak{l}\cdot\mathsf{id})/(\mathfrak{g}^n_\Delta\cap\mathfrak{l}).$

Introduction

Moduli space of flat connections

Towards a finite dimensional construction

Flat connections on the 1-simplex Flat connections on the 2-simplex Main Theorem

Examples

Coloring Edges Domain Walls Coloring *n*-edges

Poisson Structures on Moduli spaces

$\mathfrak{l}\subseteq (\bar{\mathfrak{g}}\oplus\mathfrak{g})^2$ $\mathfrak{l}\cdot\mathsf{id}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$\mathfrak{l} \subseteq (\bar{\mathfrak{g}} \oplus \mathfrak{g})^2$ (\cdot id

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$$\mathfrak{l}:=\{\xi=\xi' \text{ and } \eta=\eta'\}\subseteq (\bar{\mathfrak{g}}\oplus\mathfrak{g})^2$$
 [: id

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

$$\mathfrak{l} := \{\xi = \xi' \text{ and } \eta = \eta'\} \subseteq (\overline{\mathfrak{g}} \oplus \mathfrak{g})^2$$
$$\mathfrak{l} \cdot \mathrm{id} = ?$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

$$\mathfrak{l} := \{\xi = \xi' \text{ and } \eta = \eta'\} \subseteq (\mathfrak{\bar{g}} \oplus \mathfrak{g})^2$$
$$\mathfrak{l} \cdot \mathsf{id} = \{g = g'\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\mathfrak{l} := \{\xi = \xi' \text{ and } \eta = \eta'\} \subseteq (\mathfrak{\bar{g}} \oplus \mathfrak{g})^2$$
$$\mathfrak{l} \cdot \mathsf{id} = \{g = g'\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- イロト イヨト イヨト ・ヨー のへで

Introduction

Moduli space of flat connections

Towards a finite dimensional construction

Flat connections on the 1-simplex Flat connections on the 2-simplex Main Theorem

Examples

Coloring Edges Domain Walls Coloring *n*-edges

Poisson Structures on Moduli spaces

Suppose $\mathfrak{c} \subseteq \mathfrak{g}$ is coisotropic ($\mathfrak{c}^{\perp} \subseteq \mathfrak{c}$).

$$\mathfrak{l} \subseteq (\overline{\mathfrak{g}} \oplus \mathfrak{g})$$

 $\mathfrak{l} \cdot \mathsf{id} := C^{\perp}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Suppose $\mathfrak{c} \subseteq \mathfrak{g}$ is coisotropic ($\mathfrak{c}^{\perp} \subseteq \mathfrak{c}$).

$\mathfrak{l} \subseteq (\mathbf{\bar{g}} \oplus \mathfrak{g})$ $\mathfrak{l} \cdot \mathsf{id} := C^{\perp}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Suppose $\mathfrak{c} \subseteq \mathfrak{g}$ is coisotropic ($\mathfrak{c}^{\perp} \subseteq \mathfrak{c}$).

$$\mathfrak{l} := \{\xi, \eta \in \mathfrak{c} \text{ and } \xi - \eta \in \mathfrak{c}^{\perp}\} \subseteq (\bar{\mathfrak{g}} \oplus \mathfrak{g})$$
$$\mathfrak{l} \cdot \mathrm{id} := C^{\perp}$$

・ロト・雪・・雪・・雪・・ 白・ ろくの

Suppose $\mathfrak{c} \subseteq \mathfrak{g}$ is coisotropic ($\mathfrak{c}^{\perp} \subseteq \mathfrak{c}$).

$$\mathfrak{l} := \{\xi, \eta \in \mathfrak{c} \text{ and } \xi - \eta \in \mathfrak{c}^{\perp}\} \subseteq (\overline{\mathfrak{g}} \oplus \mathfrak{g})$$
$$\mathfrak{l} \cdot \mathsf{id} := C^{\perp}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Surfaces with colored boundaries

 \mathfrak{c}_1

c₂ c₃ c₄

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Symplectic double groupoid (Ševera)

Suppose that $\mathfrak{e},\mathfrak{f}\subseteq\mathfrak{g}$ are two transverse Lagrangian subalgebras, then the moduli space

$$\mathcal{M} = \{ (e_1, e_2, f_1, f_2) \in E^2 \times F^2 \mid e_1 f_1 = f_2 e_2 \}$$
$$\Omega = \langle e_1^{-1} de_1, df_1 f_1^{-1} \rangle - \langle f_2^{-1} df_2, de_2 e_2^{-1} \rangle$$

is the symplectic double groupoid associated to the Manin triple $(\mathfrak{g},\mathfrak{e},\mathfrak{f}).$

Multiplication

Composable elements satisfy

$$e_2 = e'_1.$$

(日)、

э

Symplectic groupoid for Lu-Yakimov Poisson structures

Suppose $(\mathfrak{g}, \mathfrak{e}, \mathfrak{f})$ is a Manin triple and $\mathfrak{c} \subseteq \mathfrak{g}$ is coisotropic.

$\mathcal{M} = \{ (c, g, e, f) \in C^{\perp} \times_C G \times E \times F \text{ such that } cgef^{-1}g^{-1} = \mathsf{id} \}$

This is the symplectic groupoid for the Lu-Yakimov Poisson structure on G/C.

Symplectic groupoid for Lu-Yakimov Poisson structures

Suppose $(\mathfrak{g}, \mathfrak{e}, \mathfrak{f})$ is a Manin triple and $\mathfrak{c} \subseteq \mathfrak{g}$ is coisotropic.

 $\mathcal{M} = \{(c, g, e, f) \in C^{\perp} \times_{C} G \times E \times F \text{ such that } cgef^{-1}g^{-1} = id\}$ This is the symplectic groupoid for the Lu-Yakimov Poisson structure on G/C.

Introduction

Moduli space of flat connections

Towards a finite dimensional construction

Flat connections on the 1-simplex Flat connections on the 2-simplex Main Theorem

Examples

Coloring Edges Domain Walls Coloring *n*-edges

Poisson Structures on Moduli spaces

Let $(\mathfrak{g}_i, \langle \cdot, \cdot \rangle_i)$ be two quadratic Lie algebras. Suppose that $\mathfrak{c} \subseteq \mathfrak{g}_2 \oplus \overline{\mathfrak{g}}_1$ is a coisotropic subalgebra.

 $\mathfrak{l} := \{ (\xi', \xi), (\eta', \eta) \in \mathfrak{c} \text{ and } (\xi', \xi) - (\eta', \eta) \in \mathfrak{c}^{\perp} \}$

• $\mathfrak{g}_1 = \mathfrak{g}_2$, and $\mathfrak{c} = \{(\xi, \xi)\} \Leftrightarrow$ sewing the edges together.

Let $(\mathfrak{g}_i, \langle \cdot, \cdot \rangle_i)$ be two quadratic Lie algebras. Suppose that $\mathfrak{c} \subseteq \mathfrak{g}_2 \oplus \overline{\mathfrak{g}}_1$ is a coisotropic subalgebra.

$\mathfrak{l}:=\{(\xi',\xi),(\eta',\eta)\in\mathfrak{c} \text{ and } (\xi',\xi)-(\eta',\eta)\in\mathfrak{c}^{\perp}\}$

• $\mathfrak{g}_1 = \mathfrak{g}_2$, and $\mathfrak{c} = \{(\xi, \xi)\} \Leftrightarrow$ sewing the edges together.

Let $(\mathfrak{g}_i, \langle \cdot, \cdot \rangle_i)$ be two quadratic Lie algebras. Suppose that $\mathfrak{c} \subseteq \mathfrak{g}_2 \oplus \overline{\mathfrak{g}}_1$ is a coisotropic subalgebra.

$\mathfrak{l}:=\{(\xi',\xi),(\eta',\eta)\in\mathfrak{c} \text{ and } (\xi',\xi)-(\eta',\eta)\in\mathfrak{c}^{\perp}\}$

• $\mathfrak{g}_1 = \mathfrak{g}_2$, and $\mathfrak{c} = \{(\xi, \xi)\} \Leftrightarrow$ sewing the edges together.

Let $(\mathfrak{g}_i, \langle \cdot, \cdot \rangle_i)$ be two quadratic Lie algebras. Suppose that $\mathfrak{c} \subseteq \mathfrak{g}_2 \oplus \overline{\mathfrak{g}}_1$ is a coisotropic subalgebra.

$\mathfrak{l} := \{ (\xi',\xi), (\eta',\eta) \in \mathfrak{c} \text{ and } (\xi',\xi) - (\eta',\eta) \in \mathfrak{c}^{\perp} \}$

• $\mathfrak{g}_1 = \mathfrak{g}_2$, and $\mathfrak{c} = \{(\xi, \xi)\} \Leftrightarrow$ sewing the edges together.

Let $(\mathfrak{g}_i, \langle \cdot, \cdot \rangle_i)$ be two quadratic Lie algebras. Suppose that $\mathfrak{c} \subseteq \mathfrak{g}_2 \oplus \overline{\mathfrak{g}}_1$ is a coisotropic subalgebra.

$$\mathfrak{l}:=\{(\xi',\xi),(\eta',\eta)\in\mathfrak{c} \text{ and } (\xi',\xi)-(\eta',\eta)\in\mathfrak{c}^{\perp}\}$$

g₁ = g₂, and c = {(ξ, ξ)} ⇔ sewing the edges together.
 g₂ = 0, c ⊆ g₁ ⇔ coloring the first edge.

Let $(\mathfrak{g}_i, \langle \cdot, \cdot \rangle_i)$ be two quadratic Lie algebras. Suppose that $\mathfrak{c} \subseteq \mathfrak{g}_2 \oplus \overline{\mathfrak{g}}_1$ is a coisotropic subalgebra.

$$\mathfrak{l}:=\{(\xi',\xi),(\eta',\eta)\in\mathfrak{c} \text{ and } (\xi',\xi)-(\eta',\eta)\in\mathfrak{c}^{\perp}\}$$

g₁ = g₂, and c = {(ξ, ξ)} ⇔ sewing the edges together.
g₂ = 0, c ⊆ g₁ ⇔ coloring the first edge.

Colored surfaces with domains

Example (Philip Boalch)

Suppose $\mathfrak{g} = \mathfrak{u}_- \oplus \mathfrak{u}_+ \oplus \mathfrak{h}$ as a vector space, where $\mathfrak{p}_{\pm} := \mathfrak{u}_{\pm} \oplus \mathfrak{h} \subseteq \mathfrak{g}$ is a coisotropic subalgebra with $\mathfrak{p}_{\pm}^{\perp} = \mathfrak{u}_{\pm}$.

 $\mathfrak{l}_{\pm} := \{ (\xi + \mu, \xi), (\eta + \upsilon, \eta) \in \mathfrak{h} \oplus \mathfrak{g} \mid \mu, \upsilon \in \mathfrak{u}_{\pm} \}$

Example (Philip Boalch)

Suppose $\mathfrak{g} = \mathfrak{u}_{-} \oplus \mathfrak{u}_{+} \oplus \mathfrak{h}$ as a vector space, where $\mathfrak{p}_{\pm} := \mathfrak{u}_{\pm} \oplus \mathfrak{h} \subseteq \mathfrak{g}$ is a coisotropic subalgebra with $\mathfrak{p}_{\pm}^{\perp} = \mathfrak{u}_{\pm}$.

 $\mathfrak{l}_{\pm} := \{ (\xi + \mu, \xi), (\eta + \upsilon, \eta) \in \mathfrak{h} \oplus \mathfrak{g} \mid \mu, \upsilon \in \mathfrak{u}_{\pm} \}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example (Philip Boalch)

This moduli space is Philip Boalch's fission space

$$_{H}\mathcal{A}_{G}^{r}:=G\times (U_{+}\times U_{-})^{r}\times H,$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

(for r = 3).

Introduction

Moduli space of flat connections

Towards a finite dimensional construction

Flat connections on the 1-simplex Flat connections on the 2-simplex Main Theorem

Examples

Coloring Edges Domain Walls Coloring *n*-edges

Poisson Structures on Moduli spaces

Coloring *n* edges

Suppose $\mathfrak{c} \subseteq \bigoplus_{i=1}^{n} \mathfrak{g}_i$ is coisotropic.

$$\mathfrak{l} = \left\{ \left((\xi_1, \eta_1); \dots; (\xi_n, \eta_n) \right) \in \bigoplus_{i=1}^n \bar{\mathfrak{g}}_i \oplus \mathfrak{g}_i \mid \\ (\xi_1, \dots, \xi_n), (\eta_1, \dots, \eta_n) \in \mathfrak{c} \text{ and } (\xi_1 - \eta_1, \dots, \xi_n - \eta_n) \in \mathfrak{c}^\perp \right\}$$

・ロト ・聞ト ・ヨト ・ヨト

Then \mathfrak{c} defines an (associative) multiplication $\circ : \mathfrak{g} \times \mathfrak{g} \dashrightarrow \mathfrak{g}$:

$$\mathfrak{c} = \{(\xi, \xi', \xi'') \mid \xi \circ \xi' \circ \xi'' = \mathsf{id}\} \subseteq \mathfrak{g} \oplus \overline{\mathfrak{g} \oplus \mathfrak{g}}$$

i.e. $\mathfrak{g} \rightrightarrows \mathfrak{k}$ is a Lie groupoid.

Lemma (Drinfel'd)

Suppose \mathfrak{t} is a Lie algebra, elements $s \in S^2(\mathfrak{t})^{\mathfrak{k}}$ are in one-to-one correspondence with quadratic Lie algebras $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$ such that $\mathfrak{g} \Longrightarrow \mathfrak{t}$ is a Lie groupoid. $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$ is called the double of $(\mathfrak{t}, \mathfrak{s})$.

Then \mathfrak{c} defines an (associative) multiplication $\circ : \mathfrak{g} \times \mathfrak{g} \dashrightarrow \mathfrak{g}$:

$$\mathfrak{c} = \{(\xi,\xi',\xi'') \mid \xi \circ \xi' \circ \xi'' = \mathsf{id}\} \subseteq \mathfrak{g} \oplus \overline{\mathfrak{g} \oplus \mathfrak{g}}$$

i.e. $\mathfrak{g} \rightrightarrows \mathfrak{k}$ is a Lie groupoid.

Lemma (Drinfel'd)

Suppose \mathfrak{t} is a Lie algebra, elements $s \in S^2(\mathfrak{t})^{\mathfrak{k}}$ are in one-to-one correspondence with quadratic Lie algebras $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$ such that $\mathfrak{g} \Longrightarrow \mathfrak{t}$ is a Lie groupoid. $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$ is called the double of $(\mathfrak{t}, \mathfrak{s})$.

Then \mathfrak{c} defines an (associative) multiplication $\circ : \mathfrak{g} \times \mathfrak{g} \dashrightarrow \mathfrak{g}:$

$$\mathfrak{c} = \{(\xi,\xi',\xi'') \mid \xi \circ \xi' \circ \xi'' = \mathsf{id}\} \subseteq \mathfrak{g} \oplus \overline{\mathfrak{g} \oplus \mathfrak{g}}$$

i.e. $\mathfrak{g} \rightrightarrows \mathfrak{k}$ is a Lie groupoid.

Lemma (Drinfel'd)

Suppose \mathfrak{k} is a Lie algebra, elements $s \in S^2(\mathfrak{k})^{\mathfrak{k}}$ are in one-to-one correspondence with quadratic Lie algebras $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$ such that $\mathfrak{g} \rightrightarrows \mathfrak{k}$ is a Lie groupoid. $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$ is called the double of (\mathfrak{k}, s) .

Then \mathfrak{c} defines an (associative) multiplication $\circ : \mathfrak{g} \times \mathfrak{g} \dashrightarrow \mathfrak{g}:$

$$\mathfrak{c} = \{(\xi,\xi',\xi'') \mid \xi \circ \xi' \circ \xi'' = \mathsf{id}\} \subseteq \mathfrak{g} \oplus \overline{\mathfrak{g} \oplus \mathfrak{g}}$$

i.e. $\mathfrak{g} \rightrightarrows \mathfrak{k}$ is a Lie groupoid.

Lemma (Drinfel'd)

Suppose \mathfrak{k} is a Lie algebra, elements $s \in S^2(\mathfrak{k})^{\mathfrak{k}}$ are in one-to-one correspondence with quadratic Lie algebras $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$ such that $\mathfrak{g} \Longrightarrow \mathfrak{k}$ is a Lie groupoid. $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$ is called the double of (\mathfrak{k}, s) .

Branched surfaces

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Introduction

Moduli space of flat connections

Towards a finite dimensional construction

Flat connections on the 1-simplex Flat connections on the 2-simplex Main Theorem

Examples

Coloring Edges Domain Walls Coloring *n*-edges

Poisson Structures on Moduli spaces

Poisson Structures

Suppose \mathfrak{k} is a Lie algebra and $s \in S^2(\mathfrak{k})^{\mathfrak{k}}$ is non-degenerate.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The moduli space, $\mathcal{M}(\Sigma)$, of flat \mathfrak{k} connections over Σ carries a symplectic structure.

Poisson Structures

Suppose \mathfrak{k} is a Lie algebra and $s \in S^2(\mathfrak{k})^{\mathfrak{k}}$ is possibly degenerate.

$$\Sigma =$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The moduli space, $\mathcal{M}(\Sigma)$, of flat \mathfrak{k} connections over Σ carries a Poisson structure.

• Recall the Drinfel'd double, $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$, of (\mathfrak{k}, s) .

▶ \mathfrak{g} acts on K. Model $\mathcal{M}([0,1])$ by the Courant Algebroid

► Moment map:

• Construct Poisson structure on $\mathcal{M}(\Sigma)$ using Dirac reduction.

・ロット 4回ット 4回ット 4回ット 4回ット

- Recall the Drinfel'd double, $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$, of (\mathfrak{k}, s) .
- ▶ \mathfrak{g} acts on K. Model $\mathcal{M}([0,1])$ by the Courant Algebroid

► Moment map:

• Construct Poisson structure on $\mathcal{M}(\Sigma)$ using Dirac reduction.

・ロット 4回ット 4回ット 4回ット 4回ット

- Recall the Drinfel'd double, $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$, of (\mathfrak{k}, s) .
- \mathfrak{g} acts on K. Model $\mathcal{M}([0,1])$ by the Courant Algebroid

► Moment map:

• Construct Poisson structure on $\mathcal{M}(\Sigma)$ using Dirac reduction.

- Recall the Drinfel'd double, $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$, of (\mathfrak{k}, s) .
- \mathfrak{g} acts on K. Model $\mathcal{M}([0,1])$ by the Courant Algebroid

Moment map:

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• Construct Poisson structure on $\mathcal{M}(\Sigma)$ using Dirac reduction.

- Recall the Drinfel'd double, $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$, of (\mathfrak{k}, s) .
- \mathfrak{g} acts on K. Model $\mathcal{M}([0,1])$ by the Courant Algebroid

Moment map:

• Construct Poisson structure on $\mathcal{M}(\Sigma)$ using Dirac reduction.

Colored surfaces with domains

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Get Poisson structure.