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Moduli space of flat connections

Let (g, (-,-)) be a quadratic Lie algebra,

Theorem (Atiyah-Bott)

The moduli space
M(XE) = Apae(X)/C (X, G)
of flat connections over ¥ carries a symplectic structure.

Proof.

Infinite dimensional symplectic reduction...
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edge.



Finite Dimensional Construction

Triangulate the surface:

81

82

A flat connection assigns an element of G (the holonomy) to each
edge. M(X) is collection of possible (coherent) assignments.
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A triangulation breaks our surface into
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Flat connections and triangulations

A triangulation breaks our surface into
» vertices (0-dimensional simplex)
» edges (1-dimensional simplex)
» faces (2-dimensional simplex)

What does a flat connection look like over simplices of these
dimensions?
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Flat connections on the 1-simplex

» Aga([0, 1]) := flat connections over [0, 1]
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Flat connections on the 1-simplex

» Aq.:([0,1]) := flat connections over [0, 1]
> Cpoy([0,1], G) := {f such that f(0) = f(1) = id}

Holonomy = gglgl

o

hol + Asiar([0,1])/ Cpasea ([0, 1], 6) —— G



Residual gauge transformations

Holonomy = go_lgl

c*>(]0,1], G)
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Residual gauge transformations

Holonomy = go_lgl

COO([Oa 1]7 G)/ngsed([()? 1]7 G)
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Residual gauge transformations

Holonomy = go_lgl

COO([07 1]7 G)/Cg:sed([()? 1]7 G) GxG

~

Aflat([o') 1])/Cg§sed([0’ 1]’ G) h;ol) ¢



Residual gauge transformations

Holonomy = go_lgl

~

Apae([0. 1)/ Csoeg(10.1].6) — —— G



Pictoral Notation



Pictoral Notation



Pictoral Notation
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Flat connections on the 2-simplex

> Agpat(A) := flat connections over A



Flat connections on the 2-simplex

> Agpat(A) := flat connections over A
» G2 g(A, G) :={f € such that f(0) = f(1) = f(2) =id}

base



Flat connections on the 2-simplex

> Agpat(A) := flat connections over A
> Cl?:sed(A7 G) :={f € such that f(0) = (1) = f(2) = id}

Aﬂat(A)/Cg:sed(Av G) - G3



Flat connections on the 2-simplex

> Agpat(A) := flat connections over A
> Cl?:sed(A7 G) :={f € such that f(0) = (1) = f(2) = id}

83

Afiat (D) Coosea(D, G) = {g18283 = id} C G*



Flat connections on the 2-simplex

> Agpat(A) := flat connections over A
> Cl?:sed(A7 G) :={f € such that f(0) = (1) = f(2) = id}

83

M(A) = {g1g285 = id} C G*



Residual gauge transformations

hol : M(A) — G*

hol
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Residual gauge transformations

hol : M(A) — G*
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Residual gauge transformations

hol : M(A) — G*

AQA equivariant /\
CO CoGon n

g1g2

g3

1

aa C (3 9)° preserves M(A)






2-simplices
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2-simplices
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Still need to take quotient by gauge transformations.



2-simplices

hol
AAD...DW Qi\f‘\;l\/\

hol 1 (1-skeleton) 1-skeleton

W

Still need to take quotient by gauge transformations.



Moment Map (Bursztyn,IgIesias—PonteSevera)
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» (3@ g) x G is a Courant algebroid.
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Moment Map (Bursztyn,IgIesias—PonteSevera)

AN
9) O
ga-equivariant O C
G, =
(g182)" COGOn

» (3@ g) x G is a Courant algebroid.
» ga C (§ @ g)3 defines a Dirac structure.

» The action of ga on M(A) is Hamiltonian for the unique

2-form )
w = §<g1_1dg17 dgg, b) € Q2 (M(A)).



Reduction, partl

G3" (moment map = holonomy)



Reduction, partl

G3n

O ()

an oA C (3D 9)*"

Choose I C (g @ g)°".

Tl ) —22

O O

(Mg [N gA

(moment map = holonomy)

(moment level [-id C G3")



Reduction, part2

Theorem (Li-Bland, gevera)

Suppose | C (§ @ g)3" is a Lagrangian Lie subalgebra.
Then, under suitable transversality assumptions, the restriction of
the 2-form to

hol1(I-id) € M(A)"

descends to define a symplectic form on

hol~1(1-id) /(g N I).
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Sewing edges together
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Coloring edges

Suppose ¢ C g is coisotropic (¢ C c).
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Coloring edges

Suppose ¢ C g is coisotropic (¢ C c).
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Coloring edges
Suppose ¢ C g is coisotropic (¢ C c).

L\

[:={¢,necandé—nect} C(GDg)
[-id := C*



Surfaces with colored boundaries
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Symplectic double groupoid (Severa)

Suppose that ¢,f C g are two transverse Lagrangian subalgebras,
then the moduli space

fi

€1 €2

f
M = {(el7e27flgf2) € E2 X F2 | elfl — f26‘2}
Q= <el_1d€'1, dflfl_1> — <f2_1df2’ d(:‘262_1>

is the symplectic double groupoid associated to the Manin triple

(g,¢,).



Multiplication

f fi hf]

€1 € o €1 €& = € €

) I fafy

Composable elements satisfy



Symplectic groupoid for Lu-Yakimov Poisson structures

Suppose (g, ¢, f) is a Manin triple and ¢ C g is coisotropic.
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M ={(c,g,e,f) € Ct xc G x E x F such that cgef 1g~! =id}



Symplectic groupoid for Lu-Yakimov Poisson structures

Suppose (g, ¢, f) is a Manin triple and ¢ C g is coisotropic.

e
¢
(O
¢

M ={(c,g,e,f) € Ct xc G x E x F such that cgef 1g~! =id}

This is the symplectic groupoid for the Lu-Yakimov Poisson
structure on G/C.
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Domain Walls

Let (g;, (-,-)i) be two quadratic Lie algebras. Suppose that
¢ C go ® g1 is a coisotropic subalgebra.
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Domain Walls

Let (g;, (-,-)i) be two quadratic Lie algebras. Suppose that
¢ C go ® g1 is a coisotropic subalgebra.
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Domain Walls

Let (g;, (-,-)i) be two quadratic Lie algebras. Suppose that
¢ C go ® g1 is a coisotropic subalgebra.

={(¢,€),(0',n) € cand (¢',€) — (0',m) € ¢}

> g1 = g2, and ¢ = {(&, &)} < sewing the edges together.
> go =0, ¢ C g1 < coloring the first edge.



Colored surfaces with domains
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Example (Philip Boalch)
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Example (Philip Boalch)

Suppose g =u_ G uy @ h as a vector space, where
pL :=uy B bh C gis a coisotropic subalgebra with pi =Uuy.

u+EOGON+v
EOHOnN

e ={(E+ . n+v,n)ebdg|pvcusL}



Example (Philip Boalch)

This moduli space is Philip Boalch's fission space
HAG == G x (U x U-)" x H,

(for r = 3).
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Coloring n edges

Suppose ¢ C @7, g; is coisotropic

o
. g1 \
= {((&;m): - (&nymn)) EBg, @ gi |
(617---7£n)7(771;-- 7nn)€cand (51_7717-

--7£n_77n)

€t}
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Then ¢ defines an (associative) multiplication o : g x g --+ g:

c={(§¢.§") €0 o"=id} Cga g

i.e. g = tis a Lie groupoid.
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i.e. g = tis a Lie groupoid.
Lemma (Drinfel'd)

Suppose £ is a Lie algebra, elements s € S?(£)t are in one-to-one
correspondence with quadratic Lie algebras (g, (-,-)) such that
g =t isa Lie groupoid.



branched surfaces and quasi-triangular structures

[

Then ¢ defines an (associative) multiplication o : g x g --+ g:

c={(¢, ") oo =id} Cga gDy
i.e. g = tis a Lie groupoid.
Lemma (Drinfel'd)

Suppose £ is a Lie algebra, elements s € S?(£)t are in one-to-one
correspondence with quadratic Lie algebras (g, (-,-)) such that
g = ¢ is a Lie groupoid. (g, (-,-)) is called the double of (¢,s).



Branched surfaces
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Poisson Structures

Suppose £ is a Lie algebra and s € S?(£) is non-degenerate.

The moduli space, M(X), of flat € connections over ¥ carries a
symplectic structure.



Poisson Structures

Suppose £ is a Lie algebra and s € S2(#)! is possibly degenerate.

The moduli space, M(X), of flat £ connections over X carries a
Poisson structure.



Idea
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» Recall the Drinfel’d double, (g, (-,-)), of (£,s).
» g acts on K. Model M([0,1]) by the Courant Algebroid

o
K

[N/N



Idea

» Recall the Drinfel’d double, (g, (-,-)), of (£,s).
» g acts on K. Model M([0,1]) by the Courant Algebroid

» Moment map:

o
K

M(D)

ey

(kiko)~



Idea

v

Recall the Drinfel'd double, (g, (-,-)), of (£,s).

» g acts on K. Model M([0,1]) by the Courant Algebroid
&
K
» Moment map:
M(A)
A 4 \*
(kik2)™

v

Construct Poisson structure on M(X) using Dirac reduction.



Colored surfaces with domains

(12 CE1 @ 12

Get Poisson structure.

E2,3 Chot;
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