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Moduli space of flat connections

Let (g, 〈·, ·〉) be a quadratic Lie algebra,

Σ =

Theorem (Atiyah-Bott)

The moduli space

M(Σ) = Aflat(Σ)/C∞(Σ,G )

of flat connections over Σ carries a symplectic structure.

Proof.

Infinite dimensional symplectic reduction...
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Finite Dimensional Construction

Triangulate the surface:

a1

b1

a2

b2

A flat connection assigns an element of G (the holonomy) to each
edge. M(Σ) is collection of possible (coherent) assignments.
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Flat connections and triangulations

A triangulation breaks our surface into

I vertices (0-dimensional simplex)

I edges (1-dimensional simplex)

I faces (2-dimensional simplex)

What does a flat connection look like over simplices of these
dimensions?
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Flat connections on the 1-simplex

I Aflat([0, 1]) := flat connections over [0, 1]

I C∞based ([0, 1],G ) := {f such that f (0) = f (1) = id}

hol : G
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Residual gauge transformations
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Residual gauge transformations

G G

g0
g1

Holonomy = g−1
0 g1

C∞([0, 1],G )/C∞based ([0, 1],G )

Aflat([0, 1])/C∞based ([0, 1],G )



Residual gauge transformations

G G

g0
g1

Holonomy = g−1
0 g1

C∞([0, 1],G )/C∞based ([0, 1],G ) G × G

Aflat([0, 1])/C∞based ([0, 1],G ) G
∼=
hol



Residual gauge transformations

G G

g0
g1

Holonomy = g−1
0 g1

ḡ⊕ g

Aflat([0, 1])/C∞based ([0, 1],G ) G
∼=
hol



Pictoral Notation
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Pictoral Notation

ḡ 	 G � g



Flat connections on the 2-simplex

I Aflat(∆) := flat connections over ∆

I C∞based (∆,G ) := {f ∈ such that f (0) = f (1) = f (2) = id}

1

0 2

⊆ G 3
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Flat connections on the 2-simplex

I Aflat(∆) := flat connections over ∆
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Flat connections on the 2-simplex

I Aflat(∆) := flat connections over ∆

I C∞based (∆,G ) := {f ∈ such that f (0) = f (1) = f (2) = id}

g 1
g

2

g3

Aflat(∆)/C∞based (∆,G ) = {g1g2g3 = id} ⊆ G 3



Flat connections on the 2-simplex

I Aflat(∆) := flat connections over ∆

I C∞based (∆,G ) := {f ∈ such that f (0) = f (1) = f (2) = id}

g 1
g

2

g3

M(∆) = {g1g2g3 = id} ⊆ G 3



Residual gauge transformations

hol :M(∆)→ G 3

g 1

g
2

(g1g2)−1

G

G

G

hol

g3 ∼= g∆ ⊆ (ḡ⊕ g)3 preserves M(∆)



Residual gauge transformations

hol :M(∆)→ G 3
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Residual gauge transformations

hol :M(∆)→ G 3

g 1

g
2

(g1g2)−1

ζ
	

G
�
ξ

ξ
	

G
�
η

ζ 	 G � η

hol
g∆-equivariant

g3 ∼= g∆ ⊆ (ḡ⊕ g)3 preserves M(∆)



. . .   
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2-simplices

hol
. . .

Still need to take quotient by gauge transformations.
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2-simplices

1-skeleton

hol
. . .

hol−1(1-skeleton)

Moment Map

Still need to take quotient by gauge transformations.



Moment Map (Bursztyn,Iglesias-Ponte,Ševera)

g 1

g
2

(g1g2)−1

ζ
	

G
�
ξ

ξ
	

G
�
η

ζ 	 G � η

hol
g∆-equivariant

I (ḡ⊕ g)× G is a Courant algebroid.

I g∆ ⊆ (ḡ⊕ g)3 defines a Dirac structure.

I The action of g∆ on M(∆) is Hamiltonian for the unique
2-form

ω =
1

2
〈g−1

1 dg1, dg2g−1
2 〉 ∈ Ω2

(
M(∆)

)
.
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Reduction, part1

M(∆)n G 3n (moment map = holonomy)

gn
∆ gn

∆ ⊆ (ḡ⊕ g)3n

hol

Choose l ⊆ (ḡ⊕ g)3n.

hol−1(l · id) l · id (moment level l · id ⊆ G 3n)

l ∩ gn
∆ l ∩ gn

∆

hol
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M(∆)n G 3n (moment map = holonomy)

gn
∆ gn

∆ ⊆ (ḡ⊕ g)3n

hol

Choose l ⊆ (ḡ⊕ g)3n.

hol−1(l · id) l · id (moment level l · id ⊆ G 3n)

l ∩ gn
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∆

hol



Reduction, part2

Theorem (Li-Bland, Ševera)

Suppose l ⊆ (ḡ⊕ g)3n is a Lagrangian Lie subalgebra.
Then, under suitable transversality assumptions, the restriction of
the 2-form to

hol−1(l · id) ⊆M(∆)n

descends to define a symplectic form on

hol−1(l · id)/(gn
∆ ∩ l).
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Sewing edges together

l ⊆ (ḡ⊕ g)2

l · id



Sewing edges together

ḡ � G 	 g

g � G 	 ḡ

l ⊆ (ḡ⊕ g)2

l · id



Sewing edges together

ξ � G 	 η

ξ′ � G 	 η′

l := {ξ = ξ′ and η = η′} ⊆ (ḡ⊕ g)2

l · id



Sewing edges together

ξ � id 	 η

ξ � id 	 η

l := {ξ = ξ′ and η = η′} ⊆ (ḡ⊕ g)2

l · id =?



Sewing edges together

g

g ′

l := {ξ = ξ′ and η = η′} ⊆ (ḡ⊕ g)2

l · id = {g = g ′}



Sewing edges together

l := {ξ = ξ′ and η = η′} ⊆ (ḡ⊕ g)2

l · id = {g = g ′}



. . .   
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Coloring edges

Suppose c ⊆ g is coisotropic (c⊥ ⊆ c).

l ⊆ (ḡ⊕ g)

l · id := C⊥
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Coloring edges

Suppose c ⊆ g is coisotropic (c⊥ ⊆ c).

ξ � G 	 η

l := {ξ, η ∈ c and ξ − η ∈ c⊥} ⊆ (ḡ⊕ g)

l · id := C⊥



Coloring edges

Suppose c ⊆ g is coisotropic (c⊥ ⊆ c).

l := {ξ, η ∈ c and ξ − η ∈ c⊥} ⊆ (ḡ⊕ g)

l · id := C⊥



Surfaces with colored boundaries

c1

c2

c3

c4



Symplectic double groupoid (Ševera)

Suppose that e, f ⊆ g are two transverse Lagrangian subalgebras,
then the moduli space

e

f

f1

f2

e2e1

M = {(e1, e2, f1, f2) ∈ E 2 × F 2 | e1f1 = f2e2}

Ω = 〈e−1
1 de1, df1f −1

1 〉 − 〈f
−1

2 df2, de2e−1
2 〉

is the symplectic double groupoid associated to the Manin triple
(g, e, f).



Multiplication

f1

f2

e2e1

f ′1

f ′2

e ′2e ′1◦

f1f ′1

f2f ′2

e1 e ′2=

Composable elements satisfy

e2 = e ′1.



Symplectic groupoid for Lu-Yakimov Poisson structures

Suppose (g, e, f) is a Manin triple and c ⊆ g is coisotropic.

e
f
c

e

f

g c

M = {(c, g , e, f ) ∈ C⊥ ×C G × E × F such that cgef −1g−1 = id}

This is the symplectic groupoid for the Lu-Yakimov Poisson
structure on G/C .



Symplectic groupoid for Lu-Yakimov Poisson structures

Suppose (g, e, f) is a Manin triple and c ⊆ g is coisotropic.

e
f
c

e

f

g c

M = {(c, g , e, f ) ∈ C⊥ ×C G × E × F such that cgef −1g−1 = id}

This is the symplectic groupoid for the Lu-Yakimov Poisson
structure on G/C .



Introduction
Moduli space of flat connections

Towards a finite dimensional construction
Flat connections on the 1-simplex
Flat connections on the 2-simplex
Main Theorem

Examples
Coloring Edges
Domain Walls
Coloring n-edges

Poisson Structures on Moduli spaces



Domain Walls

Let (gi , 〈·, ·〉i ) be two quadratic Lie algebras. Suppose that
c ⊆ g2 ⊕ ḡ1 is a coisotropic subalgebra.

g1

g2

l := {(ξ′, ξ), (η′, η) ∈ c and (ξ′, ξ)− (η′, η) ∈ c⊥}

I g1 = g2, and c = {(ξ, ξ)} ⇔ sewing the edges together.

I g2 = 0, c ⊆ g1 ⇔ coloring the first edge.
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Colored surfaces with domains

g1

g2

g3

c1,2 ⊂ g1 ⊕ ḡ2

c2,3 ⊂ g2 ⊕ ḡ3

c2 ⊂ g2

c1 ⊂ g1



Example (Philip Boalch)

Suppose g = u− ⊕ u+ ⊕ h as a vector space, where
p± := u± ⊕ h ⊆ g is a coisotropic subalgebra with p⊥± = u±.

g

h

l± := {(ξ + µ, ξ), (η + υ, η) ∈ h⊕ g | µ, υ ∈ u±}



Example (Philip Boalch)

Suppose g = u− ⊕ u+ ⊕ h as a vector space, where
p± := u± ⊕ h ⊆ g is a coisotropic subalgebra with p⊥± = u±.

µ+ ξ � G 	 η + υ

ξ � H 	 η

l± := {(ξ + µ, ξ), (η + υ, η) ∈ h⊕ g | µ, υ ∈ u±}



Example (Philip Boalch)

l+
l−h

g

This moduli space is Philip Boalch’s fission space

HAr
G := G × (U+ × U−)r × H,

(for r = 3).
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Coloring n edges

Suppose c ⊆ ⊕n
i=1gi is coisotropic.

g2

g1

g3

c

l =
{(

(ξ1, η1); . . . ; (ξn, ηn)
)
∈

n⊕
i=1

ḡi ⊕ gi |

(ξ1, . . . , ξn), (η1, . . . , ηn) ∈ c and (ξ1 − η1, . . . , ξn − ηn) ∈ c⊥
}



branched surfaces and quasi-triangular structures

==

cc

c

Then c defines an (associative) multiplication ◦ : g× g 99K g:

c = {(ξ, ξ′, ξ′′) | ξ ◦ ξ′ ◦ ξ′′ = id} ⊆ g⊕ g⊕ g

i.e. g⇒ k is a Lie groupoid.

Lemma (Drinfel’d)

Suppose k is a Lie algebra, elements s ∈ S2(k)k are in one-to-one
correspondence with quadratic Lie algebras (g, 〈·, ·〉) such that
g⇒ k is a Lie groupoid. (g, 〈·, ·〉) is called the double of (k, s).
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Branched surfaces
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Poisson Structures

Suppose k is a Lie algebra and s ∈ S2(k)k is non-degenerate.

Σ =

The moduli space, M(Σ), of flat k connections over Σ carries a
symplectic structure.



Poisson Structures

Suppose k is a Lie algebra and s ∈ S2(k)k is possibly degenerate.

Σ =

The moduli space, M(Σ), of flat k connections over Σ carries a
Poisson structure.



Idea

I Recall the Drinfel’d double, (g, 〈·, ·〉), of (k, s).

I g acts on K . Model M([0, 1]) by the Courant Algebroid

K

g

I Moment map:
k 1

k
2

(k1k2)−1

K

K

K

hol

M(∆) K 3

I Construct Poisson structure on M(Σ) using Dirac reduction.
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Idea

I Recall the Drinfel’d double, (g, 〈·, ·〉), of (k, s).

I g acts on K . Model M([0, 1]) by the Courant Algebroid

K

g

I Moment map:
k 1

k
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(k1k2)−1

K

K

K

hol

M(∆) K 3

I Construct Poisson structure on M(Σ) using Dirac reduction.



Colored surfaces with domains

k1

k2

k3

c1,2 ⊂ k1 ⊕ k̄2

c2,3 ⊂ k2 ⊕ k̄3

c2 ⊂ k2

c1 ⊂ k1

Get Poisson structure.
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