Status of TM6

Philippe Le Sager, KNMI

2013-04-25

Outline

Context

Previously in TM6

TM6 Status & Perf

Outline

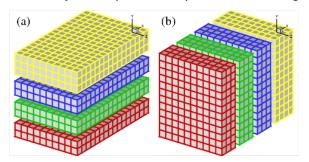
Context

Previously in TM6

TM6 Status & Perf

Performance issue

speed


- ▶ fast as standalone, but slow for CGCM (EC-Earth)
 - decade/day wanted
 - ▶ BUT max nb processors = nb Tracers (27, 1,..)

resolution

- high resolution
 - very demanding in memory (10 Gb/proc @ 1x1)

Basic idea of MPI: domain decomposition

Arrays are split across processors, along any dimension.

► TM5 **4D MASS** arrays are distributed along either LEVELS or TRACERS.

The bottleneck

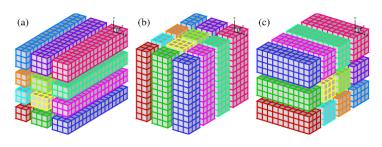
meteo fields are NOT distributed... but COPIED !!!!

- every 3h => FREQUENT communication
- ▶ 50+ met fields
 - ▶ **HUGE** memory requirement
 - ► **HEAVY** communication

MPI profiling

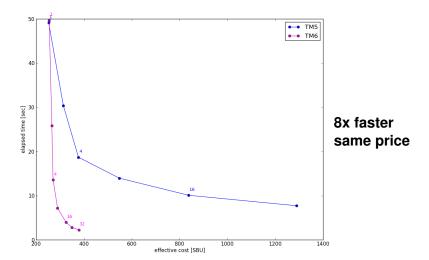
TM5-chem v3, 2-days run, 4 MPI tasks

	% of elapsed time
switching decomposition	3 %
broadcasting meteo	50 %
other MPI comm	2 %
total MPI comm	55 %


Outline

Context

Previously in TM6


TM6 Status & Perf

Revised domain decomposition = (b)

	TM5	TM6
max #processor	27	30x22 = 660 (@6x4)
		$60x45 = 2700 \ (@3x2)$
		180*90=16200 (@1x1)
meteo communication	broadcast	scatter

Performance TM-chemistry

Context

Context Previously in TM6 TM6 Status & Perf Extra

ToDo list as of last Crete meeting

To test/fix

- ▶ M7, online dust & outputs: mix, station, planeflight
- debug: "1x8" case, "-gflttrap=enable:inv" required (EBI)

To code & test

- chunk reading of meteo in netCDF-4
- aerocom & time-series outputs
- EC-Earth proj
- updated chem emissions (Edgar 4.2 + GFED3)

Missing features

reduced grid; zoom regions

Context

Previously in TM6

TM6 Status & Perf

Porting to ECMWF/c2a (IBM/AIX power7)

Fixed:

- Pure MPI-2 :
 - ▶ MPI GET EXTENT -> MPI TYPE GET EXTENT
 - MPI_TYPE_HVECTOR -> MPI_TYPE_CREATE_HVECTOR
- libs
- totalview requires ssh

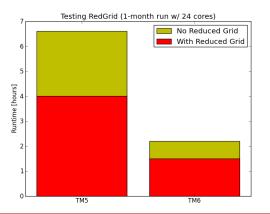
but still issues

- unexplained frozen runs
- ▶ M7 : crashes w/ 5+ cpus, sedimentation bug

Context Previously in TM6 TM6 Status & Perf Extra

Reduced grid - implementation

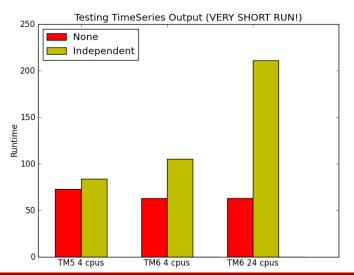
first question at every talk!

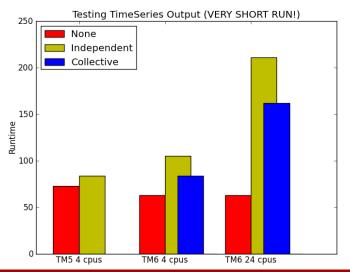

implement case of 'no decomposition along longitudes'

TM5	TM6	TM6 w/ redgrid	NP	
27	660 (@6x4) 2700 (@3x2)	22 (@6x4) 45 (@3x2)	φ† EQ	
	16200 (@1x1)	90 (@1x1)		

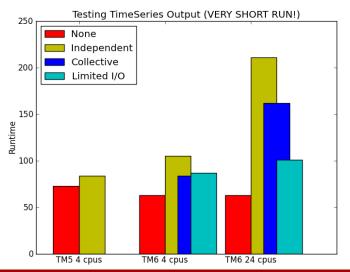
Max #processors

Reduced grid // 1-month runs // chemistry w/o M7

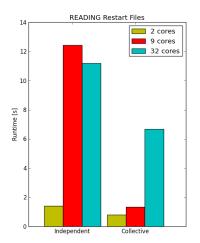

- 3x2 w/ reduced grid
 - ▶ 7 bands (90-74) at each pole
 - merging [40, 8, 8, 4, 4, 4, 2] cells


- ► TM5 —> TM6 : 60-70 % speed-up
- Reduced grid: 30-40 % speed-up

(former RETRO output)

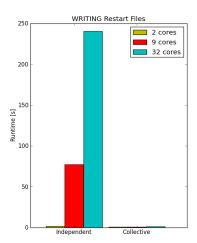

- ► TM5
 - pnetcdf -> netcdf4 (MDF)
 - ▶ INDEPENDENT access mode <= unlimited dimensions
- ► TM6
 - case 1: stick to INDEPENDENT
 - case 2: switch to COLLECTIVE access mode
 - case 3: write once a day (not every time step!)

Context


Context

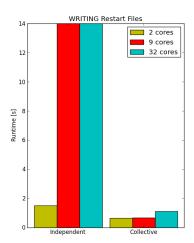
Context

Context Previously in TM6 TM6 Status & Perf Extra


The I/O experiment (2) - Does netCDF4 w/ parallel I/O scale?

READING restart

- collective faster than independent (1.5-9x)
- time increases w/ nb cores
 - impact for meteo (must account for the scatter time saved)


The I/O experiment (2) - Does netCDF4 w/ parallel I/O scale?

WRITING restart

collective really faster (2.3-110x)

The I/O experiment (2) - Does netCDF4 w/ parallel I/O scale?

WRITING restart

- collective really faster (2.3-110x)
- writing time : no increase with nb cores

I/O next steps - Optimize

- Time-Series Output
 - ► test w/ longer runs
 - one file /month & /tracer instead of /day & all tracers?
 - quilting : asynchronized I/O for MPI (eg, WRF)?
 - ▶ file splitting?
- Read/Write restart
 - file splitting
 - quilting
- Meteo Input
 - switch to parallel reading

"As-fast-as-you-can" experiment @1x1

one node (50 Gb, 32 procs max), one day sim, no reduced grid

Model	Regions	Resources	Runtime	Cost (SBU)
TM6	global 1x1	32 procs	1h 4mn	643
TM5	global 1x1	6 procs	11h 25mn	6850
TM5	global 3x2	broken	-	
	+ euro 1x1			

- zooming broken in TM5 in 3 places:
 - when nudging of CH4 emissions
 - in photolysis
 - latitudinal decomposition
 - solar zenith angle

"As-fast-as-you-can" experiment @1x1

one node (50 Gb, 32 procs max), one day sim, no reduced grid

Model	Regions	Resources	Runtime	Cost (SBU)
TM6	global 1x1	32 procs	1h 4mn	643
TM5	global 1x1	6 procs	11h 25mn	6850
TM5	global 3x2	broken	-	
	+ euro 1x1			

SUCCESS!

- ▶ 10.6 x cheaper
- ▶ 10.6 x faster!
- ▶ 90.6% speedup

NEXT

- ► fix M7
- couple to EC-Earth
- optimize reduced grid
- optimize time-series
- read netCFD meteo in parallel

Outline

Context

Previously in TM6

TM6 Status & Perf

Reduced grid - 1-month runs by numbers

- Chemistry w/o M7
 - optimized (-O3 -qstrict)
 - full chemistry (but w/o m7)
 - w/o time-series output
 - 3x2 w/ reduced grid:
 - ▶ 7 bands (90-74) at each pole
 - merging [40, 8, 8, 4, 4, 4, 2] cells

	w/o redgrid	w/ redgrid	speed-up
TM5	23799	14422	39%
TM6	7909	5401	32%
sneed-un	67%	63%	77%

The I/O experiment (2) - by numbers

Reading restart

	8x4 cpus	3x3 cpus	2x1 cpus
coll.	6.35	1.70	0.84
	7.00	0.99	0.75
ind.	10.99	12.30	1.33
	11.40	12.57	1.51

Writing restart

	8x4 cpus	3x3 cpus	2x1 cpus
coll.	1.01	0.75	0.64
	1.23	0.59	0.65
ind.	237.19	73.28	1.51
	243.57	81.26	1.50