

Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

CLIMATE CHANGE IMPACTS ON ATMOSPHERIC CHEMISTRY IN EC-EARTH DRIVEN SIMULATIONS

Twan van Noije, Achim Strunk, Philippe Le Sager

TM meeting, Wageningen, 23-24 April 2013

EC-EARTH components

IFS to TM5	TM5 to IFS
Wind divergence/vorticity	Ozone concentration
Temperature	Methane concentration
Specific humidity	Aerosol number concentrations (per mode)
Cloud liquid/ice water content	Aerosol component mass concentrations (per mode)
(Overhead/Underfeet) Cloud fraction	Aerosol extinction (per wavelength)
Up-/downdraft convective air mass flux	Aerosol single-scattering albedo (per wavelength)
Up-/downdraft detrainment rate	Aerosol asymmetry parameter (per wavelength)
Surface pressure	
10-m u/v wind	
2-m (dewpoint) temperature	
Surface E-W/N-S momentum stress	
Surface sensible/latent heat flux	
Surface solar radiation	
Stratiform precipitation as rain	
Convective precipitation as rain	
Skin reservoir water content	
Snow depth	
Soil wetness in top soil layer	
Low/high vegetation cover fractions	
Vegetation type fractions	
Surface roughness	
Sea-ice fraction	

Simulation of near-term climate change effects (~25 years)

- Decadal simulations (CBM4+M7)
- Offline meteorology:

>EC-Earth output for 2000-2009 resp. 2026-2035 (RCP4.5)

- Online emissions: SS, oceanic DMS, LNOx
- Other emissions prescribed for 2000-2009:

>Anthropogenic and biomass burning: CMIP5/ACCMIP (RCP4.5)

Biogenic and other oceanic: MACC (MEGAN/POET)

≻Dust: AeroCom

• 3x2 degrees, 31/62 levels

In our TM5 simulations LNOx decreases by 7.0%

(from 6.7 \pm 0.15 Tg N/yr to 6.2 \pm 0.23 Tg N/yr) in contrast with the expectation that the flash rate will increase due to global warming (e.g. Price and Rind, 1994)

Oxidizing capacity

 CH_4 tropospheric lifetime reduced by 1.8% or 3.2%/K

Comparison with other models

Model	CH ₄ tropospheric lifetime decrease per degree global warming (%/K)
CESM-CAM-superfast	3.5
GFDL-AM3	3.4
GISS-E2-R	1.1
MIROC-CHEM	4.1
MOCAGE	3.0
NCAR-CAM3.5	4.3
STOC-HadAM3	2.4
UM-CAM	4.1
ACCMIP Mean	3.2 ± 1.1
MAGICC6	3.16 (assumed)
ТМ5	3.17

Negative climate feedback

Atmospheric CH_4 lifetime reduced by 1.8% or 3.1%/K

- \rightarrow RF reduction of 27 mW/m²/K
- \rightarrow Climate feedback parameter: g \approx -3.1%

(climate sensitivity: 0.8 K/(W/m²), efficacy: 145% [Hansen et al., 2005])

Burden reduction of 3.1%/K \rightarrow RF reduction of roughly 0.020 W/m²/K

 \rightarrow Negative climate feedback parameter: g \approx -1.3%

```
(efficacy: 82% [Hansen et al., 2005])
```

NB: fixed BVOC emissions, CH4 concentration

LNOx bug

"As the mixed phase region within the cold cloud sector expands as a cloud develops, the probability of dielectric breakdown increases due to increases in the electric field strength. This results in an increase in intracloud lightning discharges, or a decrease in the **fraction of cloud-to-ground discharges** in the thunderstorm." (Price and Rind, 1994)

$$P_{CG} = \frac{1}{aD^4 + bD^3 + cD^2 + dD + e} \quad (D \ge 5.5 \text{ km})$$

GC/IC ratio for NOx production per flash was 10:1

Set to 1:1 in new version

(Ridley et al., 2005; Ott et al., 2010)

Conclusions

- TM5 is part of EC-Earth release v2.4
- Now also possible to drive TM5 by offline EC-Earth output
- Decadal simulations of near-term climate change effects show negative climate feedbacks via CH_4 and O_3
- However, O₃ response incomplete (fixed BVOCs)
- Lightning NOx response probably in wrong direction (due to bug)

Emission	ERA-I 2000-2009	EC-Earth 2000-2009	EC-Earth 2026-2035	Significance Level
SS (Tg/yr)	6828 ± 86	7005 ± 106	7083 ± 96 (+1.1%)	90% (not significant)
DMS (Tg/yr)	37.1 ± 0.6	36.8 ± 0.4	37.4 ± 0.2 (+1.5%)	99.6%
LNOx (Tg N/yr)	5.82 ± 0.21	6.66 ± 0.15	6.19 ± 0.23 (-7.0%)	>99.99%

Other aerosol components show relatively smaller changes

(with prescribed SOA formation and dust emissions)