
Royal Netherlands Meteorological Institute Ministry of Infrastructure and the Environment

# AEROSOL SENSITIVITY SIMULATIONS IN RELATION TO WET SCAVENGING, EMISSIONS AND TREATMENT OF NITRATE

Twan van Noije (KNMI)

TM5 meeting, Utrecht, 19-20 January 2015

# TM5/M7 AOD (2006)

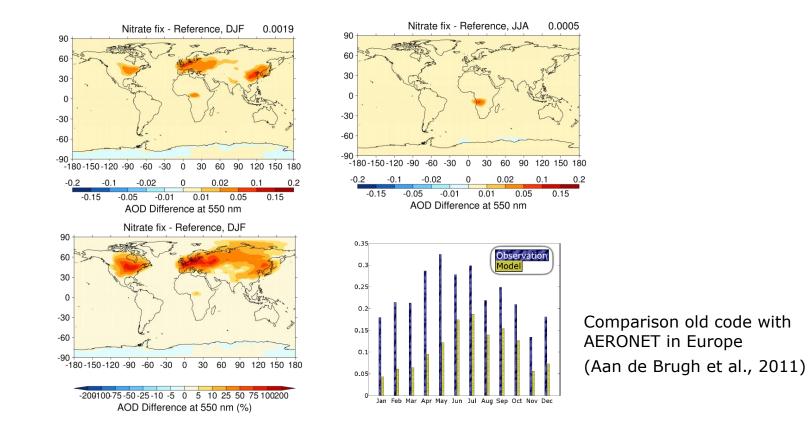


### **Budget** analysis

|                                          | EC-Earth              | ERA-Interim           | Other studies            |
|------------------------------------------|-----------------------|-----------------------|--------------------------|
| Sulfate                                  |                       |                       |                          |
| Burden (Tg S)                            | 0.522                 | 0.498                 | $0.67 \pm 0.17^{d}$      |
| Lifetime (days)                          | 4.93                  | 4.73                  | $5.0 \pm 2.0^{d}$        |
|                                          |                       |                       | $4.1 \pm 0.7^{e}$        |
| Dry deposition rate $(day^{-1})$         | $4.68 \times 10^{-3}$ | $4.57 \times 10^{-3}$ | $0.03 \pm 0.02^{e}$      |
| Wet deposition rate $(day^{-1})$         | 0.198                 | 0.207                 | $0.22 \pm 0.05^{e}$      |
| Optical depth                            | $2.13 	imes 10^{-2}$  | $2.08 \times 10^{-2}$ | 0.044 <sup>f</sup>       |
| Black carbon                             |                       |                       |                          |
| Emissions (Tg year <sup>-1</sup> )       | 7.                    |                       |                          |
| Burden (Tg)                              | 0.145                 | 0.149                 | $0.16 \pm 0.07^{d}$      |
| Lifetime (days)                          | 6.81                  | 6.99                  | 7.4±3.4 <sup>d</sup>     |
|                                          |                       |                       | $7.1 \pm 2.3^{e}$        |
| Dry deposition rate (day <sup>-1</sup> ) | $6.17 \times 10^{-3}$ | $5.65 \times 10^{-3}$ | $0.03 \pm 0.02^{e}$      |
| Wet deposition rate $(day^{-1})$         | 0.141                 | 0.137                 | $0.12 \pm 0.04^{e}$      |
| Optical depth                            | $1.11 	imes 10^{-3}$  | $1.15 \times 10^{-3}$ | 0.0085 <sup>f</sup>      |
| Organic aerosols                         |                       |                       |                          |
| Emissions (Tg year <sup>-1</sup> )       | 69                    |                       |                          |
| Burden (Tg)                              | 1.18                  | 1.16                  | $1.6 \pm 0.8^{g}$        |
| Lifetime (days)                          | 6.18                  | 6.08                  | $5.7 \pm 1.6^{g}$        |
| Dry deposition rate $(day^{-1})$         | $5.23 \times 10^{-3}$ | $4.69 \times 10^{-3}$ | $0.029 \pm 0.046^{g}$    |
| Wet deposition rate $(day^{-1})$         | 0.157                 | 0.160                 | $0.16\pm0.04^{\text{g}}$ |
| Optical depth                            | $9.28 	imes 10^{-3}$  | $9.29 \times 10^{-3}$ | 0.024 <sup>f</sup>       |
| Nitrate                                  |                       |                       |                          |
| Burden (Tg N)                            | $2.29\times10^{-2}$   | $1.27\times 10^{-2}$  | $0.1\pm0.0^{\rm h}$      |
| Optical depth                            | $6.82 	imes 10^{-4}$  | $3.99 \times 10^{-4}$ | $0.007 \pm 0.001^{h}$    |

|                                          | EC-Earth                 | ERA-Interim              | Other studies         |
|------------------------------------------|--------------------------|--------------------------|-----------------------|
| Sea salt                                 |                          |                          |                       |
| Emissions (Pg year <sup>-1</sup> )       | $7.35\pm0.11^{\text{c}}$ | $6.83\pm0.09^{\text{c}}$ | $8.2\pm8.2^{i}$       |
|                                          |                          |                          | $16.6 \pm 33.0^{e}$   |
| Burden (Tg)                              | 6.81                     | 6.17                     | $7.9 \pm 5.5^{1}$     |
|                                          |                          |                          | $7.5 \pm 4.1^{e}$     |
| Lifetime (days)                          | 0.338                    | 0.330                    | $0.48 \pm 0.28^{e}$   |
| Dry deposition rate (day <sup>-1</sup> ) | 2.42                     | 2.40                     | $4.3 \pm 9.4^{e}$     |
| Wet deposition rate (day <sup>-1</sup> ) | 0.538                    | 0.630                    | $0.79 \pm 0.61^{e}$   |
| Optical depth                            | $2.66\times10^{-2}$      | $2.35\times10^{-2}$      | $0.055 \pm 0.016^{j}$ |
| Mineral dust                             |                          |                          |                       |
| Emissions (Pg year <sup>-1</sup> )       | 1.                       | 1.78                     |                       |
| Burden (Tg)                              | 12.1                     | 13.4                     | $19.2 \pm 7.7^{e}$    |
| Lifetime (days)                          | 2.48                     | 2.75                     | $4.1 \pm 1.8^{e}$     |
| Dry deposition rate (day <sup>-1</sup> ) | 0.311                    | 0.287                    | $0.23 \pm 0.19^{e}$   |
| Wet deposition rate (day <sup>-1</sup> ) | $9.20 \times 10^{-2}$    | $7.60 \times 10^{-2}$    | $0.08 \pm 0.03^{e}$   |
| Optical depth                            | $1.55\times10^{-2}$      | $1.71\times10^{-2}$      | $0.043\pm0.014^{j}$   |

<sup>a</sup> Includes 0.12 Tg S year<sup>-1</sup> from volcanoes. <sup>b</sup> Includes 19.1 Tg year<sup>-1</sup> representing SOA (see Sect. 2.2.5).
<sup>c</sup> Standard deviations calculated from the simulated interannual variability. <sup>d</sup> ACCMIP multi-model means and standard deviations for the year 2000 from Shindell et al. (2013). <sup>e</sup> AeroCom phase-I multi-model means and standard deviations from Textor et al. (2006). <sup>f</sup> MACC reanalysis (Benedetti et al., 2009) results for the year 2003 as provided on the AeroCom phase-II web interface (http://aerocom.met.no/cgi-bin/aerocom/surfobs\_annualrs.pl; simulation labelled "ECMWF\_FBOV"). <sup>g</sup> AeroCom phase-II multi-model means and standard deviations form Tsigaridis et al. (2014). <sup>h</sup> Results for 1998–2002 from a CMIP's simulation with the Hadley Centre climate model HadGEM2-ES by Bellouin et al. (2011). <sup>i</sup> AeroCom phase-I multi-model means and standard deviations from Textor et al. (2007), based on a selection of seven models from Textor et al. (2006). <sup>j</sup> MACC reanalysis results with uncertainty estimates from Bellouin et al. (2013).


Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth Van Noije et al., GMD, 2014

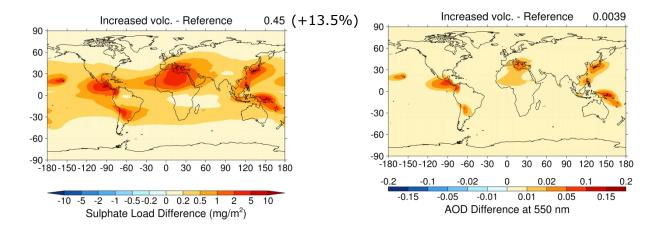
# Sensitivity studies

- Treatment of nitrate aerosol
- Volcanic sulfur emissions
- Online mineral dust emissions
- Wet scavenging:
  - Scavenging coefficients
  - Sub-grid mixing (large-scale clouds and precipitation)

### Treatment of nitrate aerosol

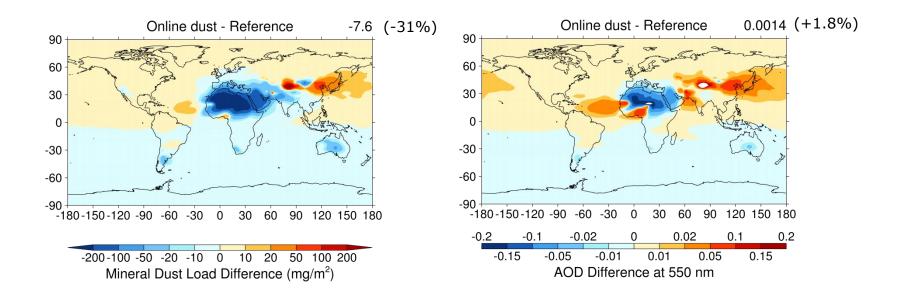
- Nitrate described as bulk aerosol (EQSAM)
- Assumption in (M7 based) Mie calculations: formed by condensation onto exisiting particles in soluble accumulation mode
- Previously, only included in refractive index of the mixture
- Particle growth due to nitrate mass and associated water uptake was missing!
- Agreement with Mie calculations by C. Lacagnina and O. Hasekamp (SRON)




## Volcanic sulfur emissions

|                                               | EC-Earth       | ERA-Interim        | ACCMIP            |
|-----------------------------------------------|----------------|--------------------|-------------------|
| DMS                                           |                |                    |                   |
| Emissions (Tg S year <sup>-1</sup> )          | $19.4\pm0.2^*$ | $19.1 \pm 0.3^{*}$ | $23\pm5$          |
| so <sub>2</sub>                               |                |                    |                   |
| Total emissions (Tg S year-1)                 | 57.2<br>4.67   |                    | 65±2              |
| Volcanic emissions (Tg S year <sup>-1</sup> ) |                |                    | $\sim$ 12 $\pm$ 2 |
| Total reactive sulfur                         |                |                    |                   |
| Emissions (Tg S year <sup>-1</sup> )          | 78.1           | 77.8               | $89\pm6$          |
| Dry deposition (Tg S year $^{-1}$ )           | 27.0           | 27.2               | $37\pm10$         |
| Wet deposition (Tg S year <sup>-1</sup> )     | 51.1           | 50.7               | $52\pm8$          |

Van Noije et al., 2014


Volcanic emissions (from MACC) scaled up to 15.6 Tg S/yr:

10 Tg S/yr SO<sub>2</sub> (Halmer et al., 2002); SO<sub>2</sub> fraction of 64% (Andres and Kasgnoc, 1998)



### Online mineral dust emissions

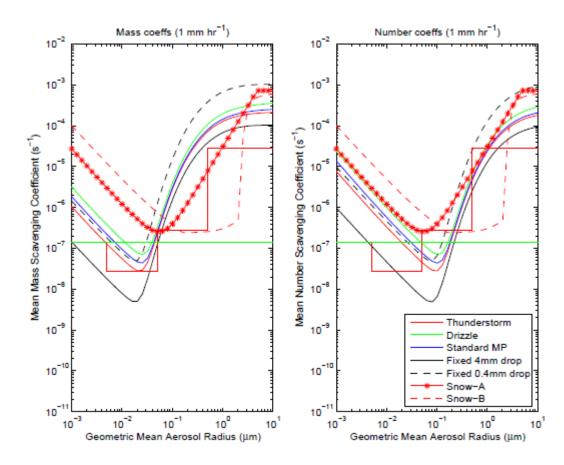
Global emissions reduced from 1776 to 985 Tg/yr (-45%)



# Scavenging coefficients (1)

- Coefficients for scavenging in convective systems and large-scale clouds (account for both nucleation and impaction by precipitation)
- Updated to values assumed in ECHAM

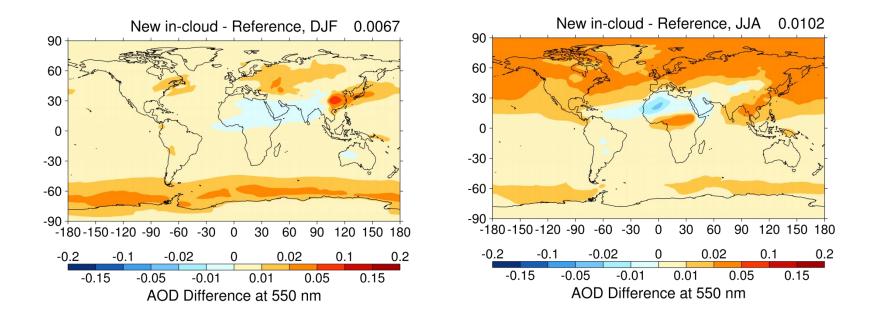
| Mode                   | <b>Stratifo</b><br>Liquid ( |     | Stratiform<br>Mixed Clouds | Stratiform<br>Ice clouds | <b>Conv</b><br>Mixed | e <b>ctive</b><br>l Clouds |
|------------------------|-----------------------------|-----|----------------------------|--------------------------|----------------------|----------------------------|
| Nucleation Soluble     | 0.06                        | 0.0 | 0.06                       | 0.06                     | 0.20                 | 1.0                        |
| Aitken Soluble         | 0.25                        | 0.0 | 0.06                       | 0.06                     | 0.60                 | 1.0                        |
| Accumulation Soluble   | 0.85                        | 1.0 | 0.06                       | 0.06                     | 0.99                 | 1.0                        |
| Coarse Soluble         | 0.99                        | 1.0 | 0.75                       | 0.06                     | 0.99                 | 1.0                        |
| Aitken Insoluble       | 0.20                        | 0.0 | 0.06                       | 0.06                     | 0.20                 | 1.0                        |
| Accumulation Insoluble | 0.40                        | 0.0 | 0.06                       | 0.06                     | 0.40                 | 1.0                        |
| Coarse Insoluble       | 0.40                        | 0.0 | 0.40                       | 0.06                     | 0.40                 | 1.0                        |


#### Base code

Stier et al., ACP, 2005

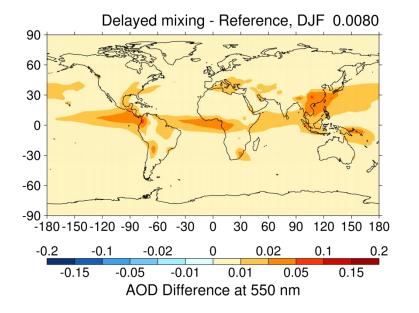
Bourgeois and Bey, JGR, 2011

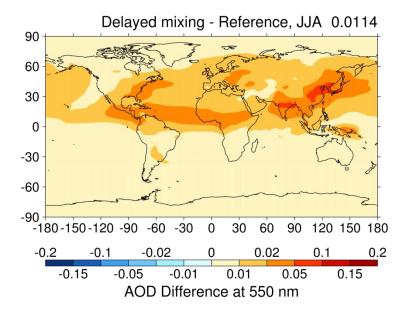
# Scavenging coefficients (2)


- Coefficients for below-cloud impaction scavenging by large-scale precipitation
- For mass and number concentrations per mode, based on Croft et al. (ACP, 2009)



# Scavenging coefficients (3)


Impact on annual/global mean AOD:


- Convective: +0.0014
- Large-scale in/below clouds: +0.0082 / +0.0016



# Sub-grid mixing (large-scale scavenging)

- Sub-grid mixing between air in/below precipitating clouds and free air is suppressed using a mixing time scale (thereafter 100% mixing)
- Increased from 3 to 6 h: +0.01 in annual mean AOD





# **Combined** effect

Annual/global mean AOD increased from 0.072 tot 0.099 (+38%)

0.0795

60 90 120 150 180

0.1126

90 120 150 180

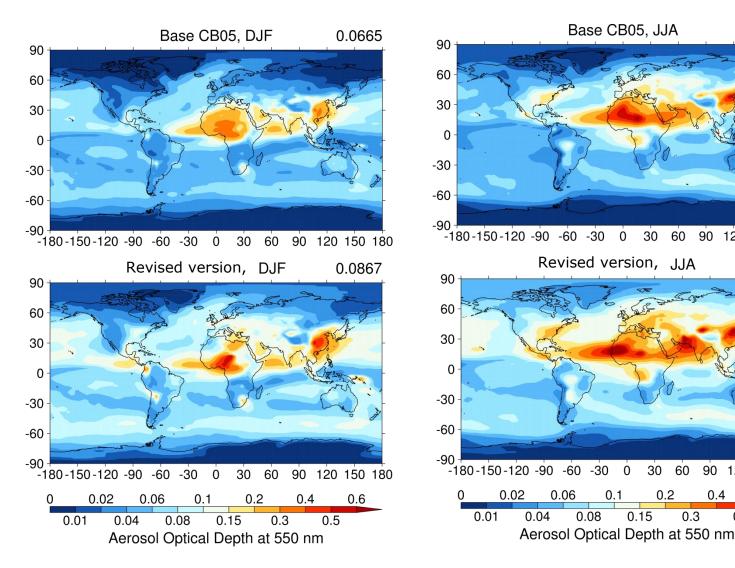
0.5

0.6

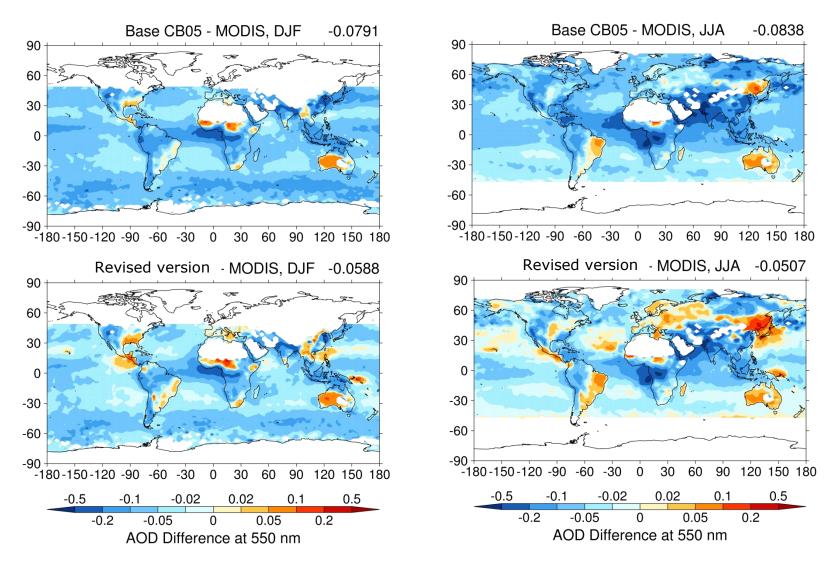
0.4

AL SEE

30


all all and

30 60


0.15

0.2

0.3



# **Comparison with MODIS**



Note: stratospheric AOD (~0.01-0.02) not included in model

### Comparison with MACC reanalysis

| Component       | Base version | Revised version | MACC          |
|-----------------|--------------|-----------------|---------------|
| Sulphate        | 0.0227       | 0.0379          | 0.044         |
| Black Carbon    | 0.0012       | 0.0017          | 0.0085        |
| Organic Aerosol | 0.0088       | 0.0128          | 0.024         |
| Nitrate         | 0.0004       | 0.0006          | 0.007 ± 0.001 |
| Sea salt        | 0.0227       | 0.0287          | 0.055 ± 0.016 |
| Mineral Dust    | 0.0159       | 0.0175          | 0.043 ± 0.014 |

### Recommendations

- Review amounts and size distributions of natural emissions (mineral dust, sea salt, DMS)
- □ Include look-up tables for large-scale below-cloud scavening
- Test calculating below-cloud precipitating fraction as in ECHAM (Croft et al., 2009)
- □ Test further reduction of sub-grid mixing (e.g. 24-h time scale)
- $\Box$  Analyse resolution dependence (compare against  $1^{\circ} \times 1^{\circ}$  simulation)
- Review assumed particle densities
- □ Increase emissions of black carbon (Bond et al., 2013)
- ....
- □ More detailed evaluation, e.g. using AERONET measurements