Effects of Biomass Burning Emission Factors on CO modeling

Thijs van Leeuwen Guido van der Werf Wouter Peters Maarten Krol

TM meeting - Wageningen

May 13, 2014

Global fire modeling

Role of fires in <u>atmospheric chemistry</u>:

- One of the major sources of trace gases and aerosols
- Contribution to interannual variability (IAV) in growth rates of many trace gases

Role of fires in <u>global mortality</u>:

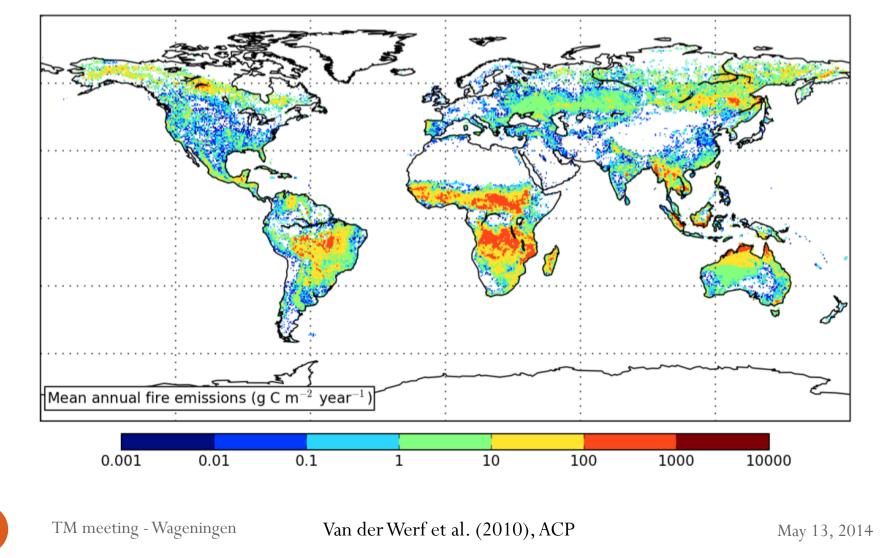
• Influencing human health (reduced air quality)

Global fire modeling

Role of fires in <u>atmospheric chemistry</u>:

- One of the major sources of trace gases and aerosols
- Contribution to interannual variability (IAV) in growth rates of many trace gases

Role of fires in <u>global mortality</u>:

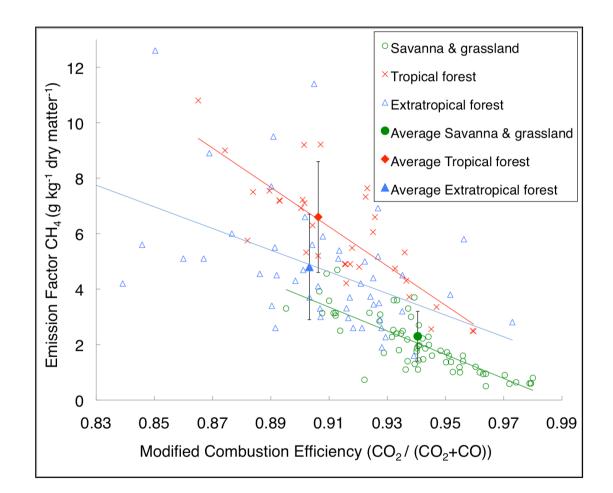

• Influencing human health (reduced air quality)

GFED fire emissions

burned area × fuel load × combustion completeness × emission factor

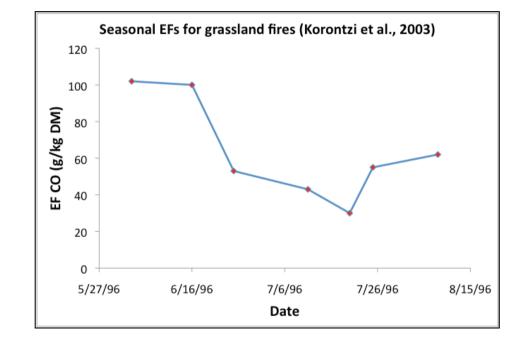
Integrated over time and space of interest

GFED fire emissions

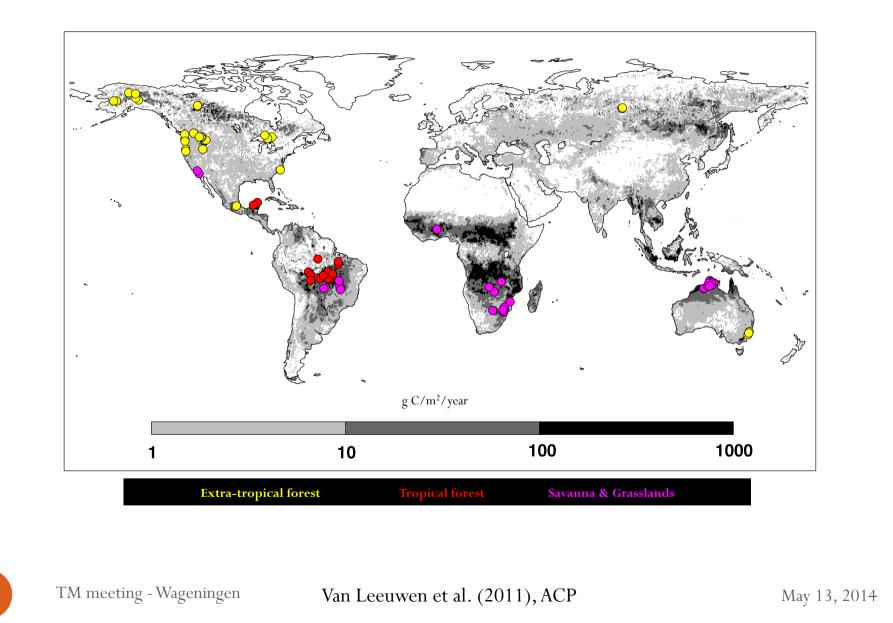

burned area × fuel load × combustion completeness × emission factor

	Deforestation ¹	Savanna and Grassland ¹	Woodland ²	Extratropical forest ¹	Agricultural waste burning ¹	Peat fires ³
Carbon ⁴	489	476	483	476	440	563
CO_2	1626	1646	1636	1572	1452	1703
CO	101	61	81	106	94	210
CH_4	6.6	2.2	4.4	4.8	8.8	20.8
NMHC	7.00	3.41	5.21	5.69	11.19	7.00
H_2	3.50	0.98	2.24	1.78	2.70	3.50
NO _x	2.26	2.12	2.19	3.41	2.29	2.26
N_2O	0.20	0.21	0.21	0.26	0.10	0.20
$\overline{PM}_{2.5}$	9.05	4.94	7.00	12.84	8.25	9.05
TPM	11.8	8.5	10.2	17.6	12.4	11.8
TC	6.00	3.71	4.86	8.28	6.19	6.00
OC	4.30	3.21	3.76	9.14	3.71	4.30
BC	0.57	0.46	0.52	0.56	0.48	0.57
SO ₂	0.71	0.37	0.54	1.00	0.40	0.71

Integrated over time and space of interest


Most global emissions assessments rely on static and biome-averaged EFs from the compilation of Andreae and Merlet (2001), including annual updates

Large natural variability in EFs measured


Van Leeuwen et al. (2011), ACP

Large natural variability in EFs measured

7

EF measurement representativeness

8

New EF scenarios for CASA-GFED

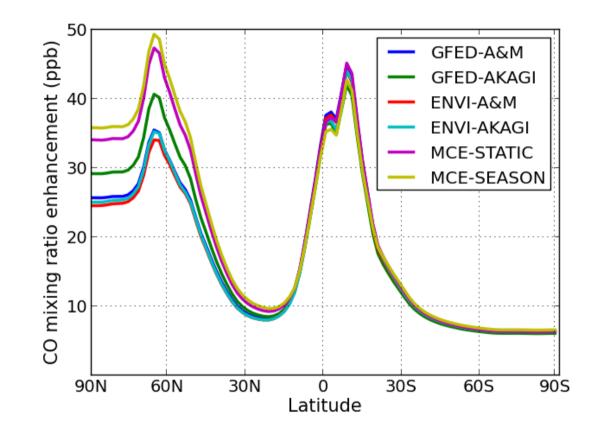
	EF Scenario	EF dataset	Temporal variability	Spatial mapping	Additional information
1	GFED-A&M	A&M ^a	No	0.5° 5 biomes	Currently used in GFEDv3
2	GFED-AKAGI	AKAGI ^b	No	0.5° 7 biomes	In addition to GFED-A&M 3 biomes were added: chaparral, temperate and boreal forest
	ENVI-A&M	A&M	Monthly	0.5°	Driven by a suite of environmental parameters (Van Leeuwen et al. (2011))
	ENVI-AKAGI	AKAGI	Monthly	0.5°	Driven by a suite of environmental parameters (Van Leeuwen et al. (2011))
	MCE-STATIC	BOTH ^c	No	0.5° 7 fuel types	Pre-defined MCE ^d in GFED modeling framework
	MCE-SEASON	BOTH	Monthly	0.5° 7 fuel types	Pre-defined MCE in GFED modeling framework

New EF scenarios for CASA-GFED

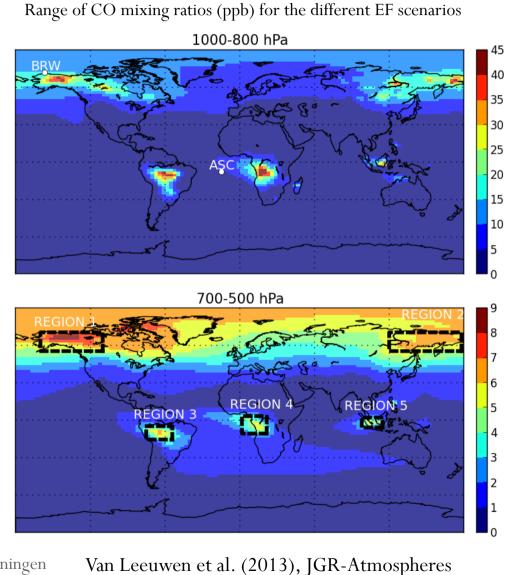
	EF Scenario	EF dataset	Temporal variability	Spatial mapping	Additional information
	GFED-A&M	A&M ^a	No	0.5° 5 biomes	Currently used in GFEDv3
	GFED-AKAGI	AKAGI ^b	No	0.5° 7 biomes	In addition to GFED-A&M 3 biomes were added: chaparral, temperate and boreal forest
3	ENVI-A&M	A&M	Monthly	0.5°	Driven by a suite of environmental parameters (Van Leeuwen et al. (2011))
4	ENVI-AKAGI	AKAGI	Monthly	0.5°	Driven by a suite of environmental parameters (Van Leeuwen et al. (2011))
	MCE-STATIC	BOTH	No	0.5° 7 fuel types	Pre-defined MCE ^d in GFED modeling framework
	MCE-SEASON	вотн	Monthly	0.5° 7 fuel types	Pre-defined MCE in GFED modeling framework

New EF scenarios for CASA-GFED

	EF Scenario	EF dataset	Temporal variability	Spatial mapping	Additional information
	GFED-A&M	A&M ^a	No	0.5° 5 biomes	Currently used in GFEDv3
	GFED-AKAGI	AKAGI ^b	No	0.5° 7 biomes	In addition to GFED-A&M 3 biomes were added: chaparral, temperate and boreal forest
	ENVI-A&M	A&M	Monthly	0.5°	Driven by a suite of environmental parameters (Van Leeuwen et al. (2011))
	ENVI-AKAGI	AKAGI	Monthly	0.5°	Driven by a suite of environmental parameters (Van Leeuwen et al. (2011))
5	MCE-STATIC	BOTH ^c	No	0.5° 7 fuel types	Pre-defined MCE ^d in GFED modeling framework
6	MCE-SEASON	BOTH	Monthly	0.5° 7 fuel types	Pre-defined MCE in GFED modeling framework

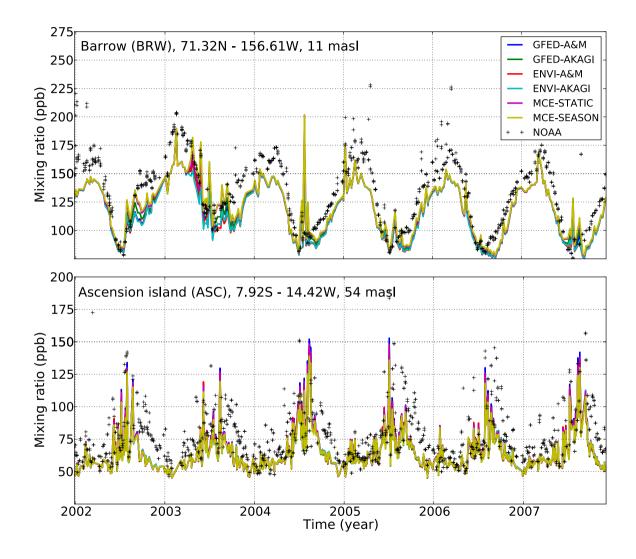

Bottom-up CO emissions Differences (%) in mean annual CO emissions for the different EF scenarios 20, 20_r 20 -20l -20l -20l BOAS BÔNA 20, 20, TENA CEAS -20l MIDE . 20_r -20l SEAS CEAM 20, NHAF NHSA -20l EQAS 20_r -20l 20, SHSA SHAF 20, AUST -20l 20, -20l 20_r 20, 20_r -20l -20l -20l -20t TM meeting - Wageningen Van Leeuwen et al. (2013), JGR-Atmospheres 12 May 13, 2014

TM5 setup


- Same setup as Hooghiemstra et al. (2011; 2012)
- OH based on a rescaling factor of 0.92 (Spivakovsky et al., 2000)
- CO+OH loss rates as in Huijen et al. (2010)
- Removal of CO by dry deposition
- Production of CO from oxidation of NMVOC and CH₄

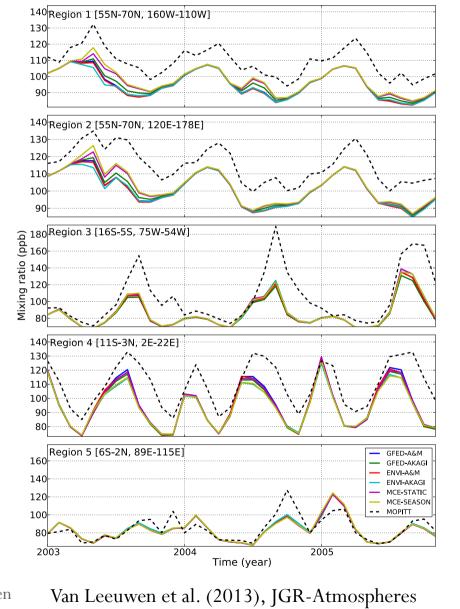
- CO emissions from 4 different categories:
- Anthropogenic (EDGAR 4.1)
- Natural: plants and oceans (Houweling et al., 2008) and NMVOC
- CH_4 mixing ratio field (Bergamaschi et al., 2005)
- Biomass Burning (based on the different EF scenarios)

Impact on atmospheric CO mixing ratios



Impact on atmospheric CO mixing ratios

15


Validation: NOAA stations

TM meeting - Wageningen Van Leeuwen et al. (2013), JGR-Atmospheres

May 13, 2014

Validation: MOPITT CO

Wrapping up

- Dynamic EFs can have a significant impact on fire emissions
- Validation of different EF scenarios was difficult:
- TM error likely to be too large to constrain EFs
- Significant uncertainty within other GFED quantities
- Insufficient overlap between inverse modeling studies (BB CO)

Future Research:

- We need more EF measurements through the season, with a focus on ambient conditions and regions important from a fire perspective
- Focus on higher resolution EF modeling
- Multidisciplinary approach: setup of more biomass burning experiments where emission ratios are simultaneously measured from ground, air, and space