TM6: coupling to EC-Earth and parallel I/O for meteo

Philippe Le Sager, KNMI

2013-11-13

Outline

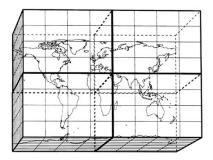
What's TM6

EC-Earth

Parallel I/O

Extra

Outline


What's TM6

EC-Earth

Parallel I/O

Extra

TM6 = a new MPI implementation in TM5

Arrays are split across processors

- TM6 splits tracers & meteo
- TM5 splits tracers
 - but copies <u>entire</u> meteo fields:
 - huge memory
 - heavy communication

Theoretical limits - Max number of processes

TM5	TM6	TM6 w/ reduced grid
5 (base)	2700 (@3x2)	45 (@3x2)
27 (chem) 52 (chem+M7)	16200 (@1x1)	90 (@1x1)

Theoretical limits - Max number of processes

TM5	TM6	TM6 w/ reduced grid
5 (base)	2700 (@3x2)	45 (@3x2)
27 (chem)	16200 (@1x1)	90 (@1x1)
52 (chem+M7)		

but memory at 1x1 for chemistry

- humongous in TM5 => only 3-5 processes
- not an issue in TM6

Since the last meeting...

debug

► fix buggy M7 —> TM6 is 'production ready' for chemistry

feature

couple to EC-Earth

optimization

- optimize reduced grid
- optimize time-series output in chemistry
- read netCFD meteo in parallel

What's TM6	EC-Earth	Parallel I/O	Extra

Outline

What's TM6

EC-Earth

Parallel I/O

Extra

Implementation in EC-Earth

Two steps in EC-Earth 2.4

- replace TM5_v3 with TM5_v4
 - switch to (and update) pycasso
 - update source code
- replace TM5_v4 with its TM6 branch

Implementation in EC-Earth

Two steps in EC-Earth 2.4

- replace TM5_v3 with TM5_v4
 - switch to (and update) pycasso
 - update source code
- replace TM5_v4 with its TM6 branch

Next : EC-Earth 3.0.1

- newer IFS (atmo) and NEMO (ocean) versions
- coupler OASIS is in charge instead of IFS

What's TM6	EC-Earth	Parallel I/O	Extra

Outline

What's TM6

EC-Earth

Parallel I/O

Extra

On coding the parallel reading of meteo

- new SETUP_xyz routines in meteo.F90
- parallel reading (define the tile to read)
- grid_type_II.F90
 - added '==' operator to compare grids
 - added '=' assignment to copy data instead of pointers
 - initialization of TIIGridInfo pointers

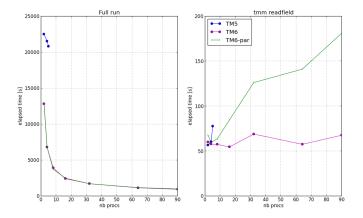
On coding the parallel reading of meteo

- new SETUP_xyz routines in meteo.F90
- parallel reading (define the tile to read)
- grid_type_II.F90
 - added '==' operator to compare grids
 - added '=' assignment to copy data instead of pointers
 - initialization of TIIGridInfo pointers

Limitations

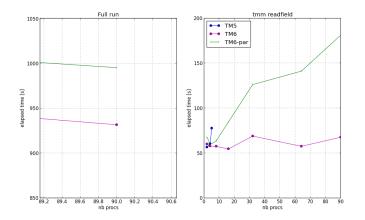
- netCDF4 meteo
- strict F95
- evenly decomposed grid: Nb latitude bands / Nb procs
- meteo grid is one of the model grid

Tests

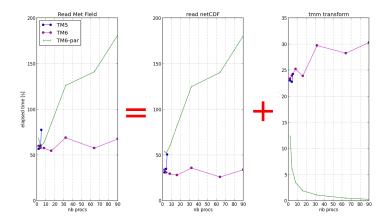

Short runs with Base

- Serial reading is not broken
- serial and parallel i/o give same result, when:
 - Ino transform
 - ▶ ⊠ vertical transform (60 to 34 levels)
 - In horizontal transform

To keep in mind


- reading meteo = read file + remap
- but should add scatter (serial I/O only)

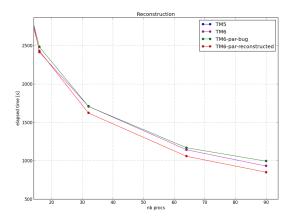
Base @1x1 - one week runs, EI-60 levels, reduced grid


20x faster, but is parallel i/o broken?

Base @1x1 (2) - scattering & reading costs

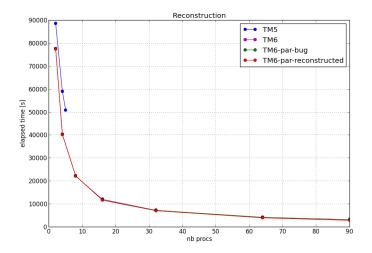
- scattering = ~45s
- reading w/ 90 procs : 12% (serial)

Base @1x1 (3) - reading details

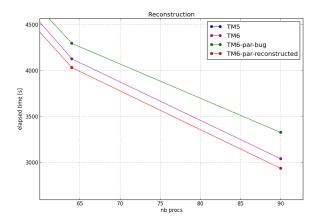

- gain (!!) in transform = ~ 30s
- bug in netcdf implementation

On parallel I/O with netcdf4

from netcdfgroup:


- Parallel I/O is a very complex topic
- I/O scales reasonably linearly for less than about 8 processors,
- after your parallel application is saturating your I/O subsystem, and further I/O performance is marginal.

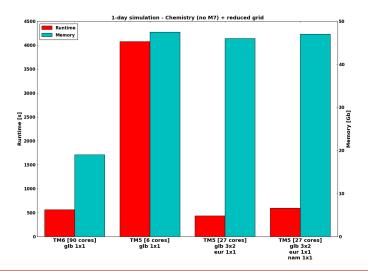
Base @1x1 (4) - Reconstruction



- parallel i/o should save at least 8.5%
- read meteo: from 12% to 4%

Chemistry @1x1 - Overall

Chem @1x1 - Reconstruction zoom



- parallel i/o should save about 3.5%
- read meteo: from >5% to <2%</p>

Summary

- main gain from parallel I/O : no scattering and cheap remap
- the less the number of tracers, the larger the potential gain
- need netcdf 4.1.2 at least, and configured with –enable-parallel-tests

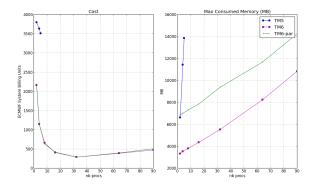
How runs @1x1 compare with runs @3x2?

TM6: coupling to EC-Earth and parallel I/O for meteo

SRON, ITM, 2013-11-13

What's TM6	EC-Earth	Parallel I/O	Extra

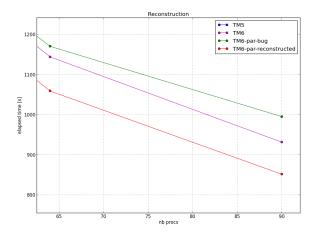
Outline

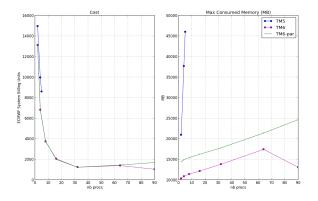

What's TM6

EC-Earth

Parallel I/O

Extra


Base @1x1 - memory and cost


► 7 x cheaper

more memory w/ parallel I/O (little value here)

Base @1x1 - Reconstruction zoom

Chem @1x1 - memory and cost

5-8 x cheaper

more memory w/ parallel I/O (little value here)