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OPTIMIZATION
J(%0) = JP(%x0) + J°(X0)

IP(x0) = (X0 — Xg) "B (%0 — %)

J°(x0) = Z(Y? — H;(x;)) "Ry (y? — Hi(xy))

where, H is an atmospheric transport model sampled according to the measurements y and forced
by the sources and sinks x.

X = [5(002)1 (5(002)2 5(0.[‘[4)1 (S(CH4)2 ]
The state vector x is comprised of the fluxes
(represented by J in the equation) and o [COZ] 1 [002]2
measurements y comprises of the ratio of y — [C’H4] 1 [C’H4]2 ..
measurements of mixing ratio of CO, and CH,.




OPTIMIZATION

The minimization of the cost function involves iteratively calculating the gradient of the cost function
to decide the direction of decent of state vector.

e
=

VI(x0) = 2B ! (%o — xg) — 2> H{ [y? — Hy(

)]

The aim is to minimize the gradient to a desired value,
depending upon efficiency of optimization subroutine g4l

and the complexity of the problem. When working with ? &
satellite data generally the state vector is in order of T
10000. ﬁ

B) ' ' :

We look for gradient minimization of 1000, typically
achieved in 50- 100 iterations. »




TOY MODEL SETUP

Toy Model : Simplifies one dimensional
transport model.

6 grid boxes, one for each climatic zone.

Prior: The emissions and sink from each
zone was taken by integrating the flux
values of a resolution of 1° x 1°over each
zone.

Two tracers CO, and CH, are optimized
simultaneously

Time step: 1 year
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FORWARD TRANSPORT MODEL

The transport model gives the mixing ratio of tracers after i timesteps.

CE=CF+S¥+ Y  a(AC)k

adjacentzones
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OBSERVATION OPERATOR

* Input: state vector containing
concentration of [CO,] and [CH,]

| (CH,|
*  Qutput: the ratio of the [C'Oz]

Optimization WRT to this Ratio:
Cancels out the error due scattering
affect in the atmosphere, hopefully




ADJOINT CODING

* Observation operator is non-linear
* Matrix form not possible, we write a subroutine:

* Adjoint of this subroutine H, given by

The Forward Model (H) The Adjoint Model (H”)
doi=n,1,-1
doi=1,n adj_xch4(i)=adj_xch4(i)+ adj_x_ratio(i)//xco2(i)
x_ratio(i)= xch4(i)/xco2(i) adj_xco2(i)= adj_xco2(i) - adj_x_ratio(i)* xch4(i)/(xco2(i))**2
end do adj_x_ratio(i)= adj_x_ratio(i)
end do




OPTIMIZATION SUBROUTINES

CONGRAD : Conjugate gradient method M1QN3: Quasi Newton method

» Pros : most efficient in term of no of
iterations needed. Hessian is also
calculated which gives posterior
error covariance

> Pros : can be used for Non-linear
case.

_ >  Con: hessian is not calculated and
> Cons: Not good for non linear case. computationally more demanding.




COMPARISON SETUP

Direct Optimization Ratio Optimization
[C Huinit »
[CH4]obser — [CO ]zm X [CO2]Obser [CH4]ZM75
2]omat [COs)init
* Linear observation operator
* Congrad subroutine is used as the optimization « Nonlinear observation operator
subroutine «  We use m1gn3 (Gilbert et al., 2009)

as our optimization subroutine
instead.




RESULTS

Ratio Optimization Direct Optimization
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IS IT WORTH THE TROUBLE?

Ratio Direct
Norm Flux diff 4.329e-5 1.678e-3
(ppm)
[terations 47 16
performed
Gradient norm 3.8 e-10 0.5299 -13

reduction

Iterations




IMPLEMENTATION ON TM5

« The TM5 model is a 3D atmospheric chemistry-transport ZOOM model.
* It allows the definition of arbitrary zoom regions, which are 2-way nested into the
global model.

« My aim is to make a test setup with can compare the performance of the ratio
approach with tradition approach using TM5 as transport .




ONE MONTH RUN (TM5)

The simultaneous optimization for CO2 and CH4 is implemented.
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POINT OBSERVATIONS
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Posterior
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CO2 (BIOSPHERE FLUX)
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CONCLUSION

« M1gn3 can solve the non-linear optimization problem for ratio measurements of
CO, and CH,

* Good solutions can be found in less than 15 iterations

* Compared to direct method, Ratio method is able to optimize the fluxes and
concentrations more efficiently in Toy model Setup.
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