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General features of the data
490 samples from 37 flight legs have been ana-

Atmospheric H, and the CARIBIC project

H, leakage from H_-powered vehicles may cause a large in-

crease in atmospheric H, mixing ratios (x(H.)), necessitating a 70 lyzed for x(H.) and 6(D,H.) at the IMAU isotope
a better understanding of the H, cycle. Measurements of ~ 550 laboratory. Fig. 2 shows the results of all 7 return
the isotopic composition (deuterium content, 6D(H.)) can = flights to Caracas.
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help distinguish different source and sink processes, as
those have very different isotopic effects.
The CARIBIC project uses an automated instrument con-

Some samples seem affected by pollution (high
X(H,) and low 6D(H.)). This tends to occur in sam-
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Literature shows that in the stratosphere, the competing pro- Previously, increased levels of  1ggp A larae number of UTLS sambples
. . , - 9 P
duction and destruction processes for H, balance out, but do CH, were found in CARIBIC = were analyzed for x(H.) and
cause a strong deuterium enrichment (Fig. 3). Inverse correla- flights to India during the O 1840 6D(H.).
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