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and Dimensionality Reductions for Text Spatializations

Daniel Atzberger ), Tim Cech
Jirgen Déllner (5, Michael Behrisch

, Willy Scheibel @,
, and Tobias Schreck

Abstract—The semantic similarity between documents of a text corpus can be visualized using map-like metaphors based on two-
dimensional scatterplot layouts. These layouts result from a dimensionality reduction on the document-term matrix or a representation
within a latent embedding, including topic models. Thereby, the resulting layout depends on the input data and hyperparameters of the
dimensionality reduction and is therefore affected by changes in them. Furthermore, the resulting layout is affected by changes in the
input data and hyperparameters of the dimensionality reduction. However, such changes to the layout require additional cognitive
efforts from the user. In this work, we present a sensitivity study that analyzes the stability of these layouts concerning (1) changes
in the text corpora, (2) changes in the hyperparameter, and (3) randomness in the initialization. Our approach has two stages: data
measurement and data analysis. First, we derived layouts for the combination of three text corpora and six text embeddings and a
grid-search-inspired hyperparameter selection of the dimensionality reductions. Afterward, we quantified the similarity of the layouts
through ten metrics, concerning local and global structures and class separation. Second, we analyzed the resulting 42 817 tabular data
points in a descriptive statistical analysis. From this, we derived guidelines for informed decisions on the layout algorithm and highlight
specific hyperparameter settings. We provide our implementation as a Git repository at €) hpicgs/Topic-Models-and-Dimensionality-
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Reduction-Sensitivity-Study and results as Zenodo archive at D0I:10.5281/zenodo.12772898.

Index Terms—Text spatializations, text embeddings, topic modeling, dimensionality reductions, stability, benchmarking

1 INTRODUCTION

Text data is generated in large amounts from various sources, such as
social media platforms, product reviews, news articles, literature, and
research articles. Thereby, text data can be distinguished between sin-
gle documents, i.e., sequences of words from a vocabulary also known
as terms, streams, or sets of documents [42]. The latter are called text
corpora and are usually considered Document-Term Matrices (DTMs),
which store the absolute term frequencies in the respective documents.
One central question in analyzing a text corpus is providing an overview
and displaying the semantic relatedness between the documents [75].
Several visualization approaches rely on a two-dimensional scatterplot,
where each point represents a document, and the pairwise Euclidean
distance between documents reflects their semantic similarity. Adjacent
work in the field augments the two-dimensional scatterplot by utiliz-
ing cartographic metaphors, e.g., height fields, icons, or glyphs [31].
Such scatterplots are derived from a layout algorithm that applies a
dimensionality reduction (DR) to the DTM directly or an intermediate
latent embedding of the text corpus, which is, for example, derived
from a topic model (TM) [57]. This visual representation of a text
corpus provides the foundation for a user’s mental map, i.e., an internal
cognitive representation [7]. If the visualization differs, the mental map
is updated, which requires cognitive efforts from the user.

Changes to the underlying scatterplot are impeding the information
exploration process since “geometric variations, e.g., rotation, trans-
lation, ..., in the projection make the analysis for the user difficult.
Internally, the human brain needs to revert these transformations in
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order to ease the comparison of projections” [24]. Consequently, the
stability of the visualization mainly depends on the stability of the lay-
out algorithm. Such stability of a layout algorithm comprises various
aspects:

1. Stability concerning input data, i.e., small changes to the input
data result in small changes to the layout. This is further known
as Visual-Data Correspondence [39].

2. Stability concerning hyperparameters, i.e., small changes to the
hyperparameters of the layout algorithm do not change the layout.

3. Stability concerning randomness, i.e., the layout is not affected
by randomness in the initialization.

Furthermore, in the case of time-dependent text corpora, two more
aspects are:

4. Stability concerning corpus size, i.e., in case of an incrementally
growing corpus the positions of previous points are not affected.

5. Stability concerning temporal coherence, i.e., the changes in the
scatterplot capture the evolution of the data points. This is a
further aspect of Visual-Data Correspondence.

In presentations of visualization approaches for text corpora, aspects
related to the stability of the text layout are rarely considered. For ex-
ample, most layouts are derived from r-distributed Stochastic Neighbor
Embedding (t-SNE), even though it is said to be highly sensitive to its
hyperparameters [77]. Only a few studies have considered the stability
of DRs, e.g., qualitative studies that inspect scatterplots [11,24] or
theoretical discussions [53]. Existing quantitative studies focus on two
non-text data sets and, therefore, stability of text layout algorithms
remains an open gap in the literature [30, 38].

The stability of algorithms and models can be analyzed in a sen-
sitivity analysis, i.e., a quantitative study that analyzes the relative
importance of input factors to the output [59]. In this work, we present
a sensitivity analysis of layout algorithms for text corpora concern-
ing changes to the input data, hyperparameters, and randomness. Our
approach has two steps: (1) the data generation step and (2) the data
analysis step. In the first step, we derive tabular datasets by measur-
ing aspects related to local, global, and perceptual similarity between
selected pairs of scatterplots. In total, we consider 38 941 scatterplots
that are generated from three text corpora, six text embeddings, and
four DRs by a grid-search-inspired hyperparameter selection of the
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DRs. The scatterplots were created on a computation cluster using 50
nodes and an overall computation time of 50 000 hours. In the second
step, we examine the similarities in a descriptive analysis, including
a correlation analysis, statistical tests, and by visualizing the data dis-
tributions. Our study makes the following contributions to the field of
text visualization and empirical analysis of layout algorithms:

1. A set of metrics that quantify the preservation of local and global
structures, as well as cluster separation between two scatterplots
with the same number of points.

2. Tabular datasets that capture the similarity between 42 817 pairs of
scatterplots, that are derived from three text corpora by applying
six embeddings and four DRs.

3. An analysis of the results concerning the stability of the layout
algorithms and guidelines for their effective use.

4. The implementation and results of the entire pipeline provided as
a git repository’.

2 RELATED WORK

We consider the following three aspects as related work: (1) previous
studies that focused on the stability of DRs, (2) comparisons of DRs
that propose guidelines for their effective use, and (3) studies that focus
on the visual perception of scatterplots and allow for comparison of
scatterplots using similarity measures.

2.1 Stability of Dimensionality Reductions

We further distinguish discussions on the stability of DRs into math-
ematical discussions, qualitative studies, and quantitative analyses.
Nonato and Aupetit presented a survey on DRs, including a discussion
on stability concerning input data and their capabilities to map new data
points based on their mathematical internals [53]. Garcia-Ferndndez
et al. compared six DRs concerning the stability in the input data and
hyperparameters by visually comparing their results on six datasets
[24]. Similarly, Bredius et al. studied the stability of neural network
projections - trained to approximate a DR - concerning changes in the
input data [11]. Reinbold et al. applied k-order Voronoi diagrams to
visualize the neighborhood preservation of several two-dimensional
scatterplot representations of a high-dimensional dataset to analyze the
stability of MDS and t-SNE concerning input data and hyperparame-
ters [58]. Complimentary to qualitative studies, Khoder et al. presented
a quantitative study on the stability of DRs regarding input data for
hyperspectral images [38]. However, their metrics are specific to their
domain and can not be adapted in our case. The most similar method
to our work was applied by Hamad et al., who studied the stability of
t-SNE by comparing sequences of scatterplots derived from smart home
data [30]. Their quantification of stability relies on the Procrustes dis-
tance and a metric that captures neighborhood preservation. However,
we use ten metrics for a more fine-granular quantification of similarity,
four DRs, and six latent embeddings to address the specific domain of
text corpora visualization.

In several application contexts, data is often only incrementally
available, e.g., social media or sensor data. The capability of a DR
to handle such data streams is called out-of-sample capability [20].
In order to preserve the mental map, the positions of previous points
should not be affected by incoming data. Our terminology refers to this
aspect as stability concerning corpus size. Existing evaluations of out-
of-sample techniques focus on the overall distance and neighborhood
preservation [16,79] or runtime performance [16,23,79]. Xia et al.
furthermore evaluated the stability of the layout using four metrics [79].
An overview of specialized out-of-sample techniques is presented by
Neves et al. [16]. An evolution of data points over time is another form
of temporal dependency (stability concerning temporal coherence). To
visualize such evolution, static methods can be adapted, e.g., by using
control points known as landmarks [53]. Furthermore, specialized DRs
have been developed. For example, Rauber et al. presented a variant
of t-SNE, where the loss function is adopted to consider temporal co-
herence [56]. Vernier et al. presented a quantitative framework for
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evaluating the temporal coherence of DRs by measuring the preser-
vation of local and global structures [69], and used it to evaluate the
quality of two novel variants of t-SNE [68]. Our work differs from pre-
vious work, as we specifically analyze the impact of text embeddings
on the static stability of two-dimensional layouts.

2.2 Selecting Dimensionality Reductions

Besides stability, the capability of a DR to preserve local and global
structures in a lower-dimensional representation, the so-called accuracy,
is another quality aspect [53]. Several studies analyzed DRs concern-
ing their accuracy to derive guidelines for their effective use, e.g.,
Fodor who presented a qualitative comparison of linear and non-linear
DRs [22]. Further studies that focus on the mathematical principles
of DRs were presented by Engel et al., who reviewed DRs from a
visualization point of view [19], Gisbrecht and Hammer, who reviewed
non-linear DRs [26], and Cunningham and Ghahramani, who presented
a survey on linear DRs [15]. Complimentary to these theoretical dis-
cussions, the accuracy of DRs was evaluated in quantitative studies by
using quality metrics [8]. van der Maaten et al. presented an early quan-
titative discussion on DRs [66]. In their study, the authors compared the
accuracy of eleven non-linear DRs and PCA on five synthetic and five
real-world datasets. Gove et al. presented a study on the influence of
selected t-SNE hyperparameters and further presented a neural network
to recommend better default settings for a given dataset [28]. Espadoto
et al. presented a benchmark that is set up of 18 data sets, 44 DRs, and
seven accuracy metrics [20]. With this broad sampling, the study has
particular value for practitioners. Atzberger and Cech et al. followed
their approach, focusing on text corpora and TMs [3,4]. Their studies
are based on benchmarks comprising a set of text corpora, layout al-
gorithms that are combinations of text embeddings and DRs, as well
as metrics for quantifying the accuracy and cluster separation. In an
analysis that comprises more than 40k layouts, the authors showed
that TMs improve the accuracy of text layouts. Our work follows the
methodology of such quantitative studies based on a benchmark com-
prising a set of text corpora, layout algorithms, and metrics. However,
even though we leverage parts of the implementation provided [4], our
study is concerned with stability which is a different objective than
accuracy and thus requires the use of different metrics.

In addition to accuracy, the suitability of a DR for specific tasks
needs to be considered too. Etemadpour et al. compared the perfor-
mance of four DRs in a user study to support abstract analytics tasks,
such as cluster identification [21]. Their results showed that the optimal
DR depends on the question and the “nature” of the data, e.g., whether
the data is a text corpus or a set of images. Xia et al. formulated
similar findings after conducting a user study to investigate which DRs
are suitable for visual cluster analysis tasks, e.g., cluster identification,
membership identification, distance comparison, and density compar-
ison [81]. For visual class separation, Wang et al. developed a novel
supervised linear DR, which aims to minimize a cost function that relies
on class separation metrics [72]. Furthermore, Morariu et al. presented
a model to predict human preferences based on scagnostics, cluster
separability metrics, and accuracy metrics [51].

2.3 Visual Perception and Similarity Measures

Our analysis of the stability of text layouts is based on a quantifica-
tion of similarity between scatterplots. Various metrics have been
proposed to describe geometric structures in scatterplots, e.g., the class
separation [61], and thus allow for a comparison. Among the most
popular metrics are the scagnostic measures, which result from graph-
theoretical characteristics [78]. However, user studies have shown that
scagnostics are not aligned with human expectations for describing
perceptual similarity [54,73]. In addition, more complex models have
been developed, which learn abstract representations of scatterplots
based on human-labeled data. For example, Quadri et al. proposed a
ranking model for optimizing designs of scatterplots for cluster identifi-
cation [55]. Jeon et al. developed a regression model to estimate cluster
ambiguity [34]. Ma et al. proposed a convolutional neural network to
learn a representation of scatterplots for the quantification of similar-
ity [47]. Similarly, Xia et al. presented another convolutional neural
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Table 1: Characteristics for the three datasets containing the number of documents N, the size of the vocabulary n after preprocessing, the median
size of the documents /, the number of categories k, and the number of topics K specified for the TMs, as well as the sparsity ratio y=1—u/Nn,

where u denotes the number of non-zero entries in the DTM.

Dataset Source N n 1 k K b4
20 Newsgroup scikit-learn.org/0.19/datasets/twenty_newsgroups.html 18 846 72370 35 20 20 0.9993
Lyrics kaggle.com/datasets/karnikakapoor/lyrics 10995 32758 135 4 12 0.9974
Seven Categories kaggle.com/datasets/deepak711/4-subject-data-text-classification 3142 34947 198 7 14 0.9962

network for modeling human perception of visual clusters [80]. Those
neural network approaches learn internal representations of scatterplots
and allow for a comparison. However, the individual components have
no semantic meaning and thus allow for no further reasoning. Lehmann
and Theisel introduced an equivalence relation on two-dimensional
scatterplots based on affine transformations [46]. By selecting a rep-
resent of each equivalence class, the number of scatterplots within a
scatterplot matrix is reduced. In particular, this approach does not rely
on any further metrics but allows for comparison.

3 DATA MEASUREMENT

To analyze the stability of layout algorithms for text corpora, we se-
lected three raw text corpora and defined and applied a suitable data
processing pipeline. It is set up of four stages: (1) preprocessing and
perturbations, (2) mapping into a latent space using text embeddings,
(3) dimensionality reduction to the two-dimensional plane, and (4)
pairwise comparison using similarity metrics.

3.1

We selected the following three corpora for our study: 20 Newsgroup,
Lyrics, and Seven Categories. All documents of the corpora are written
in the English language. The characteristics, as well as sources, of
the text corpora are summarized in Table 1. We preprocessed each
corpus as follows: In the first step, the documents of a corpus are
tokenized, i.e., documents are split at whitespaces and stored as lists of
terms. To remove terms that have no semantic meaning and reduce the
vocabulary size, we removed all stopwords from the English language
and lemmatized the vocabulary. In addition, we carried out corpus-
specific preprocessing steps, such as the removal of email headers in
the 20 Newsgroup corpus. For all details regarding the preprocessing,
we refer to our git repository. After preprocessing, each corpus is
represented by a DTM, i.e., each corpus is described by an Nxn-matrix,
where N denotes the number of documents and n the vocabulary size.
The entry in cell (i, j) gives the frequency of the j™ term in the i
document. Furthermore, each document within a corpus is assigned
one unique category that reflects its semantics, e.g., each document
within the Seven Categories corpus is associated to either Computer
Science, History, Maths, Accounts, Physics, Biology, or Geography. We
selected these corpora as their categories are easily interpretable, and
the extracted topics show a connection to these categories. Furthermore,
the three corpora vary in the number of documents, vocabulary size,
and categories.

To analyze the stability concerning changes in the input data, we
apply synthetic perturbations to the DTMs. We define a jittering pertur-
bation, which adds noise to the DTMs. Specifically, the entry in cell
(i, ) is replaced by:

Preprocessing & Perturbation

DTM[i, j] = max{0,round(DTM;, j] - (1 +€[i, j]))}, €]

where the matrix € is a n X m-matrix whose entries are randomly drawn
from a uniform distribution on the interval [-A,4] and A € [0,1] con-
trols the amount of jittering. We chose a relatively simple jittering
function to avoid making any further assumptions.

3.2 Document Embeddings

Starting from the DTM representation, we further consider five ad-
ditional document embeddings that are commonly used for corpus
visualization and text analytics tasks, resulting in six latent represen-
tations for further analysis. From the perspective of the DTM repre-
sentation, each document is represented as an n-dimensional vector

containing the absolute frequencies of individual terms. This represen-
tation, along with the cosine similarity, constitutes the Vector Space
Model (VSM) [14]. However, the DTM solely accounts for the absolute
frequencies of terms within documents, disregarding whether these
terms are prevalent across other documents in the corpus. Often, terms
found in only a few documents indicate underlying concepts and hold
significant relevance. By incorporating the term frequency-inverse doc-
ument frequency (tf-idf) scheme, the VSM can be adapted to address
this issue [1]. Specifically, the tf-idf of a term w in document d is given
by the product of the term-frequency of the term w in d and the inverse
document frequency of wind, i.e.,

. __n(wd) IC]
thidf(wd) = 5 n(md')'log(l{d'ecwew})’ ?

d'eC

where n(w,d) denotes the frequency of term w in document d, and C
denotes the corpus. The DTM is usually a sparse matrix, i.e., most
entries are zero due to documents containing only a fraction of the
entire vocabulary. This observation is exemplified in Table 1, where
the median lengths are significantly smaller than the vocabulary sizes.

TMs aim to provide a compressed representation of the DTM by
grouping co-occurring words into topics. Topics are represented as
vectors of size n, where the i" entry reflects the influence of term w;
within the topic. Such representations often allow for the inference of
human-interpretable concepts. For instance, Latent Semantic Indexing
(LSI) employs Singular Value Decomposition (SVD) to decompose the
DTM or its tf-idf weighted variant into a document-topic matrix and
a topic-term matrix [17]. Non-Negative Matrix Factorization (NMF)
approximates the DTM or its tf-idf weighted variant as a product of
two matrices [44]. In the case of LSI and NMF, the documents are com-
pared using the cosine similarity. Latent Dirichlet Allocation (LDA)
is a probabilistic TM widely used in the visualization domain. LDA
assumes a generative process underlying a corpus, resulting in top-
ics represented as multinomial distributions over the vocabulary and
documents represented as multinomial distributions over topics [9].
In measuring document similarity within LDA, the Jensen-Shannon
distance is usually applied.

As a result of advances in GPU processing, deep learning models
have been developed for learning high-dimensional continuous em-
beddings of corpora. For example, Word2Vec learns a representation
for terms within a corpus by training a neural network that predicts
the center word given its surroundings (Continuos BOW Model) or
vice versa by predicting the surrounding terms given the central word
(Continuous Skip-gram Model) [50]. Doc2Vec extends the concept of
Word2Vec for entire documents by training a neural network to predict
the next word given a document together with words (Distributed Mem-
ory Model) or a set of words given a document as input (Distributed
BOW Model) [43]. The embeddings derived from Doc2Vec are learned
in an iterative manner using back-propagation and allow for comparison
using the cosine similarity. We further consider Bidirectional Encoder
Representations from Transformers (BERT) - a deep learning model
that is trained for two unsupervised NLP tasks and, as a result, generates
high-dimensional representations for documents within a corpus [18].
By grouping similar documents according to their latent representa-
tions, BERT is known for generating well-interpretable topics using a
class-based tf-idf weighting [29].
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Fig. 1: Exemplary comparison of pairs of scatterplots. To analyze the stabi

lity concerning input data, we compare pairs of scatterplots that only differ

in the amount of jitter applied to the DTM. To analyze the stability concerning hyperparameters, we compare pairs of scatterplots that differ in one
hyperparameter setting with consecutive values. To analyze stability concerning randomness, we compare two layouts that only differ in their seeds.

3.3 Dimensionality Reductions

As aresult of the second stage, each document is represented in a latent
space. To further project the documents to the two-dimensional plane,
we apply a DR. Thereby, we focus on DRs that are commonly used
for text spatializations [4]: Metric Multidimensional Scaling (MDS),
Self-Organizing Maps (SOMs), t-distributed Stochastic Neighbor Em-
bedding (t-SNE), and Uniform Manifold Approximation (UMAP). Fur-
thermore, t-SNE and UMAP are probably the most popular DRs among
practitioners and also show the best results in terms of accuracy in
previous studies [4,20]. Although many more DRs exist, we limit our
considerations to these four for capacity reasons.

MBDS operates on a dissimilarity matrix of a dataset, aiming to gen-
erate a lower-dimensional representation where pairwise Euclidean
distances reflect the entries in the dissimilarity matrix [13]. The po-
sitions of data points are iteratively computed by optimizing a stress
function. The number of iterations constitutes a hyperparameter .

SOMs constitute a class of fully-connected two-layered neural net-
works where second-layer neurons are organized on a two-dimensional
grid, whose width and height are determined by hyperparameters [40].
During training, input vectors activate neurons whose weight vectors
are most similar to the input. The neuron of the highest activation deter-
mines the position within the grid. Weight adjustments during training
minimize quantization errors, i.e., differences between input vectors
and their best matching unit. For computational efficiency, we utilized
Principal Component Analysis (PCA) to derive a lower-dimensional
representation, that still captures 95% of the dataset’s variance [36].

t-SNE is a DR aimed at preserving local structures within a
dataset [65]. It operates by modeling a Gaussian distribution cen-
tered around each data point in the high-dimensional space, where the
perplexity hyperparameter regulates the effective number of neighbors
considered. The objective of t-SNE is to maintain neighborhood rela-
tionships in the low-dimensional representation using a t-distribution.
Its iterative optimization process minimizes a stress function, which
evaluates the dissimilarity between overall similarity scores derived
from the respective distributions and the Kullback-Leibler Divergence.

UMAP was developed as an alternative to t-SNE to address its
limitations, such as the difficulty in interpreting distances between
clusters [48]. While conceptually similar to t-SNE, UMAP optimizes
a stress function based on Cross-Entropy instead of Kullback-Leibler
divergence. UMAP offers two hyperparameters: the number of neigh-
bors, balancing local and global structures, and the minimal distance,
regulating the proximity of data points in the two-dimensional layout.

Table 2: Metrics used in our study. We did not specify an optimum for
rotation, e.g., 0, as the rotation can be carried out as a postprocessing
step when comparing two layouts. All metrics are invariant under rotation.

Metric Abbr. Range Optimum
Trustworthiness or [0,1] 1
Continuity oc [0,1] 1
Mean Relative Rank Errors oy, 0r [0,1] 1
Local Continuity Meta-Criterion Qe [0,1] 1
Label Preservation oLp [0,1] 1
Pearson’s Correlation Brc [-1,1] 1
Spearman’s Rank Correlation Bsc [-1,1] 1
Cluster Ordering Bco [-1.1] 1
Abs. Diff Distance Consistency YbC [0,1] 0
Rotation from Procrustes Analysis Opa [-180°,180°] 1

3.4 Comparison

Our analysis of stability requires a notion of similarity between scatter-
plots. From the study of the related work, we derived three different
types of metrics for quantifying scatterplot similarity: (1) latent rep-
resentations learned from neural networks, (2) perceptual similarity
features, and (3) features that capture selected aspects, e.g., neighbor-
hood preservation. We do not consider latent representations due to
their lack of interpretability. Additionally, we omit scagnostics, as they
do not align well with human judgment [54,73]. Instead, we opted for
metrics that quantify selected aspects of similarity, grouping them into
local and global similarity, as well as cluster separation. To this end,
we have adapted existing accuracy metrics, i.e., metrics that quantify
the preservation of local and global structures of high-dimensional data
in a low-dimensional representation [5]. We provide an overview in
Table 2.

For quantifying local similarity, i.e., the preservation of neighbor-
hoods, we consider six metrics. The Trustworthiness measure O
is often used to quantify the accuracy of DRs [67]. It measures the
pointwise-percentage of the k-Nearest-Neighbors (kNN) in the low-
dimensional representation that also belong to the kNN in the high-
dimensional representation, weighted by ranks and averaged over all
points. Similarly, the Continuity o measures the proportion of points
in the high-dimensional representation belonging to the kNN in the
low-dimensional representation [67]. Both trustworthiness and conti-
nuity depend only on the pairwise dissimilarities of the points but not
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on the positions of the points themselves. Therefore, both measures
can also be used to compare two two-dimensional representations con-
cerning the preservation of neighborhoods. The same consideration
holds for the Mean Relative Rank Errors oy and ogyr, which are
related to trustworthiness and continuity but with slightly different
weightings [45], and the Local Continuity Meta-Criterion ¢, which
measures the pointwise intersection between the kNN of a point in the
two scatterplots averaged over all points [12]. We further integrate the
Label Preservation metric 0y p, which is similar to the o ¢ but only con-
siders the categories and not the positions. In any case, the local metrics
require the specification of k, i.e., the number of neighbors considered.
We choose k = 7 to be aligned with previous studies [3,4,20, 68, 69].
The preservation of neighborhoods between two scatterplots is highly
relevant for the visualization, since close data points are assumed to be
similar according to the Gestalt principles [76].

To quantify global similarity, we use three metrics. The Spearman
Rank Correlation Bgc [62] and the Pearson Correlation Bpc [25] are
derived from the Shephard Diagram from the two scatterplots. The
Shephard diagram is a two-dimensional scatterplot whose points rep-
resent pairwise distances between two points in the first and second
scatterplot [35]. In the case of a perfect match, the Shephard diagram
would thus be a subset of a straight line through the origin. The simi-
larity to the straight line is quantified by the two metrics. We further
developed the Cluster Ordering metric Bco, which relates the arrange-
ment of categories between two scatterplots. The metric is given by the
Pearson correlation of the pairwise distances between the categories
centers; i.e., it relies on two graphs derived from the scatterplots simi-
lar to measures from the Graph-based Family [52]. All three metrics
for the global similarity have a bounded value range. We do not con-
sider metrics with unbounded range, e.g., Normalized Stress [41] or
Procrustes Distance [27], as it is not evident how to normalize these
measures across several text corpora and scales.

For our third set of metrics, we assess the efficacy of discerning given
categories. Building upon the findings of Sedlmair and Aupetit, we use
the Distance Consistency [60]. This metric evaluates the proportion of
points within the projected two-dimensional space, where the associated
category center, defined as the mean of all points in that category,
coincides with its nearest category center with respect to the Euclidean
distance [63]. To quantify the similarity between two scatterplots
concerning class separation, we use the absolute difference ypc between
their distance consistencies.

These ten similarity metrics are used in our sensitivity analysis as
follows: To analyze the stability concerning input data, we compare
scatterplots that differ only in the jitter amount, but with the other con-
figurations fixed (ceteris paribus). To analyze the stability concerning
hyperparameters, we pair scatterplots that differ in one hyperparam-
eter setting with consecutive values. To analyze stability concerning
randomness, the scatterplots differ only in the defined random seed.
The selection process is illustrated in Figure 1. Our data processing
pipeline results in three tabular datasets, where each entry is given by a
pair of scatterplots and similarity measures from the ten metrics. As
a post-processing step, one scatterplot can be rotated according to the
rotation derived from Procrustes analysis. The angle is determined to
minimize the Procrustes distance, i.e., the squared pairwise distances,
between two scatterplots [37]. Before applying Procrustes analysis, we
center both scatterplots such that the angle refers to rotation around the
view center. We include the rotation to the tabular datasets.

3.5 Implementation

Our implementation is designed for various embeddings, DRs, and
metrics and can be extended in the future. For each embedding and DR,
we chose from specific implementations and hyperparameters. The
large number of layout configurations required the use of a computing
cluster. The project is freely available on GitHub for reproducibility
and reuse!; the generated data is linked as Zenodo archive?.

2Zenodo archive DOI:10.5281/zenodo.12772898
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Table 3: Range for the hyperparameters considered in our experiments.
Each configuration for one DR is combined with a dataset and TM.

DR Parameter Name Values
MDS max_iter 100-300 step size 50
SOM m 5-30 step size 5
SOM n 5-30 step size 5
UMAP min_dist 0.0, 0.1, 0.25, 0.5, 0.8, 0.99
UMAP n_neighbors 2,5, 10, 20, 50, 100, 200
t-SNE learning_rate 10, 28, 129, 359, 1000, auto
t-SNE n_iter 1000, 2500, 5000, 10000
t-SNE perplexity 5-55 step size 10
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Fig. 2: Heatmap showing the pairwise correlations between the similarity
metrics using a diverging color scheme. We additionally show the corre-
lation with the Silhouette Coefficient, which is another cluster separation
metric. Metrics that correlate nearly perfect, i.e., ar, ac, o, onrr as well
as Ppc, Bsc are considered as one metric by taking their averages. Note:
the local and global similarity measures show a negative correlation to
the class separation measures, as they have opposite optimums.

3.5.1

The implementation is based on Python 3.10 and depends on actively
maintained libraries that are popular among practitioners for the embed-
dings and DRs. Our text preprocessing pipeline relies on NLTK (3.7)
and spaCy (3.4.3) for lemmatization. For topic modeling and Doc2Vec,
we use Gensim (4.2.0). The pretrained BERT models are provided by
the Sentence Transformer library (2.2.2). For t-SNE and MDS, we use
the implementation provided by scikit-learn (1.2.1); for UMAP, we use
umap-learn (0.5.3); and for SOMs, we utilize the sparse-som library
(0.6.1) [49]. For the similarity metrics, we adopted the approaches and
implementations by Atzberger and Cech et al. [4] and ZADU [33].

Software Dependencies

3.5.2 Hyperparameter Settings

We selected values for the hyperparameters of the DRs following the
documentation of the respective library and the original papers. The
value ranges for the hyperparameters for the DRs are specified in Ta-
ble 3. For each corpus-embedding combination, we used a fixed config-
uration for the embedding, i.e., we did not iterate over the embedding’s
hyperparameters. When applying TMs, we set the number of topics K
to the number of categories k in the case of the 20 Newsgroup corpus,
K = 2k for the Seven Categories corpus, and K = 3k for the Lyrics
corpus, since the latter two have relatively few categories. We followed
best practices in choosing the TM’s hyperparameters and inspected
the topics of each trained TM to ensure interpretable topics [70, 71].
The extracted topics are provided in the supplemental material. For
BERT, we chose the two pre-trained models, all-mpnet-base-v2
and all-distilroberta-vl, as they have shown the highest scores
for the sentence embedding task>. Doc2Vec requires the specification
of the embedding dimension and the number of iterations. Following
best practices, the trained models have an accuracy of above 95% to pre-
dict the nearest neighbors of the inferred documents to be themselves
among the three nearest neighbors®.

3 sbert.net/docs/pretrained_models.html
“radimrehurek.com/gensim/auto_examples/tutorials/run_doc2vec
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Fig. 3: Results of the first experiment to quantify the stability concerning changes to the input data. The hue of each bar indicates the DR, and the
intensity indicates the amount of jitter applied to the DTM. The metrics &, 3, and ¥ quantify how well the layout algorithm adapts to changes to the
DTM, with 1 being optimal. The visualization indicates that BERT, in combination with t-SNE, best reflects changes to the DTM concerning & and 3,

resulting in improvements compared to the VSM. Note: The vertical axis ranges differ between the three metrics &, 3, and 7.

3.5.3 Computational Cluster

The setup of the computational cluster is similar to the previous study of
Atzberger and Cech et al. [4]. Specific to this study, we used jobs with
a RAM limit of 40GB and used up to 29 nodes to optimize for a higher
throughput of jobs. In total, our experiments had a run time of over
49 000 CPU hours. From the targeted 40 860 layouts, the cluster could
compute 38 941 layouts (95.3 %). The unsuccessful computations can
be accounted to timeouts after 30 hours (120 layouts) and general abor-
tions due to exceeding RAM, planned downtime, unplanned downtime,
file system errors, etc. (1799 layouts).

4 DATA ANALYSIS & RESULTS

In total, our three datasets that resulted from comparing pairs of scat-
terplots resulted in 42817 data points. Due to interruptions in the
computational cluster, not all layouts were created successfully. On
average, each dataset contains 14 272 pairs of scatterplots. We first
analyze the correlation between the metrics to derive an aggregated
metric for local similarity, global similarity, and similarity concerning
cluster separation. The distributions of data points are inspected using a
series of boxplots, which allows us to analyze the three stability aspects
covered in our study. In two binary tests, we analyze the effect of the
tf-idf weighting scheme and the application of the DR on the topic
representations.

4.1

To derive a higher-level overview of the similarity aspects, we aggregate
several metrics to represent the three similarity aspects, e.g., by taking
an average [20,51,68,69]. However, relying on the average carries the
risk of overweighting within one aspect, e.g., in case most metrics are
strongly correlated. Alternatively, taking a weighted average based on
pairwise correlations counteracts this, but conversely, it might outweigh
a single metric that is not correlated to the others at all [3]. Figure 2
shows the pairwise correlations of the ten similarity metrics, as well
as the Silhouette Coefficient as a further class separation metric and
the rotation that is derived from Procrustes analysis. To derive the
correlations, we randomly selected 3000 pairs of scatterplots, equally
distributed over the corpora.

Correlation of Similarity Metrics

Regarding local similarity, there is a strong positive correlation
between all metrics; the first four metrics correlate nearly perfectly.
Therefore, we averaged the first four metrics. Thus, we define the
aggregated local similarity metric ¢ as

:;<aT+aC+ZMM+aMF+“Lc+aLP)' 3)

Regarding global similarity, the Spearman and Pearson correlation
measures correlate perfectly. Therefore, we consider their average and
pair it with the cluster ordering metric. Furthermore, we apply an affine
transformation to all three metrics, to translate their value ranges to

[0,1]. Thus, we define the global similarity measure 3 as

ﬁ:;<0.5'(ﬁPC+])-2i-0.5‘(ﬁSC+1) !

(ﬁco+1)>~ “)

N |

To quantify changes to the class separability, we use the absolute
difference between the distance consistencies between two scatterplots.
As Ypc has its optimum at 0, we define the metric 7y as:

Y=1-"c &)

4.2 Stability Concerning Input Data

Starting from the three similarity metrics «, 8, and 7y, we first ana-
lyze the stability of text layout algorithms concerning changes to the
input data. For this, we applied jittering on the DTM and compared
scatterplots that result from the same layout algorithm with the same
hyperparameter configurations. A stable layout algorithm should reflect
the changes to the DTM in the layout. Given a layout algorithm &, we
quantify the adaptability of the layout algorithm to changes in the local
structures of the DTM using the following metric:

& = 1—|o(DTM, DTMI ) — o (®(DTM), (DTMIT)) [ (6)

where o(DTM, DTMII") denotes the local similarity between the

DTM and its jittered variant, and o(®(DTM),®(DTMIr)) de-
notes the local similarity between the two scatterplots ®(DTM) and

Authorized licensed use limited to: University Library Utrecht. Downloaded on December 16,2024 at 15:15:33 UTC from IEEE Xplore. Restrictions apply.



ATZBERGER ETAL.: ALARGE-SCALE SENSITIVITY ANALYSIS ON LATENT EMBEDDINGS AND DIMENSIONALITY REDUCTIONS... 31

DA LSI

NMF BERT Doc2Vec

ﬁ%ﬁ%%

= 1.0
| T T %ﬁ%o.g

0.6 |

o ﬁéﬁ
o

0.2
1.0
0.8

0.6

0.4 %i | #A L1 QﬁiL éﬁ% 2:
0.2

1.0

4 T awTla
1= 1 | 1T 11 0-6
0.4 — e — 0.4

1.0+

0.9 l l

1.0
0.9

Class Separation ¥  Global Stability 3 Local Stability o

0.8

[] SOM/n
[J t-SNE/perplexity

 SOM/m
[ t-SNE/learning_rate

0.8
[J UMAP/min_dist [ UMAP/n_neighbors

B t-SNE/n_iter

Fig. 4: Results of the second experiment to quantify the stability concerning hyperparameters. The hue of each bar indicates the DR and the intensity
indicates a specific hyperparameter that is varied. LDA, LSI, and NMF, in combination with t-SNE, show the highest stability concerning changes to
the hyperparameters. Note: The vertical axis ranges differ between the three metrics «, 8, and .

®(DTMIT) Analogously, we define f§ to quantify how well the
layout algorithm adapts to changes in the DTM concerning global
structures and 7 how well changes concerning cluster separation are
captured. In the case of a value of 1, the scatterplots reflect changes to
o, B, and vy perfectly. The results are shown in Figure 3.

t-SNE best reflects changes to local structures of the DTM, as it
shows the highest values for ¢&. Furthermore, in most cases, t-SNE and
UMAP adapt best to changes in the DTM’s global structures measured
by . All DRs show appropriate changes regarding cluster separation
measured by ¥, but SOMs show the largest range across all embeddings.

Changes to the DTM are reflected poorly in the case of layouts
based on LDA. We assume that LDA extracts similar topics for both
the DTM and its jittered variant and, therefore, represents both very
similarly in the latent space. Thus, the dissimilarity of the DTM and
its jittered variant is not reflected in the latent space, which means
that the resulting scatterplots do not depict the desired change either
after applying a DR. NMF shows the same effect as LDA. Doc2Vec
also leads to decreases in & but reflects global changes well in the
case of t-SNE and UMAP. BERT and LSI reflect changes in global
structures well and improve the results shown by the VSM. However,
only BERT shows improvements concerning & compared to the VSM
for all four DRs. In summary, BERT in combination with t-SNE best
reflects changes to the input data.

4.3 Stability Concerning Hyperparameters

In the second experiment, we analyze the stability of the layout al-
gorithms concerning small changes to the hyperparameters. Figure 4
shows the pairwise similarities between pairs of scatterplots that differ
in consecutive values in exactly one hyperparameter. We omit MDS
since, in 100 percent of all cases, MDS has converged after 200 iter-
ations, i.e., the pairwise similarities are one. Among the remaining
three DRs, SOMs are the most sensitive to changes in their hyper-
parameters (referring to their median) concerning a, f3, and y. The
hyperparameters height and width have nearly the same impact due to
the symmetry of the grid structure of the SOM layout. UMAP shows a
significant sensitivity concerning local similarity o but is much more
stable regarding global similarity . Changes to the minimum distance
do not affect the cluster separation 7 strongly. t-SNE shows the highest

scores for all three metrics. From the small interquartile distance of the
boxes displaying the number of iterations, we deduce that the algorithm
converges quite early. The perplexity parameter has the most significant
impact on t-SNE layouts’ stability. But still, it is more stable than SOMs
and UMAP. Our results contradict the widespread statement that t-SNE
creates unstable layouts. However, the metrics used ignore perceptual
differences due to rotation, as they are invariant under rotation.

Each embedding improves the stability concerning changes in the
hyperparameters. The improvements through LDA, LSI, and NMF are
comparable in each case, i.e., we see no clear benefit in choosing one
over the other. However, the TMs outperform BERT and Doc2Vec
in terms of o. The dimensions of the latent spaces are significantly
lower for the three TMs than in the case of Doc2Vec (50) and the
two BERT models (768 for both embeddings). We assume that higher
dimensionality can result in stronger distortions due to the DRs. To
summarize, t-SNE in combination with a topic model shows the most
stable behavior concerning changes to its input parameters.

4.4 Stability Concerning Randomness

By specifying a random seed of the DR, the layouts are reproducible
across multiple runs. Since different initializations might result in
different local optima, two scatterplots derived from the same layout
algorithm can thus differ. Figure 5 shows the values for the similarity
metrics between scatterplots that only differ in the random seed.

The results show that differences in the random seed can be very
considerable, e.g., in the case of MDS concerning . t-SNE shows the
most stable behavior concerning « by far, i.e., the neighborhoods are
represented similarly regardless of the selected seed. UMAP, followed
by t-SNE, achieves the highest stability concerning global structures.
MDS, UMAP, and t-SNE show stable behavior concerning ¥, whereas
SOMs can lead to larger changes.

For UMAP and t-SNE, embeddings can further increase the stability
concerning . Furthermore, embeddings improve the global stability
in the case of UMAP. The stability concerning class separation shows
high values across all embeddings. Overall, we favor t-SNE due to the
strong dominance concerning . In combination with LDA, the local
stability can further be improved.
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Fig. 5: Results of the third experiment to quantify the stability concerning
randomness. The color of each bar indicates the DR underlying the
layout algorithm. Overall, LDA in combination with t-SNE shows the best
results. Note: The vertical axis ranges differ between the three metrics
o, B,and y.

4.5 Binary Tests

In our previous experiments, we aggregated different layout algorithms
that share the same embedding and DR. However, the VSM, LSI,
and NMF can be applied to either the DTM or its tf-idf weighted
variant. Atzberger and Cech et al. have empirically shown that the
tf-idf weighting improves layout accuracy and perception [4]. We
analyze whether this observation also transfers to stability using a bi-
nary test. For this, we compare the aggregated stability metrics &, 3,
and ¥ in the case of stability concerning input data, and o, f3, and
7 in the case of the other two stability aspects of two pairs of scat-
terplots (& (DTM),®,(DTM)) and (&, (DTMT4), &, (DTMHHIF)),
where ®@; and &, are layout algorithms with specified hyperparame-
ters that were compared in the respective experiment. For all possible
combinations of such pairs of tuples, we determine the occurrences
ng, ng, and ny in which the tf-idf weighted variant shows larger values.
Assuming that the tf-idf weighting has no impact on the stability, the
values nq, ng, and ny are distributed according to a binomial distri-
bution with probability 0.5. Given this distribution, we determine the
probability of our observations for ng, ng, and ny. In the case, of a
small probability, we reject the hypothesis, since a large value would
be unlikely in the case of probability 0.5. Our results are summarized
in Table 4. A hypothesis is usually rejected if the probability is smaller
than 0.05. In this case, the improvement made using the tf-idf scheme
is statistically validated.

In the case of the VSM, we see that the tf-idf weighting in combina-
tion with t-SNE and UMAP improves all three stability aspects in terms
of preserving local structures. Furthermore, for both t-SNE and UMAP,
it supports the layout algorithm to adapt to changes in the input data.
Also, for LSI, the tf-idf weighting scheme improves stability regarding
changes in the input data and hyperparameters in combination with
t-SNE and UMAP concerning local structures. The combination of
NMF and UMAP profits from the tf-idf weighting in all three stability
aspects concerning the preservation of local structures. We want to
point out that a high probability does not indicate the validity of the
null hypothesis. For example, the high probability for LSI in combi-
nation with t-SNE concerning stability concerning randomness might
be due to the small value range of the similarity measures, as shown in

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 31, NO. 1, JANUARY 2025

Table 4: Results of the binary test for the null hypothesis “The tf-idf
weighting scheme does not improve the stability concerning input data
(S1), hyperparameters (S2), or randomness (S3).”

S1 S2 S3 0.0

™ DR & f § a B vy o B vy
MDS 050 JHDMEN o094 095 095 095 094 NOBON 094
= SOM | 045 099  0.66 099 [047 02N 100 084
‘g SNE 099 1.00
UMAP
0.5
MDS 0.65 0.65 .00 1.00 098 099
7 SOM 1.00 0 99 0.99 099 099
1  tSNE 1.00 099 099 1.00
UMAP 099 0.99 099 099 100 1.00
[ MDS 100 100  1.00 057
= SOM | 0.92 | 099 099 1 oo 0 77
tSNE 100 099 100 099 10
Z 1.0

UMAP 0.99 0.99

099 [ENON 097 100

Table 5: Results of the binary test for the null hypothesis “Equation (7)
does not improve the stability concerning input data (S1), hyperparame-
ters (S2), or randomness (S3).”

S1 S2 S3 0.0
™ DR & §S y a B Yy o B b4
MDS 0.92 0.42 0.69 0.69 0.69 1.00
< som
a t-SNE
UMAP
0.5
MDS 1.00 0.50 1.00 1.00 1.00 1.00 1.00 0.70 1.00
(7} SOM 0.75 0.87 0.41 0.76 0.78
— t-SNE 0.86 0.48 0.70 0.89 0.77
UMAP 0.85 0.55 0.45 0.55 0.83 0.50
29 MDS 1.00 1.00 1.00
2 SOM 0.99 0.93 0.99 0.99 0.81
Z t-SNE 0.99 0.63 1.00 0.99 0.48 1.00 1.00 1.0
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Figure 5.

Our second binary test concerns the input for the DR. Most visual-
ization approaches apply the DR to the document representations of
the corpus in the latent space [4]. In the case of a TM, the compo-
nents of the document representations describe the importance of a
topic within the document. However, the topics might have different
similarities, which are not taken into account when applying the DR
directly. Atzberger et al. proposed an alternative by applying the DR
on the topics themselves and deriving the document position in the
two-dimensional plane as a linear combination, i.e., the position d of a
document d is given by

>

d=Y 6,¢;, ©)

J=1

where 6 = (0,...,0k) denotes the topic representation of d, and
01,...,0k denotes the positions of the topics after application of a
DR [2]. Analogously, we compute the probabilities for the null hypoth-
esis that Equation (7) does not improve the three stability aspects. The
results are shown in Table 5.

LDA, in combination with t-SNE, benefits from Equation (7) across
all three stability aspects in terms of local and global structures, as well
as class separation. In the case of LSI and NMF, the results are not that
obvious. We suspect that in the case of LSI and NMF, the extracted
topics are “more orthogonal” to each other since these two TMs rely
on eigenvectors. In the case of LDA, this is not the case, and therefore,
the dissimilarities between the topics differ more, which is emphasized
in Equation (7).

5 DiscussION

From the results of our evaluation, we see certain combinations of text
embeddings and DRs that are particularly suitable for generating stable
two-dimensional layouts for text corpora. We use these observations
together with the findings of Atzberger and Cech et al. [3,4] to derive
guidelines for the effective combination of text embeddings and DRs.
However, our analysis, as well as the guidelines derived from it, are
subject to threats to validity.
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5.1 Main Findings

A visualization designer has to make numerous design decisions when
creating text spatializations. A fundamental one is whether the DR
should be applied to the DTM or the embedding of the corpus in a
latent space. From the three sensitivity analyses, we have shown that
text embeddings can improve all three aspects of stability. As such, we
conclude that:

G1 We recommend using a text embedding to increase the stability
concerning input data, hyperparameters, and randomness.

Furthermore the three sensitivity analyses show, that depending on the
specific stability aspect, the text embeddings differ in their performance.
Therefore, depending on the stability aspect that is to be optimized, we
recommend the following embeddings:

G2-S1 We recommend BERT when optimizing for stability concerning
input data.

G2-S2 We recommend LDA, LSI, and NMF when optimizing for
stability concerning hyperparameters.

G2-S3 We recommend LDA when optimizing for stability concerning
randomness.

When applying LDA, we derive from the corresponding binary tests:

G3 We recommend applying an aggregation according to Equation (7)
when applying LDA.

When not optimizing for one specific stability aspect, but for all three,
we further consider the weaknesses of each embedding. Since BERT
shows poor results concerning accuracy [4], and LDA is very sensitive
to changes in the input parameters, we conclude:

G4 We recommend using LSI as text embedding when optimizing for
all three stability aspects.

In all experiments, t-SNE showed the best results, especially in terms
of the preservation of local structures. We therefore conclude:

G5 We recommend using t-SNE as the dimensionality reduction.

In particular, these guidelines align with the recommendations concern-
ing accuracy from previous studies [3,4].

5.2 Threats to Validity

Our results depend on specific choices and have thus threats to validity.
We see two major areas: (1) the sampling used in the data measurement
step and (2) errors in the implementation and execution.

For the data measurement, we selected text corpora, text embeddings,
DRs, and similarity metrics. In any of the four categories, we had to
select a subset among many possibilities. Our results rely on three text
corpora. A priori, it is unclear to what extent the patterns in the boxplot
visualizations depend on the specific corpora. We added the boxplot
visualizations for each corpus to the supplemental material. In any
case, we see that the patterns in the individual boxplot visualizations
are similar to the aggregated view. Therefore, our argumentation from
section 4 is still valid individually. We assume additional corpora
will not affect our results, particularly the derived guidelines. For
each corpus-embedding combination, we fixed the hyperparameters
of the embedding algorithm following best practices. We furthermore
inspected the resulting topics of the TMs and compared them to the
given categories to ensure that the model is of high quality. It is
unclear if guideline G2 transfers to the case where more variants of each
embedding are evaluated. Nevertheless, one of our main findings, that
embeddings can improve the stability concerning changes to the input
data, the hyperparameters, and the random seed, was validated in our
experiments by using embeddings following best practices. Lastly, even
our similarity metrics required the specification of hyperparameters,
such as the number of points & to be considered as nearest neighbors.
In choosing k = 7, we followed previous studies and emphasized the
metrics to capture local similarity.

For the entire data processing pipeline, we used actively maintained
libraries that are widely used among practitioners. However, we can
not guarantee that these libraries have no bugs and do not change their
behavior across releases. Furthermore, our implementations, e.g., the
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similarity metrics, could carry defects. We addressed this by using only
code reviewed by at least one co-author and pair-programming sessions.
Finally, we provide our entire code as a GitHub repository to allow
for transparency. Due to errors in the cluster, some layouts were not
computed. Therefore, some scatterplot pairings could not be evaluated.
It is unclear to what extent the missing values would affect the results.

6 CONCLUSIONS & FUTURE WORK

Many visualizations for text corpora rely on a two-dimensional scatter-
plot that is derived from applying a text embedding and a subsequent
DR. Since changes to the layout require cognitive effort by the user,
the stability of a layout algorithm needs to be considered by the visual-
ization designer. In this study, we analyzed the stability of text layout
algorithms concerning changes to the input data, hyperparameters, and
randomness. For this, we measured the preservation of local and global
structures and cluster separation between a large set of scatterplots that
were derived from systematically iterating over the layout algorithms
and the hyperparameters of the underlying DRs. Based on a correla-
tion analysis of the similarity metrics, we aggregated them into three
metrics to quantify the similarity concerning local structures, global
structures, and class separation. Based on a detailed statistical analysis
of the results, we analyzed the impact of the embedding algorithms
and the DRs concerning the different stability aspects. We discussed
our findings and derived guidelines for the effective use of text em-
beddings and DRs to generate text spatializations. Our work aims to
address uncertainties when applying text embeddings and DRs for the
visualization of text corpora. Furthermore, we hope practitioners and
researchers consider our guidelines when applying latent embeddings
and DRs. To draw a “big picture”, we further see possible applications
of our evaluation setup — particularly the metrics — for selecting DRs for
exploring different embeddings, e.g., internal representations of neural
network approaches. The findings from such experiments could be
integrated into visualization approaches that aim to help users explain
high-dimensional embeddings [10, 64, 74].

We see different directions for future work, e.g., by extending our
experiments to address the major threats to validity. We plan to evaluate
different configurations for each embedding to derive fine-granular in-
sights into their impact on layout stability. Our approach for evaluating
stability can further be adapted to quantify the stability of layouts of
time-dependent text corpora. Such experiments would require addi-
tional, time-dependent embeddings and DRs. Furthermore, it would be
interesting to measure the similarity of scatterplots by using additional
metrics, e.g., Aupetit and Sedlmair presented a large set of class separa-
tion measures [6]. Quantifying stability using measures that best align
with human similarity perception is particularly relevant concerning
the preservation of the mental map. We plan to conduct a user study
to verify to what extent our guidelines improve text spatializations for
concrete analysis tasks. The results from such a user study might also
lead to a deeper understanding of how humans perceive similarity in
scatterplots. Furthermore, it would be interesting to see whether our
findings for text embeddings might generalize to other types of data,
including multidimensional tabular datasets. While our measurements
do not directly address the stability of DRs in multidimensional tab-
ular data, the latent embeddings used in our study could analogously
represent tabular data, given their lower dimensionality and sparsity
ratio. Finally, our pursuit of guidelines for text specializations moti-
vates their generalization to multimodal corpora, i.e., sets of documents
that include other modalities such as images. In particular, this would
require new kinds of embeddings and a more complex description of
latent embeddings across several data domains [32].
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