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Figure 1: LangLasso combines visual inspection with language-based cluster explanations. (A) Attribute views enable manual
exploration of feature distributions but often require scrolling through many dimensions. (B) A 2D UMAP projection reveals high-
dimensional patterns and supports lasso selection of clusters of interest. (C) For the selected cluster, LangLasso generates
natural-language summaries highlighting key distinctions from the rest of the data, streamlining interpretation compared to (A).

ABSTRACT

Dimensionality reduction is a powerful technique for revealing
structure and potential clusters in data. However, as the axes are
complex, non-linear combinations of features, they often lack se-
mantic interpretability. Existing visual analytics (VA) methods sup-
port cluster interpretation through feature comparison and interac-
tive exploration, but they require technical expertise and intense
human effort. We present LangLasso, a novel method that comple-
ments VA approaches through interactive, natural language descrip-
tions of clusters using large language models (LLMs). It produces
human-readable descriptions that make cluster interpretation acces-
sible to non-experts and allow integration of external contextual
knowledge beyond the dataset. We systematically evaluate the reli-
ability of these explanations and demonstrate that LangLasso pro-
vides an effective first step for engaging broader audiences in clus-
ter interpretation. The tool is available at langlasso.vercel.app.

Index Terms: cluster explanation, large language models (LLMs),
dimensionality reduction, interpretability.

1 INTRODUCTION

A staple of many visual analytics (VA) approaches to understand
multidimensional data is to use dimensionality reduction tech-
niques (e.g., t-SNE, UMAP) to obtain a lower-dimensional repre-
sentation [19, 20]. This transformation not only helps to visualize
the complex data but can also reveal the underlying structure and
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potential clustering in the data. Despite their effectiveness, these
complex techniques yield non-linear transformations that obscure
the semantic meaning of the original features; while structure and
clusters are revealed, the axes are difficult to interpret, and it re-
mains challenging to figure out what constitutes a cluster.

VA approaches can help understand data clusters by: conduct-
ing in-depth analysis; interactively exploring the clusters through
brushing and linking multiple views; and comparing the feature
distributions in the data and the various clusters to show which are
most responsible for cluster formation. This approach has been suc-
cessful in [7] but requires considerable time and technical expertise,
limiting accessibility for non-experts outside the analytical domain.

We present LangLasso, an interactive approach that uses LLMs
to generate natural language descriptions of clusters (Fig. 1). By
offering human-readable explanations, even non-technical (or less
visually-literate) users have a means to interpret clusters. Lan-
gLasso is an entry point for these users to engage with VA ap-
proaches, explore the clusters further, and test their hypotheses.
LLMs can also incorporate external contextual information beyond
the original dataset to construct more intuitive explanations [16].
For example, an LLM can infer social media users’ psychological
dispositions from their posts by using linguistic patterns and world
knowledge, even without explicit training on those traits [16].

Although natural language is often easier to understand, it is
limited in the nuance and detail it can convey. It is also subject
to potential hallucinations since the interpretation is based on an
LLM. To address these issues, we conduct a systematic evaluation
to report on the reliability of our approach. We also advocate for
using our approach in conjunction with (or to enhance) existing
approaches, rather than relying on LLM output in isolation. Our
evaluation shows that the statistics strategy is the most reliable ap-
proach, providing precise and reproducible cluster descriptions (by
comparing against the statistics we computed for the LLM), while
the remaining strategies reduce accuracy and interpretability.

https://langlasso.vercel.app/


Figure 2: Pipeline of LangLasso. (a) We upload a dataset and a file with per-feature descriptions. (b) We select a cluster in the projection and
test three strategies (S1–S3). (c) LangLasso generates a natural-language explanation of differences between selected and non-selected points.
(d) We evaluate the explanations using feature distributions, prior human findings, and/or statistics computed from the data.

2 RELATED WORK

Reliability Considerations – In VA, it is common to project high-
dimensional data into a 2D space and display the results as scatter-
plots, where spatial proximity suggests similarity. Visually emer-
gent clusters often represent meaningful patterns that users iden-
tify and explore during interaction with these projections. Explain-
ing such clusters involves uncovering the key features or patterns
that distinguish one region of the projection from another. A com-
mon approach is to determine which input dimensions contribute
most to these visual separations. Traditional methods typically rely
on statistical comparisons of feature values or distributions within
and across selected regions [24, 26]. Other works utilize projec-
tion enrichments [1] or representative instances, such as centroids
or exemplars [5], to summarize clusters and highlight distinguish-
ing features. Additionally, several interactive visualization tools
have been developed to support the analysis and interpretation of
projection results [25, 3]. These tools often present feature distri-
butions for selected regions and enable users to visually compare
them. However, such visual comparisons impose high perceptual
load—especially with many dimensions or weak cues. Comple-
menting this, Explain-and-Test generates regional explanations and
validates them via a local classifier and re-projection, linking why
a cluster forms to whether it holds [18]. LLM-based cluster nam-
ing has likewise been benchmarked (e.g., GPT-3.5-turbo vs. human
labels), showing feasible but limited automation [17].
Natural Language for Visualization – The emerging research
area, natural language for visualization, focuses on the integra-
tion of natural language processing techniques, including LLMs,
with visualization systems, enabling more intuitive and accessi-
ble data exploration [23]. With the emergence of generative mod-
els, one promising direction is to generate visualizations from tex-
tual input [12, 28]. Natural language is also being used to sup-
port the interpretation of visual content, helping users understand
complex visual encodings. Hong et al. [9] investigate how LLMs
can explain static visualizations in natural language, generating
descriptions and insights that improve visualization literacy and
accessibility for broader audiences. Beyond visualization gener-
ation and understanding, LLMs are being applied to assist with
visualization-specific tasks such as editing or querying structured
visual formats [30], summarizing texts when exploring document-
based data [22], and generating chart descriptions [15]. LLMs are
also fine-tuned for table summarization tasks in AI contexts [29].
Mo et al. [13] present TableNarrator, a tool that uses LLMs to
bridge the gap between numeric tables and narrative explanation.
In this work, however, we focus on using natural language to sum-
marize data characteristics of tabular data for supporting data inter-
pretation when interacting with 2D visual embeddings.

3 METHOD

Design Rationale – LangLasso is conceived as an additional com-
ponent to established VA workflows. It targets novice users who are
accustomed to static visualizations and may lack expertise in visu-
alization or data analysis, such as business professionals and deci-

sion makers. The goal is to provide fast, low-effort interpretation of
clusters in dimensionality reduction plots. It extends brushing and
linking techniques with concise, language-based summaries that are
easier to interpret, thereby lowering the entry barrier to cluster anal-
ysis while preserving compatibility with existing VA methods (e.g.,
[4]).
Method Description – We begin the evaluation by providing the
LLM with the dataset, together with a description of its domain
and dimensions, to supply the necessary context for the reasoning
and interpretation tasks (Fig. 2a). A 2D projection is then com-
puted to support selecting a cluster of interest (b). We use UMAP
(nNeighbors=50, minDist=0.6, spread=2) with deterministic seed-
ing and progressive updates, which yields compact, well-separated
clusters for interactive selection and interpretation [6]. For each se-
lection, LangLasso assembles evidence for prompting. We compare
three strategies that vary the selection-specific information passed
to GPT-5-mini, a faster, more cost-efficient version of GPT-5, al-
lowing us to verify our findings relative to the maximum capabil-
ities of current LLMs. The dataset description, strategy-specific
input data, and corresponding task prompt (specified in Sec. 3) are
composed into a structured query. The LLM returns a live textual
description of the user selection (Fig. 2c and Fig. 1C). Finally, we
qualitatively evaluate the LLM outputs against ground-truth statis-
tics and single-feature distributions (Fig. 2d and Fig. 1A).
Strategies – We consider three strategies, each providing different
information about the selected and non-selected sets to the LLM.
The statistics strategy (S1) relies on precomputed summary statis-
tics: numerical features include measures such as the minimum,
maximum, mean, standard deviation, and Kolmogorov–Smirnov
(KS) statistic, while categorical features report category counts and
a KS statistic. The subsample strategy (S2) uses raw tabular data,
sampling 20% of the selected and non-selected sets. The full data
strategy (S3) provides the complete data for both selected and non-
selected sets. For each strategy, we construct a task prompt that
begins with a fixed instruction: “I want you to act as a data ana-
lyst...”. This is followed by a description of the data provided for
the selected strategy, a task description, and the expected response
format (a short summary plus 3–5 bullet points, under 200 words,
with key terms in bold). S1 focuses on comparing aggregated statis-
tics, offering efficiency and precision but with limited granularity.
S2 and S3 provide raw feature values, requiring the LLM to perform
the underlying analysis directly and generate the corresponding ex-
planations.
Datasets – To evaluate our approach, we selected four datasets from

Table 1: Datasets with meaningful attributes used in our experiments.
Dataset Name # Samples # Attr. # Labels
Palmer Penguins [8] 333 6 3 classes
Bank Marketing [14] 11,162 18 2 classes
Food Nutrition [27] 7,499 12 7 clusters
Customer Analysis [21] 2,212 31 4 clusters

different domains, with varying numbers of samples and attributes
(cf. Table 1). The first two datasets are classification problems with



known class labels, enabling us to verify our proposed strategies
(see Sec. 3) and examine specific clusters by analyzing the distri-
butions of important features. The last two datasets are clustering
problems without predefined labels, where our analysis emphasizes
comparisons with narrative findings derived from prior works. This
selection ensures diversity not only in dataset size and attribute di-
mensionality, but also in data structure and analytical perspective.

4 RESULTS

Palmer Penguins – We use the Palmer Penguins dataset as a
proof-of-concept case to assess how well each of the three strate-
gies reproduces simple cluster structures largely separable by well-
documented [2] biological attributes such as island, sex, and cul-
men dimensions. The five clusters under investigation are marked
in Fig. 3, with their dominant features summarized in Table 2. Be-
sides compact Gentoo and Chinstrap groups, the dataset also in-
cludes more difficult cases: the blue bottom cluster, which sepa-
rates into three Adelie subgroups by island, and the mixed middle
cluster that combines individuals from several species.

Figure 3: Penguins’ projection with three classes but many clusters.

Across strategies, the main discriminative features were gener-
ally recovered, while S1 most reliably reproduced the discrimina-
tive patterns across clusters. For Gentoo (Red top/right), the LLM
reported larger body mass (mean 5,000–5,200,g) and flipper length
(217–220,mm) together with lower culmen depth. For Chinstrap
(Yellow left), higher culmen depth (18.4,mm) and shorter flippers
(195,mm) were consistently captured. For the more difficult cases,
only S1 reflected the even island split of the bottom cluster, aligning
with Table 2. But like S2–3, it did not identify the multi-species na-
ture of the mixed cluster, although mentioning “broad variability”.

S2 captured the main discriminative features of Gentoo and
Chinstrap (e.g., large Gentoo body mass, deeper Chinstrap bills) but
sometimes omitted secondary attributes like sex ratios. Reported
ranges were less reliable and often expressed in vague terms such
as “extreme biometric values,” and they did not consistently align
with the ground-truth values. For the bottom cluster, it only men-
tioned variability, and for the mixed cluster, it gave rather vague
labels such as “mixed set,” without reference to island subdivisions.

Table 2: Manual, distribution-based comparison of various clusters.
Attribute Yellow(l.) Red(t.) Red(r.) Blue(d.) Mixed(m.)
Island Dream Biscoe Biscoe Mixed Dream
Culmen length ↑ ↑ − ↓ −
Culmen depth ↑ ↑ − ↓ −
Flipper length − ↑ ↑ ↓ ↓
Body mass − ↑ ↑ − ↓
Sex Male Male Female Male Female

Note: Yellow = Chinstrap, Red = Gentoo, Blue = Adelie; ↑ = High, − =
Average, ↓ = Low.

S3 produced slightly richer narratives with more contextual
framing. For example, in the yellow cluster it described the non-
selected set as having “many smaller individuals,” and in the mixed

cluster it referred to “morphological diversity.” These phrasings
align with the direction of the ground-truth contrasts but remain
more qualitative and less precise than the statistical outputs. For the
blue cluster, it noted variability but not the island-based subgroups.
Bank Marketing – We also tested our approach on the larger Bank
Marketing dataset. To verify robustness, we examined the “yes”
label of the target attribute (deposit) and confirmed that the LLM
replicated the human analysis [10]. However, S3 could not be ap-
plied due to token limits, presenting a systematic challenge in pass-
ing full datasets to LLMs. In both S1 and S2, the LLM accurately
identified above-average duration and balance, along with success-
ful past campaigns (poutcome), as strong indicators of subscription.

Beyond the shared findings, S1 provided more precise and com-
prehensive insights when numerical data were available, such as ex-
act duration (537s vs 223s) and balance (C1,804 vs C1,280) values
rather than using the binary attributes. Consistent with the human
analysis, S1 repeatedly captured the strong link between not hav-
ing a housing loan and higher subscription rates (57% vs 36.6%),
whereas S2 missed this pattern entirely. In contrast, S2 tended to
describe patterns only qualitatively (e.g., more often,” overwhelm-
ingly”), limiting interpretability and comparability across analyses.
Both strategies omitted a potentially relevant feature, age, which
was examined in the human analysis; however, S1 uncovered dis-
tinctive attributes absent from S2 and the human analysis, including
tertiary-level education (appearing only once) and predominance of
“cellular” contact.

Fig. 4 presents a more exploratory analysis of this dataset, where
we select a distinct cluster as shown in (A) and compare LLM out-
puts (B.1 vs B.2). Across three trials, both S1 and S2 produced
generally accurate and consistent attributes, yet notable discrepan-
cies remain: in (B.2), pdays is incorrectly reported as –1 (actual
mean 0.36, see (B.1)), and the model emphasizes duration over the
more discriminative balance attribute (C). Notably, when numeri-
cal values are reported S1, they are always consistent across trials
(see supplementary material for details). In (B.1), S1 provides pre-
cise statements—e.g., correctly noting that 100% of the selected
points have a personal loan—whereas S2 uses vague qualifiers such
as “is very common” or “much more common,” which reduce clar-
ity and trustworthiness (B.2). Moreover, the balance attribute, a
distinctive feature with a clear separation in the distribution shown
in (C) (second-to-last bar chart), is entirely missing from the S2 in
one trial (see B.2), despite being reported with even more accurate
values in B.1 (C780.82 vs C1612.26 in all trials).
Food Nutrition – In Fujiwara et al.’s work [7], the nutrient dataset
is clustered and analyzed using ccPCA, where each feature’s rela-
tive contribution to the contrast between one cluster and the others
is computed and visualized with heatmaps. For each cluster, their
method highlights two or three features with the highest contribu-
tions, with particular emphasis on ‘calories’ and ‘fat’.

In our experiment, we generate LLM-based explanations for the
same clusters. Rather than focusing primarily on a few features, the
LLM provides more comprehensive explanations of how multiple
features collectively contribute to distinguishing one cluster from
the others, which aligns with the patterns observed in the feature
distribution view. Furthermore, the LLM has the potential to cat-
egorize features and summarize results in an accessible way. For
example, for one cluster, the LLM states that “the selected subset
differs from the non-selected group mainly by higher mineral and
fat-related values...,” where features such as calcium and sodium
are automatically categorized as minerals, and fat and saturated fat
are grouped as fat-related values.
Customer Analysis – We find that most salient differences between
clusters are reliably captured, particularly in income, spending, and
household composition, as in the human analysis [11]. For ex-
ample, Cluster 1 households were consistently described as non-
parents with higher income (75k vs 45k) and much higher spending
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Figure 4: Further analysis of the bank marketing dataset. (A) Projection of a distinct, manually selected cluster containing mixed class labels.
(B.1) The LLM’s response using the statistics strategy is highly accurate. (B.2) The LLM’s response using the subsampling strategy is vague,
limiting human understanding. (C) Data values are used as a validation method to assess the correctness of the LLM’s responses.

(1,385 vs 388), while Cluster 2 was sharply identified as younger,
low-income families with minimal spending (99 vs 788). Similarly,
in Cluster 0, strong contrasts in purchase activity were highlighted
(Wines 471 vs 227; NumStore 7.75 vs 4.89), and Cluster 3 was
distinguished by very low campaign acceptance (4.6% vs 17.6%)
together with reduced spending. These repeated patterns show that
the separation between clusters is expressed in both demographic
and behavioral terms, often with substantial numeric gaps.

Across all strategies, the differences lay less in which features
were identified and more in how they were conveyed. S1 pro-
vided precise numeric contrasts that made the cluster boundaries
explicit; for instance, “Income ≈30k vs ≈60k” for Cluster 2 and
“Response ≈4.6% vs ≈17.6%” for Cluster 3. S2 tended to gener-
alize these differences with vaguer ranges (“much less spending,”
“lower income”) and occasionally added unsupported themes such
as stronger promotion acceptance or different recency patterns. S3
leaned toward narrative framing, sometimes enhancing accessibil-
ity but at the expense of sharpness. For Cluster 1, for example, the
description “many high-income couples without children” matched
the demographic split but did not convey the exact magnitude of
the income gap. Lastly, Cluster 0 was described as “parents with
teenagers and higher spending,” which reflects the ground truth but
omits the large purchase-level differences shown in the statistics.

5 DISCUSSION

Experimental Results – We find that S1 produces precise, consis-
tent, and interpretable outputs by reporting verifiable measures such
as means, standard deviations, and test values. This strategy yields
the cleanest descriptions and makes discriminative features explicit,
which makes it the most reliable approach for systematic analysis.
The limitation is that the resulting text is more technical and less ac-
cessible to non-experts, but this does not reduce its analytical value.
S2 does reasonably well but introduces ambiguity and risks omit-
ting key discriminative features. Outputs often rely on vague lan-
guage, for example, describing a feature as “being higher” rather
than reporting absolute separations, and they are prone to overlook-
ing important features. S3 generates richer narratives that can be
more readable for non-technical users, capturing broader patterns
such as extremes, ranges, or diversity. However, these outputs are
often verbose and emphasize less relevant variation, and in 2 of the
4 datasets, S3 could not be applied due to token processing limits,
which prevent a systematic one-to-one comparison.

Reliability Considerations – As with any LLM-based method, re-
liability is a central concern. The main risks are hallucinations,
where the model introduces nonexistent features; overgeneraliza-
tion, where weak signals are overstated as strong trends; and mis-
leading fluency, where persuasive language masks factual inaccu-
racies. We address these issues by restricting prompts to observed
attributes, avoiding speculative text and extrapolation beyond the
selected cluster, and stating model limitations in the interface.
Limitations and Future Work – First, we did not explore com-
binations of the three strategies; future work could investigate hy-
brid approaches that merge the statistical precision of aggregated
evidence with the richer narratives derived from the actual data.
However, S3 was in most cases infeasible due to LLM token lim-
its, and arguably providing the entire dataset to an LLM is not the
most computationally- and energy-efficient approach. Instead, fu-
ture work could explore methods that distill or abstract the dataset
into concise (visual) representations—beyond simple statistics—
that still capture its main patterns and relationships. Our evalua-
tion was limited to four structured tabular datasets from specific
domains; expanding to non-tabular, mixed-type, or more complex
datasets would help assess generalizability. The number of sen-
tences and bullet points in the explanations was intentionally kept
short to match the needs of novice users, yet future work could ex-
plore adaptive settings that adjust detail based on user preference
or task complexity. Finally, while our analysis compared outputs
against ground-truth statistics, we did not conduct user studies; de-
signing controlled experiments with novices and experts will allow
us to measure the effect of each strategy on interpretation quality
and confidence during decision making.

6 CONCLUSION

LangLasso provides an effective entry point for exploratory analy-
sis by offering quick and accessible cluster interpretations. While
not a definitive explanation method, it is well-suited for an early-
stage analysis, teaching contexts, and novice users, where it can
lower the entry barrier to data exploration.
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