Graph Visualization Design Guidelines as Learnable Predicates
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Graphs are widely used to represent complex, interconnected data across domains, yet choosing an effective
visualization remains difficult because existing design knowledge is fragmented and inconsistent. This lack
of a unified foundation prevents researchers from integrating findings into a cumulative body of knowledge,
leaving valuable results isolated. It also hinders designers and practitioners, who cannot readily translate such
findings into actionable strategies for their own goals and contexts. We propose a predicate-based representa-
tion that formalizes visualization guidelines as bounded conditions over descriptive graph statistics. Predicates
directly mirror the qualitative structure of design guidelines. For example, a rule might specify that if graph
density is low, a node-link diagram is appropriate, whereas if density is high, an adjacency matrix should be
used. Unlike static handcrafted rules, they can also be learned, optimized, and adapted as new findings or
usage contexts emerge. As a result, fragmented knowledge is consolidated into a formal and extensible foun-
dation for graph visualization design and recommendation. We evaluate this approach by testing its ability to
(i) recover expert rules and (ii) adapt to user-specific preferences while generalizing to unseen graphs. The
results show that the learned predicates closely reproduce expert-derived guidelines, accommodate diverse
preference patterns, and achieve strong performance on held-out data, demonstrating a promising path toward

more systematic and cumulative graph visualization design knowledge.

1 INTRODUCTION

Graphs are a powerful way to represent complex, in-
terconnected data across domains ranging from bi-
ology (Baitaluk et al., 2006) and social science (Zi-
novyev, 2010) to finance (Didimo et al., 2014) and
cybersecurity (Noel et al., 2016). Yet, while graphs
themselves are flexible and expressive, effectively
visualizing them remains a persistent challenge (Li
et al., 2023)). Practitioners often rely on node-link di-
agrams rather than visualizations that may be more
effective for a given task (Keller et al., 2006). In the
remainder of this paper, we use “graph” to mean mul-
tivariate graphs unless otherwise specified.

To move beyond default choices like node-link di-
agrams, researchers have explored scenarios in which
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alternative visualization techniques are more effec-
tive. Ghoniem et al. (Ghoniem et al., 2004) found that
node-link diagrams are more effective for smaller,
sparser graphs, while adjacency matrices are more ef-
fective for larger, denser graphs. Similarly, Wang et
al. (Wang et al., 2024) found that chord diagrams
are well-suited for graphs with a medium number of
nodes (albeit loosely defined) and moderate edge den-
sities, providing a good balance between overview
and readability. Nobre et al. (Nobre et al., 2019)
took a step toward consolidating these findings and
graph visualization guidelines into recommendations
for practical use. However, these recommendations
are presented in a static table that is not easily exten-
sible, and do not cover all visualization designs (e.g.,
chord diagrams).

The limitations of current approaches based on
fragmented design guidelines pose challenges for
both researchers and practitioners. For researchers,
the lack of a shared representation means that empir-
ical findings are rarely incorporated into a common



corpus, leaving valuable results isolated rather than
building toward cumulative knowledge. For design-
ers, the lack of a common foundation makes graph
visualization design difficult. Current guidelines do
not capture factors such as domain standards, prefer-
ences, and graphs with varying complexity and statis-
tical properties. Moreover, it is often unclear whether
a guideline derived for purely structural graphs gener-
alizes to richer settings, such as multivariate graphs,
weighted graphs, or multi-graphs. Without a formal
foundation, existing design knowledge remains diffi-
cult to apply consistently and even harder to extend,
leaving research and practice disjointed.

We make two contributions to bridge this gap: (i)
a predicate-based representation of graph visualiza-
tion design guidelines, and (ii) an algorithm for learn-
ing these predicates from data. Predicates mirror the
structure of existing empirical rules and guidelines
(see [section 3] and [section 5| for a more detailed ex-
planation). To derive such rules, we propose a pred-
icate induction algorithm that learns from a labeled
dataset, where each graph is represented as a vector
of graph statistics and the label indicates the appro-
priate visualization type, based either on established
guidelines or user preferences. This algorithm not
only learns but can also optimize and adapt predi-
cates as new data or user feedback becomes available.
This predicate-based representation captures empiri-
cal findings as explicit, human-readable rules that can
be inspected, compared, and accumulated across stud-
ies. It also supports systematic refinement, since pred-
icates can be evaluated, optimized, and updated as
new evidence or feedback becomes available. Finally,
the approach remains extensible, allowing new rules,
graph features, and visualization types to be incorpo-
rated as the field evolves.

We evaluate our predicate-based representation
and induction algorithm through two experiments,
each corresponding to the usage scenarios introduced
in First, we test the system’s ability to
recover known rules by examining whether predi-
cates learned from a labeled dataset reproduce expert-
defined guidelines from the literature. Following No-
bre et al.’s reference table (Nobre et al., 2019)), we la-
bel synthetically generated graphs according to their
most appropriate visualization type and evaluate how
closely the recovered predicates match these expert
rules. Second, we evaluate personalization and rec-
ommendation by simulating different user preference
profiles and testing how well the induced predicates
generalize to held-out graphs. We generate labels that
vary in their adherence to literature-derived guide-
lines and assess whether the learned predicates both
adapt to these preferences and correctly recommend

visualizations. Across both experiments, our ap-
proach successfully reconstructs expert rules, adapts
to diverse usage patterns, and generalizes well on
held-out data, demonstrating the potential of pred-
icates as a foundation for accumulating and opera-
tionalizing graph visualization design knowledge.

2 RELATED WORK

Prior work can be grouped into two main areas: stud-
ies evaluating the effectiveness of graph visualiza-
tions, and systems that map data properties to visual
encodings using either rules or machine learning.

2.1 Visualizing Graphs

Recent work on graphs in practice highlights that ef-
fective visualization is often indispensable for real-
world analysis, where users rely on visual encodings
to navigate complexity and extract insights (Li et al.,
2023). Nobre et al. (Nobre et al., 2019) categorize
graph visualizations into two high-level groups: ex-
plicit and implicit approaches. Schulz et al. (Schulz,
2011), focusing on tree visualizations, propose a tax-
onomy that instead distinguishes among explicit, im-
plicit, and hybrid designs. Explicit approaches in-
clude node-link layouts (Battista et al., 1998), (Her-
man et al., 2000), (Schulz et al., 2013), (Nobre
et al., 2019) and tabular representations (Becker et al.,
1995)), (Godsil and Royle, 2001), (Buono et al., 2021)),
(Bezerianos et al., 2010), (Longabaugh, 2012), while
implicit approaches are common for trees and hier-
archies (Johnson and Shneiderman, 1998)), (Andrews
and Heidegger, 1998), (Nobre et al., 2019). There
are also hybrid alternatives available such as Node-
Trix (Henry et al., 2007).

Researchers have devoted substantial effort to em-
pirically evaluating when and why particular tech-
niques are most effective, with the goal of distilling
guidelines that can inform practice. For example,
Ghoniem et al. (Ghoniem et al., 2004) and more re-
cently Wang et al. (Wang et al., 2024) conducted con-
trolled experiments demonstrating how the suitability
of visualization methods depends on graph character-
istics such as size and density. Purchase et al. (Pur-
chase et al., 2002) examined the role of layout aes-
thetics, such as minimizing edge crossings, maintain-
ing uniform edge lengths, and promoting symmetry,
in improving graph readability. Similarly, Keller et
al. (Keller et al., 2006) compared the effectiveness
of matrices versus node-link diagrams in engineer-
ing design contexts, revealing domain-specific trade-
offs. Beyond these focused experiments, Vehlow et
al. (Vehlow et al., 2017) provided an empirical syn-



Node-Link (Explicit) Tabular (Explicit) Treemap (Implicit) NodeTrix (Hybrid)

Figure 1: Examples of graph visualization techniques cor-
responding to the categories in node-link
(Lambert et al., 2012)) and adjacency matrix (Alper et al.,
2013), Treemap (Slingsby et al., 2009), and NodeTrix
(Henry et al., 2007).

thesis of techniques for visualizing communities and
clustered graphs, consolidating findings across multi-
ple studies.

Building on this line of work, Nobre et al. (Nobre
et al., 2019) developed a reference table scoring visu-
alization types against selected graph characteristics,
such as number of nodes/edges, graph type, and at-
tribute richness. Their study provided the main inspi-
ration for ours, motivating us to formalize these rules
in an extensible and learnable representation.

2.2 Systems for Mapping Data to
Visualizations

Systems for mapping data to visualizations aim to op-
erationalize design knowledge by linking data charac-
teristics with appropriate visual encodings. We cate-
gorize prior work into two main paradigms (Hu et al.,
2019): rule-based and machine-learning approaches.

Rule-Based Approaches: Rule-based systems spec-
ify mappings through handcrafted guidelines, often
grounded in perceptual principles. For tabular data,
a range of systems have been proposed (Mackinlay,
1986)), (Casner, 1991), (Roth et al., 1994), (Bertin,
1983)), (Cleveland and McGill, 1984)), (Wongsupha-
sawat et al., 2015)), (Wongsuphasawat et al., 2017),
(Mackinlay et al., 2007), (Moritz et al., 2018)) that
rank or recommend visualizations based on percep-
tual and structural principles. For graph visualization
specifically, only specialized rule-based tools exist.
For example, TreePlus (Lee et al., 2006) and NetLens
(Kang et al., 2007) focus on narrow topological cases
such as tree-like structures or actor—group networks.
The work of Nobre et al. (Nobre et al., 2019) in-
troducing the scoring table also falls in this category.
While valuable, this framework does not consider nu-
ances such as directedness, weightedness, temporal or
spatial dimensions, self-loops, or parallel edges, lim-
iting its applicability across the full diversity of graph
data. Also, fixed rules struggle to capture the com-
plexity of graph data. Handcrafted mappings often
rely on simple statistics such as node count or den-
sity, but they do not scale to multivariate graphs with

attributes, weighted edges, or domain-specific struc-
tures (e.g., biological networks vs. social networks).
Finally, as graphs vary along many interacting statis-
tics, the combinatorial growth of rules becomes un-
manageable. Capturing all relevant combinations by
hand is infeasible, and conflicting prescriptions are
difficult to reconcile without a learnable approach.

Machine-Learning Approaches: ~ Machine-learning
approaches address some limitations of handcrafted
rules by learning mappings directly from data. For
tabular visualization, a range of machine-learning and
query-driven systems have explored automated rec-
ommendation (Hu et al., 2019)), (Luo et al., 2018), (L1
et al., 2021), (Wongsuphasawat et al., 2016)), (Dibia,
2023)), leveraging corpora, intent modeling, declara-
tive queries, and large language models. To the best of
our knowledge, no machine learning—based systems
currently exist that map graphs to visualizations, and
no corpus of graph—visualization mappings is avail-
able to train such models, which makes data-driven
approaches particularly challenging.

In summary, prior work has established a broad
repertoire of graph visualization techniques, empir-
ical guidelines linking them to graph statistics, and
systems that attempt to operationalize these mappings
through rules or learning. Yet, these contributions re-
main fragmented. This gap motivates our contribu-
tion, namely a predicate-based representation that for-
malizes guidelines as explicit conditions over graph
statistics, and an induction algorithm that learns these
predicates from data.

3 DESIGN GUIDELINES AS
PREDICATES

Rule-based and machine-learning approaches have
both advanced automated visualization design, but
each is limited for graph data: rule-based systems
are interpretable yet brittle and hard to extend, while
machine-learning systems adapt flexibly but often act
as opaque black boxes. We address this gap by ex-
pressing graph visualization guidelines as bounded,
interpretable predicate conditions over graph statis-
tics. This section focuses on the representational
role of predicates and how they consolidate design
knowledge. [section 4] then describes how they can be
learned from labeled data.

3.1 Background: Predicates

A predicate is a logical condition that evaluates to
true or false for a given object. Such conditions
are typically expressed as functions that take an in-



put and return a Boolean value; i.e., for a number x,
ISEVEN(x) returns true if x is even and false other-
wise.

In our setting, predicates are built from clauses
over graph statistics, where each statistic can be con-
tinuous, binary, or categorical. A clause constrains a
given graph statistic x according to its type:

¢ Continuous: an interval constraint that evaluates
to true for a graph G when a < x < b, and to
false otherwise, where a € R and b € R are the
parameters of the predicate.

* Binary: an equality constraint that evaluates to
true when x = a, and false otherwise, where
a € {0, 1} is the parameter of the predicate.

» Categorical: a membership constraint that evalu-
ates to true if x € a where a is a set of values and
the parameter of the predicate.

For example, a continuous clause might specify
that the graph’s density lies within a given interval
(density € [0,0.1]). A binary clause could state that
the graph is directed (is-directed = 1). A categorical
clause might require that the graph type belongs to a
subset of categories (graph-type=tree). A predicate
is then the conjunction of one or more such clauses,
and it evaluates to true if and only if all of its clauses
evaluate to true. For instance, (density € [0,0.1] A
is-directed = 1 N\ graph-type=tree), which evaluates
to true only for graphs that are simultaneously sparse,
directed, and a tree, in other words, a hierarchy.

This abstraction provides a natural way to cap-
ture design guidelines. Guidelines can be understood
as statements about which kinds of graphs call for
which design choices, and predicates supply the for-
mal structure to express such statements in a clear
and extensible manner. By encoding guidelines as ex-
plicit conditions over graph statistics, predicates can
be evaluated to determine which guideline best fits
a given graph. At the same time, the representa-
tion is modular, since new guidelines or visualization
techniques can be incorporated by adding or adjust-
ing predicate clauses rather than reworking the en-
tire rule set. Finally, predicates preserve transparency,
since each outcome can be traced back to explicit con-
ditions, allowing researchers and practitioners to in-
spect and refine the reasoning behind design choices.

3.2 Graphs and Predicates in Feature
Space

Each graph G can be described by a vector of statistics
s = (s1,52,...,5u), Where each s; represents a graph
property such as its density, number of nodes, or clus-
tering coefficient. This vector embeds G as a point in

Feature Space
Number of nodes

Components

Figure 2: From predicates to feature space: each box corre-
sponds to a bounded region of graph statistics that encodes
a visualization guideline.

RM_ which we call the feature space of graphs. The
feature space provides a common coordinate system
in which graphs can be compared, forming the basis
for expressing design guidelines as predicates and for
learning and refining them from data.

In this space, a predicate clause restricts one coor-
dinate of the feature vector to an allowed set of values,
while a conjunction of predicate clauses defines an
axis-aligned region of the space. Visualization guide-
lines can then be expressed as such regions, since they
specify conditions on which kinds of graphs are suited
to which design choices. For example, when con-
sidering modularity and clustering coefficient, each
graph is represented as a point in the two-dimensional
plane. The guideline “use NodeTrix for highly clus-
tered and modular graphs* then corresponds to a rect-
angle bounded by (modularity € [0.6,1.0] A cluster-
ing coefficient € [0.5,1.0]).

More elaborate guidelines can be expressed as
unions or intersections of such regions, capturing con-
ditions that overlap or exclude each other. Represent-
ing predicates in feature space makes the structure
of design knowledge explicit. Guidelines that over-
lap correspond to alternative but compatible design
choices, while disjoint regions signal potential con-
flicts. This geometric view also supports consolida-
tion, because rules derived from different studies can
be compared by examining how their regions align,
and newly proposed rules can be integrated by adding
regions to the space.

At the same time, the rigidity of hard cut-offs be-
comes apparent in this representation. Two graphs
with nearly identical properties may fall on opposite
sides of a boundary. For example, a hierarchical graph
with 10 layers may satisfy a sunburst guideline, while
one with 11 layers does not, even though they are
nearly indistinguishable in practice. Such discontinu-
ities underscore the limitations of hard, static bound-
aries and motivate a probabilistic extension. In
tion 4] we build on the feature-space representation to
relax these hard cut-offs, allowing predicate bound-
aries to be learned and adapted from data.



4 PREDICATE INDUCTION
ALGORITHM

While the predicate-based representation from the
previous section makes design guidelines inter-
pretable, manually curating predicates as design rules
is insufficient. The landscape of graph visualization
evolves with new findings, diverse datasets, and shift-
ing user preferences. To remain useful, predicates
must therefore be induced from data rather than only
prescribed in advance. Predicate induction addresses
this by making the axis-aligned regions learnable.

Learning Predicate Regions: Instead of fixing re-
gions a priori, we optimize them to align with la-
beled training examples. Building on the approach
of Montambault et al. (Montambault et al., 2024),
we formalize predicate induction through two com-
ponents: a probability function, which evaluates how
well a graph satisfies a candidate predicate, and a loss
function, which guides the adjustment of predicate in-
tervals. Together, these elements define an optimiza-
tion procedure that refines predicates into accurate
and generalizable design rules.

The Probability Function: For each visualization de-
sign guideline v, we define a candidate predicate P,
as a conjunction of bounded conditions over graph
statistics. Formally, let ®, = (¢1,¢2,...,¢uy) be the
parameters of learnable predicate clauses for M graph
statistics. Each clause ¢; := (u;, r;) specifies a learn-
able region for the j-th statistic. We write s; =
(si1,8i2,...,sm) for the statistics vector of a given
graph i, with s;; denoting its value on the j-th statis-
tic. The induction algorithm then evaluates how well
s; satisfies @, through a probability function:
1
Pr(®,,s;) := 1
(Borsi) L+ X0 Z(9),5i)) M

Loss Functions by Data Type:  The loss function
Z(0j,sij) specifies the mismatch between the value
sij and the clause ¢;. We define a loss function
for each data type represented in the graph statistics:
continuous, binary, and categorical. For continuous
statistics, e.g., number of nodes or edges, we define a
differentiable bump function:

gcontinuous((pﬁsij) = |rl . (Sij - “j)'b
J
where b controls the steepness and roundness of the
bump (empirically, we set b = 3). This function gives
low loss (high probability) to values near the midpoint
and penalizes those farther away.
For binary statistics, e.g., graph statistics such as
is-directed or is-multi-graph, we denote the learnable

parameter, sensitivity for the binary variable, as ¢; :=
(wj). The loss is defined as:

gbinary((bjasij) = exp(—sij . Wj)

where s;; € {—1,1} is the binary value, and w; is a
learned weight. A positive w; favors s;; = 1 in that it
reduces the loss, while a negative w; favors s;; = —1.

For categorical statistics, e.g., graph-type € [Tree,
Sparse], the learnable parameters for the clause is list
of j := (Wjc,,Wje,,...). We define loss as the aver-
age binary loss over all categorical values:

Z Sije Wj)

c€eC;

fcalegorlcal (¢] ) Slj - eXP

where C; is the set of all possible values of the j-
th statistic, and |C}| its cardinality. w; . is a learned
weight for a given value ¢ in C;. s;; - is used to denote
a binary value, where s;; . = 1 if s5;; = ¢ and s;j, =
—1 otherwise. In this way, categorical variables are
treated similarly to numbers, preserving consistency
in our probabilistic framework.

Optimization Objective: ~ Let S denote the set of
graph statistics vectors over a set of graph instances.
Y, is a vector of length |S| representing the labels of a
visualization design v (e.g., v = node-link) such that
¥y, is a binary value denoting if graph s; is labeled as
v. Given the graphs S and the labels Y;,, we compute
an optimal predicate for the visualization v by mini-
mizing the binary cross entropy:

(CI) ‘S Y ZYWIOg Pr(q)\/7sl]))

+ (1 —yvﬁi)log (1—Pr(Dy,si)))

This optimization adjusts the centers and ranges of
each predicate’s intervals in continuous graph statis-
tics, as well as their sensitivity in binary and cat-
egorical cases, to ensure that the probability scores
align with the labeled examples. Each optimized re-
gion in feature space then corresponds to a learned
visualization guideline. For instance, if the training
data consistently labels sparse graphs with fewer than
200 nodes as ‘“node-link,” the induction algorithm
will converge on a predicate approximating (density
€ [0,0.1] A node count € [0,200)).

By learning predicates from labeled examples,
our approach moves beyond fixed, hand-crafted rules.
The induction algorithm produces guidelines that re-
main interpretable as ranges on graph statistics, but
that also adapt to new evidence, user preferences, or
domain-specific contexts. This flexibility makes pred-
icates both a stable representation of guidelines and a
mechanism for continuous refinement.

(@)



S PREDICATES APPLIED TO
GRAPH VISUALIZATION

We now apply predicates to graph visualization by
defining the graph statistics that form the input space
and examining how predicate-based guidelines be-
have on graphs. This illustrates how the earlier ab-
stract representation becomes concrete in practice.

5.1 Input Space

To determine graph statistics that comprise the input
space, we began with the 168 references compiled by
Nobre et al. (Nobre et al., 2019) and extended this
corpus with papers published in the past five years in
TVCG and CHI. Our initial search yielded 1,680 pa-
pers in TVCG and 2,200 in CHI containing the key-
word “graph.” From this set, we retained only those
that explicitly articulated design guidelines or em-
ployed a graph statistic as a central element in the
design or evaluation of a visualization technique. Af-
ter applying these criteria, the corpus comprised 193
papers. From this refined set, we systematically ex-
tracted the graph statistics identified by authors as
influential for visualization design and effectiveness.
We also incorporated a small set of additional graph
metrics based on the authors’ domain knowledge, en-
suring coverage of statistics commonly used in prac-
tice but underrepresented in the surveyed literature.

The resulting input space (see reflects
the statistics most often used to inform visualization
choices in the literature and in practice. For clarity,
we organize these statistics into four broad categories
that frequently recur in the literature: general proper-
ties, connectivity measures, cohesion measures, and
elements. These statistics serve as the features over
which our induction algorithm learns predicate re-
gions, enabling guidelines to be expressed, refined,
and compared systematically.

5.2 Uncertainty and Trade-offs in
Guidelines

Visualization design guidelines are rarely absolute.
Graphs often fall near the boundaries of statistical
ranges, and different guidelines may overlap or even
conflict. Moreover, empirical studies frequently dis-
agree on the exact thresholds, underscoring the need
for a representation that tolerates uncertainty.

For example, consider three graphs with density
values of 0.05, 0.1, and 0.15. A deterministic pred-
icate such as density € [0,0.1] applied to these three
groups would evaluate to true, true, and false, respec-
tively. This draws a hard boundary between those in-

Category Measure Data Type

General Graph type [Tree, Cycle, ...]
Directed Boolean
Spatial Boolean
Planar Boolean
Hypergraph Boolean
Layer count Numeric (integer)

Connectivity Self-loops Numeric (integer)
Parallel edges Numeric (integer)
Size (nodes and Numeric (integer)
edges)
Components Numeric (integer)
Connectivity / Numeric (float)
paths
Diameter Numeric (integer)
Average path Numeric (float)
length

Cohesion Cut ratio Numeric (0, 1)
Separability Numeric (0, 1)
Density Numeric (0, 1)
Cluster density Numeric (0, 1)
Clustering Numeric (0, 1)
coefficient
Triangle count Numeric (float)
Modularity Numeric (0, 1)
Average degree Numeric (float)
Centrality Numeric (float)
measures
Communities Numeric (integer)
Clusters Numeric (integer)

Elements Node/Edge types Numeric (integer)
Node/Edge Numeric (integer)
attributes

Table 1: Graph statistics that define the input feature space.

side and outside the range, but misses important nu-
ance. The first graph lies in the center of the inter-
val and strongly satisfies the guideline, the second sits
right on the boundary, and the third is just outside the
range and often nearly indistinguishable from the for-
mer in practice (note: the range of density is from 0
to 1). By interpreting predicate membership proba-
bilistically (see [Equation T, these cases are differen-
tiated: the first graph receives the highest probability,
the second moderate, and the third minimal, but non-
zero, probability, despite having a graph statistics that
lie outside of the predicate’s interval.

Applied to graph visualization, this treatment of
uncertainty has several implications. First, it clari-
fies trade-offs in overlapping regions of the feature
space where a single graph meets the predicates of
more than one visualization guideline. That is, when
its statistics satisfy multiple conjunctive conditions si-
multaneously, making it eligible for several visualiza-
tion types at once. Second, it reduces the brittleness
of fixed thresholds. For example, values in guide-
lines like “greater than 200 nodes” or “density below
0.1” become zones of gradual transition rather than



hard cut-offs. Third, it provides a basis for comparing
guidelines across studies, as overlapping regions re-
veal consensus while divergences highlight conflicts
or gaps. Finally, it creates opportunities for adaptive
or personalized visualization. When multiple guide-
lines receive partial support, their relative probabili-
ties can guide recommendations while keeping con-
ditions interpretable. In this way, predicates encode
graph visualization guidelines while also revealing
their uncertainty, overlaps, and points of contention.

6 USAGE SCENARIOS

We now illustrate how predicates can be used in prac-
tice through two usage scenarios: recovering implicit
rules from labeled data and adapting predicates to
user preferences. evaluates these scenar-
ios by testing rule recovery and assessing how well
learned predicates adapt to user preferences and gen-
eralize to unseen graphs.

6.1 Rule Recovery

A major advantage of the predicate-based representa-
tion is its ability to recover design rules directly from
labeled data rather than relying on manually encoded
guidelines, as in systems like Draco (Moritz et al.,
2018). Given a dataset of graphs labeled with their
designated visualization type, each graph is mapped
to a feature vector of statistics, and the learning pro-
cess induces a predicate for each visualization. Each
clause specifies a constraint on a statistic, and opti-
mization adjusts these parameters so that Pr(®,,s;)
(Equation I)) aligns with the observed labels, converg-
ing on regions of the feature space that best separate
visualization choices. For example, if graphs with
high modularity and clustering coefficient are consis-
tently visualized with NodeTrix diagrams, the learn-
ing process would recover a predicate such as modu-
larity € [0.6,1.0] A clustering coefficient € [0.5,1.0],
capturing conditions under which hybrid visualiza-
tions are preferred.

6.2 Personalization and
Recommendation

Predicates not only recover rules from data but also
support personalization and recommendation. Be-
cause each guideline is expressed as a conjunction
of clauses ®, = (@y,...,¢y), user or domain pref-
erences can be incorporated by adjusting clause in-
tervals: positive feedback expands relevant ranges,
while negative feedback contracts them. This yields

interpretable refinements, in contrast to prior person-
alized systems (Gotz and Zhou, 2009), (Mutlu et al.,
2016), (Ottley et al., 2015), (Qian et al., 2022), and
allows separate predicate sets {®,} to reflect differ-
ent user groups or contexts. The same structure en-
ables visualization recommendation for new graphs.
Mapping a graph G to a feature vector s and eval-
uating Pr(®,,s) produces a probability distribution
over visualization types that reflects how well the
graph satisfies each guideline. Graphs deep inside a
predicate’s region receive strong support, while those
near boundaries may partially satisfy several guide-
lines, making trade-offs explicit. Because recom-
mendations derive directly from clause contributions
(e.g., size, density, clustering), they remain fully in-
terpretable. Treating personalization and recommen-
dation as two uses of the same probabilistic evalua-
tion unifies user adaptation and design guidance in a
transparent, extensible model.

7 EVALUATION

We evaluate our predicate representation and induc-
tion algorithm through two structured experiments:

1. Rule recovery — testing whether the induction al-
gorithm can reconstruct known guidelines when
only labeled data is provided.

2. Personalization and recommendation — evalu-
ating how predicates adapt to user-specific prefer-
ences and how well these personalized predicates
generalize to unseen graphs.

Evaluation Data We generated a dataset of 1200
sample graphs, consisting of 80% sparse and dense
graphs, 10% cycles, and 10% trees. Graph sizes range
from 2 to 200 nodes, and include both simple and
multivariate graphs. Graph statistics were extracted
for all graphs to produce feature vectors. We use 1000
graphs for training (rule recovery and personalization)
and reserve 200 graphs for evaluating generalization.

7.1 Recovering Rules from Labeled
Data

This experiment corresponds to the rule recovery sce-
nario. Here, the induction algorithm is trained solely
on labeled graph—visualization pairs, without being
given any predefined predicates or expert rules. The
aim is to test whether the algorithm can infer mean-
ingful predicates directly from the data, mimicking a
situation where only empirical evidence is available.
If the learned predicates match the original ones used
to generate the labels, we can conclude that the in-



duction algorithm has successfully recovered the un-
derlying design rules.

Generating Ground-truth: ~ To establish an impar-
tial ground-truth dataset that maps each generated
graph to a visualization recommendation, we refer
to Nobre et al. (Nobre et al., 2019)’s reference ta-
ble. In their scheme, a score of zero indicates no
support and a score of three indicates strong support.
To make these recommendations operational, we ex-
pressed each “full support” condition (score = 3) as
a predicate clause over the corresponding statistic.
When multiple statistics were mentioned together, we
combined them conjunctively into a single predicate.
Applying these predicates to our generated graphs al-
lowed us to assign each graph the visualization type it
best supports. This procedure produced the ground-
truth labels for our feature vectors. Notably, their
guidelines seldom, if ever, recommend the use of ad-
jacency matrices, treemaps, and sunbursts. The pred-

icates are shown in[Table 2]
Visualization Predicate
Node-Link n-nodes € [0,100], graph_type

€ [sparse,k — partite,tree], node_types
€[1,1], and edge_types € [1,1]

Attribute- n_nodes € [0,100], graph_type

driven € [sparse,k — partite], node_attributes
positioning € [0,5], and node_types € [1,5]
Attribute-
driven faceting

n-nodes € [0, 100], graph_type € [sparse],

node_attributes € [0,5], and node_types

€[1,1]

Adjacency n_nodes € [0,100], graph_type € [dense],

Matrix node_attributes € [5,10], node_types
€[1,1], edge_attributes € [0,3], and
edge_types € [1,1]

Quilts n-nodes € [0, 100], graph_type

€ [sparse,k — partite,tree], node_attributes

€ [0,10], node_types € [1,5],

edge_attributes € [0, 10], and edge_types

c[L,1]

n-nodes € [0,100], graph_type

€ [sparse,dense], node_attributes € [0,10],

node_types € [1,5], edge_attributes

€ [0,10], and edge_types € [1,5]

BioFabric

Treemap graph-type € [sparse,tree],
node_attributes € [0,5], and node_types
€[1,1]

graph-type € [sparse,tree],
node_attributes € [0,5], and node_types
e [1,1]

Sunburst

Table 2: Nobre et al.’s multivariate graph visualization de-
sign guidelines (Nobre et al., 2019) converted to predicates.

Reconstructed Predicates To assess the ability to
recreate the guidelines as predicates, we compare the
learned predicates with the Nobre et al. (Nobre et al.,
2019) guidelines by evaluating the degree of over-
lap for each predicate clause, measured using their

intersection over union (IOU). The values of IOU
range from O to 1, where O represents low accuracy
where there is no overlap between the ground-truth
and the learned predicates, and 1 means high accu-
racy with complete overlap between the two. Aver-
age IOU for each visualization indicate that,
in most cases, the predicates learned closely match
the ground truth. The predicates defined for the ad-
jacency matrix and sunburst visualization types could
not be recovered, since Nobre et al.’s guidelines never
recommended these techniques when only consider-
ing scores of three, and therefore they did not ap-
pear in the labeled dataset. Overall, the general match
between the ground-truth and the learned predicates
demonstrates that the induction algorithm can induce
visualization guidelines from data.

Visualization Average IOU (higher better)
Node-Link 0.83
Attribute-driven positioning 0.55
Attribute-driven faceting 0.79
Quilts 0.65
BioFabric 0.31
TreeMap 0.66

Table 3: Average IOU for each visualization defined by No-
bre et al. (Nobre et al., 2019).

7.2 Personalization and
Recommendation

This experiment corresponds to the personalization
and recommendation scenario. Here, we evaluate
whether the system can adapt to user-specific prefer-
ences and generalize the learned predicate boundaries
to unseen graphs. We test whether the algorithm can
flexibly adapt when users deviate from given rules.
By simulating different adherence levels, we assess
the robustness of the induction to noisy or inconsis-
tent feedback.

We base these labels on a set of predicates de-
rived from prior literature (see [section 9), which cap-
tures common guidelines. While not exhaustive, this
collection spans the major visualization types studied
in the literature and provides a representative base-
line of design rules for our evaluation. To simulate
different behaviors, we generate three user profiles:
an informed user who follows expert predicates con-
sistently, a semi-informed user who deviates 25% of
the time, and an uninformed user who deviates 50%
of the time. These profiles produce three versions
of training labels. Running predicate induction on
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Figure 3: Generalization performance across user types.

each labeled dataset produces one learned predicate
for every visualization type. For a given graph, the
algorithm assigns a score to each visualization type
based on how well the graph satisfies its correspond-
ing predicate. The visualization type with the highest
score is recommended as the label. If two types re-
ceive the same score, we break the tie by choosing
the type that appeared more frequently in the training
labels. After inducing predicates from each user’s la-
beled data, we evaluate recommendation performance
on the 200 held-out graphs. A prediction is consid-
ered correct when the visualization with the highest
probability matches the simulated user’s label.

As shown in predicates learned from
consistent user behavior generalize well to unseen
data, achieving an F1-score of 0.70. Performance de-
clines as user behavior becomes noisier, but the sys-
tem still captures broad patterns in preference and
applies them to new graphs. These results highlight
that personalization and recommendation emerge nat-
urally from the same predicate-based mechanism.

8 DISCUSSION

While the predicate-based representation and the
mechanism for learning predicates provide a foun-
dation for consolidating graph visualization design
knowledge, several limitations highlight opportuni-
ties for future work. At the same time, these con-
tributions open pathways toward more systematic, in-
terpretable, and cumulative progress in graph visual-
ization research and practice.

Expressiveness of the Predicate Representation: In
the present formulation, each predicate is treated as
an independent, conjunctive rule defining a single
bounded region of the feature space. This structure
improves interpretability but limits expressiveness.
Dependencies between conditions, such as density
thresholds that differ for directed versus undirected
graphs, cannot be modeled. Likewise, many visual-
ization types may be appropriate under multiple dis-
joint conditions, which a single predicate region can-
not capture. Extending the representation to support
conditional or disjunctive rules would make the model
more expressive. Additionally, our approach maps

graphs to visualization types, maintaining tractabil-
ity but omitting encoding-level considerations such as
layout aesthetics, perceptual constraints, and interac-
tion techniques. Extending predicates to capture these
lower-level guidelines would expand their applicabil-
ity and better support design decisions. Applying this
approach to tabular data, is more difficult, since tab-
ular visualizations often rely on transformations like
grouping or binning, which cannot be reduced to sim-
ple bounded conditions.

Integrating Expert Knowledge with Learned Rules:
The current system focuses on learning predicates
from labeled data. Incorporating expert-derived
guidelines as priors, then refining them through feed-
back, would combine the stability of established
knowledge with the adaptability of data-driven re-
finement. Such integration would support cumulative
knowledge building rather than treating expert rules
and learned rules as separate resources.

Balancing Multiple Valid Explanations: ~ For many
visualization decisions, more than one predicate may
offer a valid explanation. The present approach con-
verges on a single predicate per visualization type,
simplifying outcomes but not fully reflecting the di-
versity of possible design rationales. Future work
could incorporate weighting or complexity penalties
to balance multiple competing explanations, favor
simpler predicates, or highlight alternative interpre-
tations when several explanations hold.

Toward Systematic and Cumulative Design Knowl-
edge: A key challenge for the field is the ab-
sence of systematic methods to compare graph-
visualization techniques, assess their effectiveness
across graph types and tasks, or determine when
new designs are warranted. A shared repository of
graph—visualization mappings would support synthe-
sis, reproducibility, and large-scale learning, while
clarifying the relative importance of the graph statis-
tics used in practice. Identifying which features
best predict visualization effectiveness would ad-
vance evidence-based, generalizable guidelines. By
expressing such guidelines as predicates and refining
them through learned adjustments, this work provides
a structured framework that unifies interpretability,
adaptability, and transparency, which helps consoli-
date dispersed design knowledge into a cumulative,
coherent foundation.

9 CONCLUSION

This paper offers two contributions: a predicate-based
representation that formalizes visualization guide-
lines as bounded, interpretable conditions over graph
statistics, and a learning mechanism that refines these



predicates from labeled data or user feedback. To-
gether, these components enable systematic compar-
ison, extension, and consolidation of design knowl-
edge. Looking forward, we will expand the predi-
cate space to include additional statistics, visualiza-
tion types, and conditional logic. With such advances,
predicates could evolve into a unifying resource that
supports both visualization research and evidence-
based practice.
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APPENDIX

Literature Predicate Set

provides a sample of graph visualization guidelines expressed in predicate form. This set, derived from

prior studies, is not comprehensive but demonstrates the idea.

Visualization Predicate(s)

Derived from

Explanation

Node-Link  density € [0,0.1], is_directed € (Ghoniem et al, Suitable for low-density directed
[0.5,1], self_loops € [0,50] 2003) graphs with some self-loops.
components € [I,5], avg.degree (Ghoniem et al.,| Effective for graphs with a few com-
€ [1,3], clustering_coefficient [2005) ponents and low connectivity.
€[0.1,0.4]
node_types € [1,3], edge_types € (Ghoniem et al,] Good for simple node and edge types
[1,2], eccentricity € [0,5] 2005) (Kerren et al.,| and limited eccentricity.

2014)

Matrix density € [0.1,1], avg.-degree (Ghoniem et al,] Can handle higher densities and mod-

€ [10,50], modularity € [0.3,0.7] 2004) (Behrisch|  ular structures.

et al., 2016)
betweenness_centrality € [0.2,0.5], (Ghoniem et al.,| Suitable for spotting highly connected
eigenvector_centrality € [0.2,0.8] 2005)) nodes.
node_attributes € [2,10], (Ghoniem et al.| Suitable for graphs with numerous at-
edge_attributes € [1,5] 2003) tributes.

NodeTrix communities € [4,10], (Henryetal.,2007) Ideal for modular, highly clustered
clustering_coefficient € [0.5,1], graphs.
density € [0.1,0.5]
node_types € [2,5], modularity € (Henryetal., 2007)  Useful for graphs with moderate mod-
[0.3,0.8], avg_degree € [5,15] ularity and average degree.
node_attributes € [3,10], edge_types (Henry et al., 2007)  Works well with graphs featuring
€[1,3] moderate attribute diversity.

Node-Link  is_spatial € [0.5,1], is_.directed € (Schéttler et al.| Excellent for spatially relevant graphs

Map [0,1], avg_degree € [1,5] 2021) with limited density.
components € [1,5], (Schottler et al.|] Useful for few-component graphs
degree_assortativity € [—0.5,0.5] 2021) with low degree variance.

PaohVis n_nodes € [50,500], node_types € (Buonoetal,2021) Effective for medium-sized graphs
[3,6], edge_types € [2,5] with multiple node and edge types.
density € [0.05,0.2], avg_degree € (Buonoetal,2021)  Suitable for medium-density graphs.
[5,10], transitivity € [0.2,0.6]

Chord Dia- n_nodes € [0,6], edge_types € [1,3], (Wangetal,2024)  Most effective for small graphs with

gram clustering_coefficient € [0.3,0.7] low clustering.
components € [I,2], avg_degree € (Wang et al., 2024) Works best with a few components
[2,4], parallel_edges € [0,5] and minimal parallel edges.

Treemap graph-type € [0.5,1.5], modularity € (Scheibel et al.| Ideal for hierarchical or tree structures

[0.5,1], n_nodes € [50,200]

node_attributes €
edge_attributes € [0,2]

[5,20],

components € [1,1], is_spatial €]0,1]

2020)
(Scheibel et al.,
2020)
(Scheibel et al.,
2020)

with medium node count.

Useful for visualizing attribute-rich
nodes with minimal edge attributes.

Effective for single-component, spa-
tially relevant graphs.

Table 4: Our predicate mapping of existing graph visualizations to design guidelines.



