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ARTICLE INFO ABSTRACT
Keywords: Viscoelastic solids and granular materials have been extensively studied in Classical Continuum Mechanics
Peridynamics (CCM). However, CCM faces inherent limitations when dealing with discontinuity problems. Peridynamics, as a

Viscoelastic simulation
Granular materials
Multi-material coupling

non-local continuum theory, provides a novel approach for simulating complex material behavior. We propose
a unified viscoelasto-plastic simulation framework based on State-Based Peridynamics (SBPD) which derives a
time-dependent unified force density expression through the introduction of the Prony model. Within SBPD, we
integrate various yield criteria and mapping strategies to support granular flow simulation, and dynamically
adjust material stiffness according to local density. Additionally, we construct a multi-material coupling system
incorporating viscoelastic materials, granular flows, and rigid bodies, enhancing computational stability while
expanding the diversity of simulation scenarios. Experiments show that our method can effectively simulate
relaxation, creep, and hysteresis behaviors of viscoelastic solids, as well as flow and accumulation phenomena
of granular materials, all of which are very challenging to simulate with earlier methods. Furthermore, our
method allows flexible parameter adjustment to meet various simulation requirements.

1. Introduction Kelvin—Voigt models. While widely used in structural mechanics, when

handling fractures, separations, and large deformations, such models

Viscoelastic solids and granular materials are ubiquitous in our daily
lives and industrial production. From kneading dough and biological
soft tissues to natural disasters like avalanches and mudflows, these
materials demonstrate complex dynamic characteristics. Accurate sim-
ulation of these behaviors is of great significance to fields such as
materials science, geotechnical engineering, biomedical simulation, and
— last but not least — computer graphics.

Viscoelastic solids have time-dependent characteristics including
stress relaxation, creep, and hysteresis. For large deformations, memory
effects and nonlinearities further complicate the simulation. Granular
materials consist of a large number of discrete particles and can exhibit
both the shear resistance of solids and the deformability of fluids. Re-
cent advances in computational and physical modeling techniques have
made the accurate simulation of viscoelastic and granular materials an
active area of research in both computer graphics and computational
physics.

Early simulation methods used mesh-based discretization strategies
such as the Finite Element Method (FEM) [1] and described the time-
dependent behavior of viscoelastic materials by generalized Maxwell or

encounter complex challenges when topology changes and meshes need
reconstruction. Mesh-free methods such as Smoothed Particle Hydrody-
namics (SPH), the Material Point Method (MPM), and Position-Based
Dynamics (PBD) compute physical interactions through particle-based
interactions and show clear advantages in handling fracture, large
deformation, and free surface flows. They can model a wide range
of natural phenomena and materials such as muscle [2], sand [3,4],
snow [5,6], and multi-material mixtures [7,8].

However, most existing mesh-free methods still rely on CCM with
foundations in partial differential equations (PDEs). PDEs are not ap-
plicable at discontinuities, e.g., cracks and interface slippage; additional
techniques are needed to capture such phenomena. The Peridynamics
method [9] replaces differential with integral equations to naturally
handle material discontinuities. State-Based Peridynamics (SBPD) [10]
further expanded the range of constitutive models by introducing the
deformation state and force state concepts. Recent developments have
showcased the versatility of the Peridynamics method in simulating
diverse material behaviors, such as hyperelastic thin membranes with
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complex contact interactions [11], and fracture in elastoplastic ma-
terials [12]. While some viscoelastic and elastoplastic models have
been developed within the Peridynamics framework, the potential for
granular flow simulation and unified coupling with viscoelastic bodies
remains underexplored.

In this paper, we propose a unified viscoelasto-plastic simulation
framework based on SBPD that supports both the time-dependent be-
havior of viscoelastic solids and the yield-driven flow dynamics of
granular materials, with the following key contributions:

» We introduce the Prony model to an SBPD-based framework
to derive time-dependent force density expressions, accurately
capturing relaxation, creep, and hysteresis.

We integrate various yield criteria and plastic mapping strate-
gies within SBPD, combine them with dynamic and static fric-
tion forces and density-based stiffness adjustments, and achieve
realistic granular flows.

We create a multi-material coupling system supporting interac-
tions between viscoelastic solids, granular materials, and rigid
bodies. This improves computational stability and significantly
enriches the diversity of simulation scenarios.

2. Related work
2.1. Viscoelastic simulation

Viscoelastic materials under external loads exhibit both equilibrium
elastic responses and non-equilibrium viscous characteristics.

Terzopoulos and Fleischer [13,14] pioneered the use of elastic
models into computer graphics and expanded them into three typi-
cal non-elastic behavior simulations including viscoelasticity, plastic-
ity, and fracture. Miiller et al. [15] introduced SPH into computer
graphics, greatly promoting the application of meshless methods in
deformable body simulation. Takahashi et al. [16] proposed an im-
plicit SPH method for stable simulation of highly viscous fluids. Peer
et al. [17], by extracting rotation from the SPH deformation gradient,
improved the efficiency of elastic solid simulation nearly hundredfold.
The MPM [5] is a particle-grid hybrid method initially introduced to
graphics primarily for snow simulation, and subsequently extended
to handle many materials and phase transitions [18]. Yue et al. [19]
used MPM to simulate shear-dependent dense foams. Current research
on viscoelasticity in computer graphics primarily focuses on viscoelas-
tic fluids and much less on viscoelastic solids. Fang et al. [20] pro-
posed a predictor—corrector algorithm that achieves viscoelastic and
elastoplastic solid simulation under large deformation conditions.

Peridynamics has attracted increasing interest due to its advantages
in handling material failure problems such as cutting and crack prop-
agation [21]. Yet, developing systematic viscoelastic models within a
peridynamics framework remains limited. Madenci et al. [22] proposed
a viscoelastic constitutive model based on ordinary state-based peridy-
namics, capturing material relaxation characteristics under mechanical
and thermal loads. Ozdemir et al. [23] further modeled crack propaga-
tion in films based on this approach. Our method differs from theirs;
although also based on the Prony model, we have derived a unified
force density expression by combining it with a corotational elastic
energy model.

2.2. Granular flow simulation

Continuum methods have been widely used in graphics to simulate
granular materials. Zhu and Bridson [24] simulated sand through an
improved PIC fluid solver. Narain et al. [25] made key improvements
to this method, effectively eliminating cohesive artifacts related to
incompressibility, significantly enhancing simulation quality. Lenaerts
and Dutre [26] implemented coupling interactions between water and
sand based on the SPH method. Daviet and Bertails-Descoubes [27]
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Fig. 1. Deformation state mapping.

developed a MPM-based granular material model that behaves like
a solid due to internal friction, representing granular matter as a
viscoplastic fluid combining the Drucker—Prager yield criterion and
unilateral compressibility constraints. Tampubolon et al. [7] proposed
a multi-phase MPM simulation of sand-water mixtures, handling fluid
permeation and interaction in sand via porous media theory.

Compared to SPH and MPM methods, Peridynamics-based simula-
tion of granular materials is an emerging research direction with great
potential. In structural mechanics, Peridynamics is commonly used to
simulate the fracture of geotechnical materials under loading [28].
However, current research on Peridynamics for simulating granular
flows remains relatively limited, particularly lacking a framework that
unifies viscoelastic response with granular plastic flow.

3. SBPD theory

State-based Peridynamics (SBPD) is a reformulation of continuum
mechanics. Unlike bond-based peridynamics, which models particle
interactions as springs, SBPD defines interactions through the relation
between a particle and its neighborhood. This allows for asymmetric
forces and the modeling of more complex material behavior.

Let H denote a spherical neighborhood of radius r and center x;. Let
L,, denote the space of order-m tensors. An order-m state is a mapping
A¢) : H - L, where § = x; —x;,§ € H is the so-called bond
vector between particle x; and its neighbor x;. Let y = @(x) denote
a deformation under a motion ¢. The corresponding reference and
deformation vector states (see Fig. 1) are defined as X(§) = x; — x;
and Y(§) =y, - ¥;-

Classical continuum mechanics defines the deformation gradient
as F(x) = dy/ox. Yet, this partial derivative does not exist at dis-
continuities. To overcome this, Peridynamics approximates F using a
least-squares minimization over X as F = (Y * X)(X * X)~! with the
generalized tensor product defined by

AxB= / (&) A(E) ® B(E) dE. )
H

where w(§) is a weight function and ® denotes the dyadic product. In
our implementation, we adopt the Wendland C, kernel for w(¢) due to
its compact support and C? continuity, and we set the horizon radius
r to be twice the particle size, which provides stable and consistent
neighborhood interactions.

The motion of particle i is governed by the balance of linear
momentum in integral form

piay = /H (T{(&) — T,(~£)) dE +. @

where p; is the density of particle i, a; is its acceleration, g is the
external body force, and the state function T models internal forces.

4. Viscoelastic constitutive model

We extend the classical elastic SBPD framework to incorporate
viscoelastic behavior using a Prony-series-based energy model. Our
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approach captures time-dependent effects such as creep, relaxation, and
hysteresis through control parameters. We implement our approach
in a discrete numerical form that is compatible with particle-based
simulations.

The Prony model [29] is a widely used linear viscoelastic constitu-
tive model which models the material’s stress response ¢ as a sum of
exponentially decaying functions via

N
o(t) = E., - £(t) + Z E, - e % . g(r), 3
where ¢ is strain, N is the approximation order, E_, is the steady-state
modulus, and E; and 6, are the relaxation modulus and relaxation time
of the kth mode, respectively.

To implement this model numerically, we discretize time and intro-
duce variables g, to capture the memory effect associated with each
mode. These variables are updated over time as

(1-ap) ", @

where , = ¢~4/%. Each g, term gives the contribution of a specific
relaxation mode and decays exponentially over time. This yields the
stress update rule

! =a-aq) +

n+l _ E, n+1 + Z E, entl n+l) 5)

Similar to the prOJected Peridynamics elastic model of by He et al.
[30], we use a linear co-rotational elastic energy model to simulate the
hyperelastic body and decompose it into a deviatoric part W9V and an
isotropic part Wis°

v = | we (o 5w ) ae. ©)

where p and 1 are the first and the second Lamé parameters, respec-
tively. Assuming that all particles in H share the same deformation
gradient F, the ideal deformation tensor state can be expressed as
Y = F¢&. W3 is the energy of shear deformation and Wi is the energy
of volume deformation, which are defined as

W = (1Y]/1X] = D,
W = (IY|/1X] - 1%

When the horizon H is small and the deformation field is smooth,
Y~Y.

For each relaxation mode, we can now express the time evolution
of the energy via our internal history variables as

)

I}Idev _ Moowdev + Z e (Wdev ldlev,k) ,
(8)
. y) : A
iso _ 700 yaqiso 2k
PR = WP + Z >
k=1
where, following (4), we have that
ﬁl;ev,k,nﬂ o qdev k,n + (1 _ ak) W.cl.ev,n’

iso,k,n+1 _ 1so k.n iso,n
4 = aq;; (1 - ak) W .
The deV1ator1c force density is expressed as

2 dev
Tdev = —wl(f()ly Y| -

iso iso,k
(7 - 5").

ij
)

IXdir(Y), with
dev,k (1 0)

i

Similarly, the isochoric force density is given by

. iso
T = w(f()y (IY] - IXDdir(Y), with

iso,k an

iso _ _
¥ _Am+;/1k 1 e
ij
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In the above, y is the effective modulus, i.e., the effective stiffness of
the deviatoric and isotropic components of the material at the current
moment . Using (10) and (11), we get the total force density T, ;=

de iso
T[.j v+ T[.j .
Finally, we derive the discrete form of the equation of motion

pay=h? Y (T8 = T,(=9) V. a2

jEH
5. Granular material simulation

Granular materials such as sand and snow often exhibit discrete
elastoplastic behavior in the framework of continuum mechanics. We
propose a peridynamics-based simulation method for granular flows
under different yield criteria. We adopt the unified yield criterion
proposed by Tu et al. [18] and implement three projection strategies
for plastic mapping. Additionally, we dynamically update the Lamé
parameters based on particle density to correct particle positions and
enhance simulation stability.

5.1. Yield modeling for different materials

When the internal stress state of a particle reaches the yield condi-
tion, irreversible plastic deformation occurs. We employ the Drucker—
Prager yield criterion to define the yield surface as

Yap = Cy tr() + /T, - C,. 13)

where 7 is the Kirchhoff stress tensor, s = dev(z) is its deviatoric part,
and tr(-) denotes the trace operator. The quantity J, = %s : s is the
second invariant of s, and +/J; is used as the equivalent shear stress.

Here, C; is a friction-related parameter that controls the slope of
the yield surface, while C, represents the cohesion of the material
and determines the intercept of the yield surface. The ratio r,,, =
C./C; defines the apex stress of the yield surface, corresponding to
the maximum hydrostatic stress beyond which shear deformation no
longer contributes to yielding. The effects of these parameters on the
yield surface are illustrated in Fig. 2.

5.2. Plasticity mapping strategy

We simulate plastic deformation of granular materials such as sand
or snow by implementing a plasticity mapping strategy within the
SBPD framework. We use a classical ‘return mapping’ algorithm where
plasticity is evolved by an elastic predictor step followed by a plastic
corrector step: In the prediction step, plastic flow is temporarily ignored
and stress and internal variables are updated elastically, yielding a trial
deformation gradient F”". If the yield surface is exceeded, we enter the
plastic correction step and project stress back to the yield surface.

To incorporate plastic flow, we compute the elastic left Cauchy-
Green deformation tensor as

b’ = F”F”TA 14

Assuming a purely elastic response, the Kirchhoff stress tensor can
be defined using a Neo-Hookean model as

— ,uJ -2/d (btr _ % tr(btr)l) ,
2
"= S - DL

(15)

where J,, = det(F"), y and « are the Lamé parameters, and d is the
spatial dimension. The tensor s captures the shear response, while '
includes both volumetric and deviatoric contributions.

Depending on the trial stress state relative to the yield surface, we
distinguish three cases:

Case A (elastic region). If ydp(r”) < 0, the stress lies inside the
yield surface and the state remains elastic F*+! = F"".
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Fig. 2. Drucker-Prager yield surfaces and mapping mechanisms. (a) Illustration of the three projection cases on the Drucker-Prager yield surface. (b) Effect of

the friction coefficient C, on the yield cone angle. (c) Effect of the apex stress 7,

corresponds to higher cohesion C,.

Case B (apex projection). If tr(z'") > 7., the stress reaches the

apex of the yield surface. We then perform an isotropic correction

I =t

16
o+l = (Jn+1)l/d I (16)
and reconstruct
FVI+1 — U2n+1VT. (17)

where U and V are obtained from the singular value decomposition of
F".

Case C (general yield projection). If y4,(z"") > 0 but the apex
condition is not met, we project the deviatoric stress magnitude while
preserving its direction

511 = max (0, 15”1 = ygp(z"™)
n+l _ ontl s” (18)
ST =8"
lIsl

The updated Cauchy-Green tensor is reconstructed as

SVI+1

-2/d’
tr

bye, = byase = Baev + 5 tr(btr)L (19)

To ensure consistency of the volumetric response, we introduce a
correction f in the principal basis such that
(by + p)(by + B)(by + ) = J,Z,, (20)

where b, b, b, are the eigenvalues of b,,,,. The corrected tensor is

b™t! = diag(by + B, by + B, by + p), 21)
and the updated deformation gradient follows as
F't! = Udiag(Vb+1)VT. (22)

5.3. Dynamic adjustment of stiffness

In granular flow simulation, we no longer use fixed Lamé parame-
ters, but instead update these adaptively based on local material com-
paction. Drawing from snow material handling methods in MPM [5],
we estimate elastic response changes based on the particle’s current
compression density. We compute the local density as

=) mW X =X, h), (23)
J

where W is a kernel function with support radius 4. The local density

reflects the current compression level of the material, and the rest

density reads pj, = p |det(F;)‘.

which controls the position of the cone tip. A larger 7’

! (Dlue region)

max>

Using the ratio of this rest density to the initial density, we dynam-
ically adjust the current Lamé parameters as

1
Ev Poi ~Po
P Do ,
i (1+v)(1—2v)eXp('f o )
0.i

. E o é.an_Po
M= aa1n P n )

This can be seen as a compression rate driven exponential hardening
rule, which effectively enhances the response stiffness of materials such
as snow in compacted states.

24

6. Boundary handling

In the overall coupling of viscoelastic materials, granular flow
materials, and rigid body boundaries, boundary collision mechanisms
strongly influence simulation stability and realism. We introduce a
boundary handling method using Sparse Signed Distance Fields (SDF)
which improves stability and physical fidelity.

We directly sample and store SDF information on each rigid bound-
ary particle, where each particle maintains a signed distance value ¢
and its gradient V¢, representing the shortest distance to the boundary
and its direction, respectively. This design allows particle-to-particle
collision detection and avoids repeated grid-based sampling. Collisions
are triggered when the distance between particles is below a threshold
Ix; = x;|| <r, or when |¢| < r for boundary contact.

Upon collision, particles are displaced along the contact normal
direction with penetration depth d = min(|¢;|,|¢;|) and mass-based
weighting. The contact normal is approximated by the gradient of the
closer particle’s SDF. For example, the position correction for particle i
is given by:

w

AX, = ————(d -n,,),

i w,-+wj( i)
w (25)

Ax; = —1—(d-ny)

/ w; + w; v

where w; = 1/m;.

To resolve sliding or sticking effects at boundaries, we introduce
both dynamic and static friction models, as follows.

Dynamic friction: During particle-boundary contact, we compute
the change in velocity due to collision 4v; = v/*! — v*, where v/*! is
the post-collision velocity and v; is the elastic response velocity. We
compute the tangential velocity as

_ on+l _ n+l1
Vi =V —nwy,, v, =nevi (26)

With j = m; Av, the impulse, the friction constraint reads ||/f;|| < ¢, ljl|.
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Table 1

Simulation information for selected examples. P is the number of particles.
Exp. P At FPS E, v
Fig. 4 80k 5 ms 68.67 1x 108 0.45
Fig. 5 195k 2 ms 27.20 1x 107 0.45
Fig. 6 30k 5 ms 102.48 1x107 0.45
Fig. 7 348k 2 ms 13.19 3x10° 0.20
Fig. 8 95k 5 ms 17.06 2x10° 0.20
Fig. 9 167k 2 ms 7.56 2x 10° 0.20
. 5x 107 (elast.) 0.45
Fig. 10 151k 2 ms 8.80 1% 105 (sand) 0.20

When the friction force can completely eliminate the tangential
velocity, the velocity correction is simply V7+l = nv;,. Otherwise we
set

Ch ey Vit
Vit =vi - 2l @27
m; [vill

where ¢, is the dynamic friction coefficient.

Static friction: To prevent persistent sliding near boundaries and
simulate stacking behavior, we find stationary particles using a geo-
metric criterion: If the motion of particle i satisfies

G -y - —y) 2 ally -y (28)

we freeze its position, ie., set y'*! = y'. 5 is the static friction
coefficient, set to # = 0.8 in our simulations.

7. Implementation

We implemented our framework on an NVIDIA GeForce RTX 4090
GPU using the Taichi programming language for efficient parallel sim-
ulation. The overall simulation procedure is outlined in Algorithm 1,
where we typically set the maximum number of iterations iter,,,, to 6,
and terminate early if the maximum iteration displacement falls below
a predefined threshold e = 10~*. All visual results were rendered offline
via Houdini. Detailed simulation performance information is given in
Table 1

Algorithm 1 Elastomer-Sand Coupling Simulation Based on SBPD

1: Input: y', v/, phase, 4, iter,,., Ey, v, Ey,, E;, 6y, Cpy Cesmy €
2: Particle advection: y'*! « y’ 4+ v At
3: while iteration < iter,,,, and max (||4x,||) > ¢ do
4: // Elastic Phase:
5: Compute deformation gradient F
6: Compute force density T (Eq. (10), (11))
7: Compute displacement Ax (Eq. (12))
8:  Update position: y'+! « y*! + Ax
9: // Sand Phase:
10: Compute deformation gradient F
11: Project F onto yield surface (Cases A/B/C)
12: Compute force density T
13: Compute displacement 4x (Eq. (12))
14:  Update position: y'*! « y*! + Ax
15: end while
16: // Constraints and Collisions:
17: while iteration < iter,,,, do
18: Apply self and inter-phase collision response (Eq. (25))
19: Apply boundary advection
20: end while
21: // Post-processing:
22: Update velocity: vi*! « (y™*1 —y') /4r
23: Apply static friction constraint
24: Apply dynamic friction constraint
25: Update neighbor list j
26: Update Lamé parameters (Eq. (24))
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Fig. 3. Exponential decay of relaxation modes in the Prony model.

We validate our algorithm using a N = 3 (rd) order Prony model.
The total Young’s modulus E, gives the initial stiffness of the material,
while the long-term modulus E,, characterizes its stiffness at infinite
time. Each E, denotes the relaxation modulus of the kth component,
with 6, being the corresponding relaxation time. The material behavior
is defined using the empirical relation: E, = E + Z,[j: | Ex. The
configuration of relaxation times at each order can be determined
according to the empirical rules of exponential decay, as shown in Fig.
3.

8. Results and discussion

Viscoelastic simulation: Fig. 4 shows a rotational stretch-release ex-
periment to compare the post-release recovery behavior of hyperelastic
and viscoelastic materials. The hyperelastic model was configured with
E, = E,, corresponding to a purely elastic response. Upon removal of
the external load, the object rapidly rebounds and exhibits pronounced
oscillations. For the viscoelastic model, we set E,, = 04E;, E, =
[0.3,0.2,0.1] - E,, and 6, = [1.0,3.0,5.0]. After unloading, the material
gradually returns to its original shape without oscillations (see the
supplemental video).

We further illustrate the flexibility of our viscoelastic model by
an “armadillo stretch-rest-unload” experiment with E, = 1 x 10’ and
v = 0.45. We compared three different viscoelastic material parameters:

* Purely elastic: E, = E;

* High viscosity: E, = 0.3E,, E, = [03,02,02] - Ej, 6, =
[0.5,2.0,5.01;

» Low viscosity: E,, = 05E,, E, = [0.25,0.15,0.1] - Ey, 0, =
[0.5,2.0,5.0].

Fig. 5 shows the evolution of energy (in red) throughout the sim-
ulation and presents a quantitative analysis. During the stretching
phase, the total energy of all three materials increases non-linearly due
to the work done by external forces, consistent with the non-linear
characteristics of stress-strain relationships. For hyperelastic material,
the external work is entirely converted into elastic potential energy,
whereas for viscoelastic materials, a portion of the energy is dissipated
through viscous effects. In the constant-stretching phase, the energy of
the elastic material remains unchanged, while the viscoelastic materials
exhibit stress relaxation, demonstrating the physical plausibility of our
model. In the relaxation phase, hyperelastic material released energy
most rapidly and almost completely returned to its original state.
Highly viscous materials release energy more slowly, showing signifi-
cant hysteresis effects as part of the energy is converted to heat through
viscous mechanisms. The energy release rate of the low-viscosity elastic
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(a) Stretch-release process of hyperelastic body [30]

(b) Stretch-release process of viscoelastic body

Fig. 4. Comparison of recovery behavior during a rotational stretch-release experiment.
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Fig. 5. Energy evolution of the armadillo stretching experiments.

material lies between the two. These results demonstrate the effective-
ness of our viscoelastic model and its strong tunability in capturing
diverse material responses.

To further evaluate the time-dependent behavior of the three ma-
terials, we perform a quantitative analysis of their creep and stress
relaxation responses. As shown in Fig. 6(a), under a constant gravita-
tional load, the elastic material exhibits continuous oscillations in strain
due to inertia and elastic rebound. In contrast, the high-viscoelastic
material shows a continuous increase in strain over time, eventually
approaching a steady-state value. The low-viscoelastic material also
undergoes time-dependent strain growth under the same load, albeit
with a smaller magnitude. As illustrated in Fig. 6(b), during the interval
from 0 to 0.75 s, the material is stretched at a constant rate, after
which the strain remains fixed. In this constant-strain phase, the stress
in the elastic material remains unchanged, indicating the absence of
stress relaxation. In contrast, the stress in the high-viscoelastic material
decreases significantly over time, demonstrating that internal viscous
damping continuously dissipates energy, thereby reducing the stress
required to sustain the same deformation.

Sand simulation: We designed a series of granular flow experi-
ments and compared them with MPM simulations based on the

Drucker-Prager yield criterion. These comparisons validate the effec-
tiveness of different yield mapping schemes under the peridynamic
framework in reproducing physically plausible granular flow and pile-
up behaviors.

Fig. 7 shows a sand pile experiment with E, = 3 x 10’ and v =
0.2. Under high friction coefficients, our method successfully produced
stable, high-friction sandpiles in which the upper particles resisted
sliding. Compared to the MPM approach under the same friction angle
and coefficient, our method achieved more pronounced pile-up effects
by introducing stronger cohesive forces. Additionally, the peridynamics
framework, extended from elastic energy, allows for larger time steps,
improving overall simulation efficiency.

To further study the influence of cohesion, we conducted a slope-
divided sand pile experiment (Fig. 8). We used the Drucker-Prager
yield criterion with E, = 2x10° and v = 0.2, and used materials with dif-
ferent cohesion coefficients. Under higher cohesion, some sand particles
could adhere to the inclined surface forming local accumulations. For
lower cohesion, only a thin layer of particles remained, with the rest
quickly sliding down. The accumulation patterns on the ground also
showed significant differences: high-cohesion materials formed more
compact sand pile structures; low-cohesion materials appeared more
dispersed.
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Fig. 6. Creep and stress relaxation behavior of elastic and viscoelastic materials.

(a) Sand piling based on MPM [3]

(b) Sand piling under high friction coefficient
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(c¢) Sand piling under high cohesion coefficient

Fig. 7. Sand piling simulation experiments.

(a) Cohesion coefficient C. =1

(b) Cohesion coefficient C. = 100

Fig. 8. Sand-slope experiments.
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(b) Friction coefficient C'y = 2

Fig. 9. Hourglass experiments.

(a) Top view of the coupling experiment.

- = o

(b) Side view of the coupling experiment.

Fig. 10. Elastic cloth and bunny-shaped sand coupling experiment.

To evaluate the influence of friction coefficients on granular flow
behavior and accumulation patterns, we conducted an hourglass exper-
iment under constant cohesion (Fig. 9). The results show that higher
friction coefficients yield in poorer flow of particles near boundaries,
while internal particles still show a certain flow. In contrast, materials
with low friction exhibited more uniform flow between interior and
exterior regions. After exiting the funnel, high-friction materials formed
taller and steeper piles, while low-friction materials produced flatter
deposits.

Coupling simulation: To evaluate the capability of our framework
in simulating interactions between thin films and granular materials,
we designed an experiment involving an elastic cloth and bunny-shaped
sand (Fig. 10). The material parameters of the cloth are E; = 5 x 107,
v = 0.45, while those of the sand are E;, = 1 x 10°, v = 0.2. During the
experiment, the sand falls freely and accumulates on the cloth surface
without penetration, while the cloth undergoes significant deformation
under the coupled contact forces. The results demonstrate realistic two-
way coupling, where both materials mutually influence each other’s
motion and deformation during collision and accumulation.

9. Conclusions and future work

We proposed a unified visco-elasto-plastic simulation framework
based on SBPD to address the limitations of CCM in modeling discon-
tinuities. Our framework demonstrates flexibility and effectiveness in
simulating both viscoelastic solids and granular materials.

In terms of viscoelastic simulation, we derived time-dependent force
density formulations based on the Prony model, accurately capturing
complex response characteristics such as stress relaxation, creep, and
hysteresis. For granular flow simulation, we integrated various yield
criteria and mapping strategies, combined with density-based dynamic
stiffness adjustment mechanisms, achieving natural flow, accumulation,
and separation behaviors of particles. The framework further supports
interactions among viscoelastic solids, granular media, and rigid bodies
via a multi-material coupling mechanism, enhancing its robustness and
applicability.

However, the computational efficiency of the current method for
large-scale granular flow simulations still remains a challenge.

In future work, we will focus on developing implicit iterative accel-
eration strategies to enhance the stability and efficiency of large-scale
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computations. Furthermore, we plan to leverage the advantages of Peri-
dynamics in handling fracture and crack propagation by incorporating
fracture mechanics mechanisms into the viscoelastic model, enabling
the simulation of richer material discontinuity behaviors. Building on
the extensibility of our framework, we will also integrate viscoelastic
fluids into the unified framework, extending its application capabilities
in biological fluid and soft matter simulations.
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