
Computers & Graphics 133 (2025) 104463 

A
0

 

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag  

Special Section on AniNex 2025

Peridynamics-based simulation of viscoelastic solids and granular materialsI

Jiamin Wang a,b , Haoping Wang a, Xiaokun Wang a,d,∗, Yalan Zhang a,d, Jiří Kosinka b, 
Steffen Frey b, Alexandru Telea c, Xiaojuan Ban a
a School of Intelligence Science and Technology, University of Science and Technology Beijing, Beijing, China
b Bernoulli Institute, University of Groningen, Groningen, The Netherlands
c Faculty of Science, Utrecht University, Utrecht, The Netherlands
d Shunde Innovation School, University of Science and Technology Beijing, Foshan, China

A R T I C L E  I N F O

Keywords:
Peridynamics
Viscoelastic simulation
Granular materials
Multi-material coupling

 A B S T R A C T

Viscoelastic solids and granular materials have been extensively studied in Classical Continuum Mechanics 
(CCM). However, CCM faces inherent limitations when dealing with discontinuity problems. Peridynamics, as a 
non-local continuum theory, provides a novel approach for simulating complex material behavior. We propose 
a unified viscoelasto-plastic simulation framework based on State-Based Peridynamics (SBPD) which derives a 
time-dependent unified force density expression through the introduction of the Prony model. Within SBPD, we 
integrate various yield criteria and mapping strategies to support granular flow simulation, and dynamically 
adjust material stiffness according to local density. Additionally, we construct a multi-material coupling system 
incorporating viscoelastic materials, granular flows, and rigid bodies, enhancing computational stability while 
expanding the diversity of simulation scenarios. Experiments show that our method can effectively simulate 
relaxation, creep, and hysteresis behaviors of viscoelastic solids, as well as flow and accumulation phenomena 
of granular materials, all of which are very challenging to simulate with earlier methods. Furthermore, our 
method allows flexible parameter adjustment to meet various simulation requirements.
1. Introduction

Viscoelastic solids and granular materials are ubiquitous in our daily 
lives and industrial production. From kneading dough and biological 
soft tissues to natural disasters like avalanches and mudflows, these 
materials demonstrate complex dynamic characteristics. Accurate sim-
ulation of these behaviors is of great significance to fields such as 
materials science, geotechnical engineering, biomedical simulation, and 
– last but not least – computer graphics.

Viscoelastic solids have time-dependent characteristics including
stress relaxation, creep, and hysteresis. For large deformations, memory 
effects and nonlinearities further complicate the simulation. Granular 
materials consist of a large number of discrete particles and can exhibit 
both the shear resistance of solids and the deformability of fluids. Re-
cent advances in computational and physical modeling techniques have 
made the accurate simulation of viscoelastic and granular materials an 
active area of research in both computer graphics and computational 
physics.

Early simulation methods used mesh-based discretization strategies 
such as the Finite Element Method (FEM) [1] and described the time-
dependent behavior of viscoelastic materials by generalized Maxwell or 

I This article is part of a Special issue entitled: ‘AniNex2025’ published in Computers & Graphics.
∗ Corresponding author.
E-mail address: wangxiaokun@ustb.edu.cn (X. Wang).

Kelvin–Voigt models. While widely used in structural mechanics, when 
handling fractures, separations, and large deformations, such models 
encounter complex challenges when topology changes and meshes need 
reconstruction. Mesh-free methods such as Smoothed Particle Hydrody-
namics (SPH), the Material Point Method (MPM), and Position-Based 
Dynamics (PBD) compute physical interactions through particle-based 
interactions and show clear advantages in handling fracture, large 
deformation, and free surface flows. They can model a wide range 
of natural phenomena and materials such as muscle [2], sand [3,4], 
snow [5,6], and multi-material mixtures [7,8].

However, most existing mesh-free methods still rely on CCM with 
foundations in partial differential equations (PDEs). PDEs are not ap-
plicable at discontinuities, e.g., cracks and interface slippage; additional 
techniques are needed to capture such phenomena. The Peridynamics 
method [9] replaces differential with integral equations to naturally 
handle material discontinuities. State-Based Peridynamics (SBPD) [10] 
further expanded the range of constitutive models by introducing the
deformation state and force state concepts. Recent developments have 
showcased the versatility of the Peridynamics method in simulating 
diverse material behaviors, such as hyperelastic thin membranes with 
https://doi.org/10.1016/j.cag.2025.104463
Received 5 September 2025; Received in revised form 20 October 2025; Accepted 
vailable online 29 October 2025 
097-8493/© 2025 Elsevier Ltd. All rights are reserved, including those for text and 
27 October 2025

data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/cag
https://www.elsevier.com/locate/cag
https://orcid.org/0009-0006-1151-5802
mailto:wangxiaokun@ustb.edu.cn
https://doi.org/10.1016/j.cag.2025.104463
https://doi.org/10.1016/j.cag.2025.104463
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2025.104463&domain=pdf


J. Wang et al. Computers & Graphics 133 (2025) 104463 
complex contact interactions [11], and fracture in elastoplastic ma-
terials [12]. While some viscoelastic and elastoplastic models have 
been developed within the Peridynamics framework, the potential for 
granular flow simulation and unified coupling with viscoelastic bodies 
remains underexplored.

In this paper, we propose a unified viscoelasto-plastic simulation 
framework based on SBPD that supports both the time-dependent be-
havior of viscoelastic solids and the yield-driven flow dynamics of 
granular materials, with the following key contributions:

• We introduce the Prony model to an SBPD-based framework 
to derive time-dependent force density expressions, accurately 
capturing relaxation, creep, and hysteresis.

• We integrate various yield criteria and plastic mapping strate-
gies within SBPD, combine them with dynamic and static fric-
tion forces and density-based stiffness adjustments, and achieve 
realistic granular flows.

• We create a multi-material coupling system supporting interac-
tions between viscoelastic solids, granular materials, and rigid 
bodies. This improves computational stability and significantly 
enriches the diversity of simulation scenarios.

2. Related work

2.1. Viscoelastic simulation

Viscoelastic materials under external loads exhibit both equilibrium 
elastic responses and non-equilibrium viscous characteristics.

Terzopoulos and Fleischer [13,14] pioneered the use of elastic 
models into computer graphics and expanded them into three typi-
cal non-elastic behavior simulations including viscoelasticity, plastic-
ity, and fracture. Müller et al. [15] introduced SPH into computer 
graphics, greatly promoting the application of meshless methods in 
deformable body simulation. Takahashi et al. [16] proposed an im-
plicit SPH method for stable simulation of highly viscous fluids. Peer 
et al. [17], by extracting rotation from the SPH deformation gradient, 
improved the efficiency of elastic solid simulation nearly hundredfold. 
The MPM [5] is a particle-grid hybrid method initially introduced to 
graphics primarily for snow simulation, and subsequently extended 
to handle many materials and phase transitions [18]. Yue et al. [19] 
used MPM to simulate shear-dependent dense foams. Current research 
on viscoelasticity in computer graphics primarily focuses on viscoelas-
tic fluids and much less on viscoelastic solids. Fang et al. [20] pro-
posed a predictor–corrector algorithm that achieves viscoelastic and 
elastoplastic solid simulation under large deformation conditions.

Peridynamics has attracted increasing interest due to its advantages 
in handling material failure problems such as cutting and crack prop-
agation [21]. Yet, developing systematic viscoelastic models within a 
peridynamics framework remains limited. Madenci et al. [22] proposed 
a viscoelastic constitutive model based on ordinary state-based peridy-
namics, capturing material relaxation characteristics under mechanical 
and thermal loads. Ozdemir et al. [23] further modeled crack propaga-
tion in films based on this approach. Our method differs from theirs; 
although also based on the Prony model, we have derived a unified 
force density expression by combining it with a corotational elastic 
energy model.

2.2. Granular flow simulation

Continuum methods have been widely used in graphics to simulate 
granular materials. Zhu and Bridson [24] simulated sand through an 
improved PIC fluid solver. Narain et al. [25] made key improvements 
to this method, effectively eliminating cohesive artifacts related to 
incompressibility, significantly enhancing simulation quality. Lenaerts 
and Dutre [26] implemented coupling interactions between water and 
sand based on the SPH method. Daviet and Bertails-Descoubes [27] 
2 
Fig. 1. Deformation state mapping.

developed a MPM-based granular material model that behaves like 
a solid due to internal friction, representing granular matter as a 
viscoplastic fluid combining the Drucker–Prager yield criterion and 
unilateral compressibility constraints. Tampubolon et al. [7] proposed 
a multi-phase MPM simulation of sand–water mixtures, handling fluid 
permeation and interaction in sand via porous media theory.

Compared to SPH and MPM methods, Peridynamics-based simula-
tion of granular materials is an emerging research direction with great 
potential. In structural mechanics, Peridynamics is commonly used to 
simulate the fracture of geotechnical materials under loading [28]. 
However, current research on Peridynamics for simulating granular 
flows remains relatively limited, particularly lacking a framework that 
unifies viscoelastic response with granular plastic flow.

3. SBPD theory

State-based Peridynamics (SBPD) is a reformulation of continuum 
mechanics. Unlike bond-based peridynamics, which models particle 
interactions as springs, SBPD defines interactions through the relation 
between a particle and its neighborhood. This allows for asymmetric 
forces and the modeling of more complex material behavior.

Let  denote a spherical neighborhood of radius 𝑟 and center 𝐱𝑖. Let 
𝑚 denote the space of order-𝑚 tensors. An order-𝑚 state is a mapping 
𝐀⟨𝝃⟩ ∶  → 𝑚, where 𝝃 = 𝐱𝑗 − 𝐱𝑖, 𝝃 ∈  is the so-called bond 
vector between particle 𝐱𝑖 and its neighbor 𝐱𝑗 . Let 𝐲 = 𝜑(𝐱) denote 
a deformation under a motion 𝜑. The corresponding reference and 
deformation vector states (see Fig.  1) are defined as 𝐗⟨𝝃⟩ = 𝐱𝑗 − 𝐱𝑖
and 𝐘⟨𝝃⟩ = 𝐲𝑗 − 𝐲𝑖.

Classical continuum mechanics defines the deformation gradient 
as 𝐅(𝐱) = 𝜕𝐲∕𝜕𝐱. Yet, this partial derivative does not exist at dis-
continuities. To overcome this, Peridynamics approximates 𝐅 using a 
least-squares minimization over  as 𝐅 = (𝐘 ∗ 𝐗) (𝐗 ∗ 𝐗)−1 with the 
generalized tensor product defined by 

𝐀 ∗ 𝐁 = ∫
𝑤(𝝃)𝐀⟨𝝃⟩⊗ 𝐁⟨𝝃⟩ 𝑑𝝃, (1)

where 𝑤(𝝃) is a weight function and ⊗ denotes the dyadic product. In 
our implementation, we adopt the Wendland C2 kernel for 𝑤(𝝃) due to 
its compact support and 𝐶2 continuity, and we set the horizon radius 
𝑟 to be twice the particle size, which provides stable and consistent 
neighborhood interactions.

The motion of particle 𝑖 is governed by the balance of linear 
momentum in integral form 

𝜌𝑖𝐚𝑖 = ∫

(

𝐓𝑖⟨𝝃⟩ − 𝐓𝑗⟨−𝝃⟩
)

𝑑𝝃 + 𝐠, (2)

where 𝜌𝑖 is the density of particle 𝑖, 𝐚𝑖 is its acceleration, 𝐠 is the 
external body force, and the state function 𝐓 models internal forces.

4. Viscoelastic constitutive model

We extend the classical elastic SBPD framework to incorporate 
viscoelastic behavior using a Prony-series-based energy model. Our 
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approach captures time-dependent effects such as creep, relaxation, and 
hysteresis through control parameters. We implement our approach 
in a discrete numerical form that is compatible with particle-based 
simulations.

The Prony model [29] is a widely used linear viscoelastic constitu-
tive model which models the material’s stress response 𝜎 as a sum of 
exponentially decaying functions via 

𝜎(𝑡) = 𝐸∞ ⋅ 𝜀(𝑡) +
𝑁
∑

𝑘=1
𝐸𝑘 ⋅ 𝑒

−𝑡∕𝜃𝑘 ⋅ 𝜀(𝑡), (3)

where 𝜀 is strain, 𝑁 is the approximation order, 𝐸∞ is the steady-state 
modulus, and 𝐸𝑘 and 𝜃𝑘 are the relaxation modulus and relaxation time 
of the 𝑘th mode, respectively.

To implement this model numerically, we discretize time and intro-
duce variables 𝑞𝑘 to capture the memory effect associated with each 
mode. These variables are updated over time as 
𝑞𝑛+1𝑘 = 𝛼𝑘 ⋅ 𝑞

𝑛
𝑘 +

(

1 − 𝛼𝑘
)

⋅ 𝜀𝑛+1, (4)

where 𝛼𝑘 = 𝑒−𝛥𝑡∕𝜃𝑘 . Each 𝑞𝑘 term gives the contribution of a specific 
relaxation mode and decays exponentially over time. This yields the 
stress update rule 

𝜎𝑛+1 = 𝐸∞ ⋅ 𝜀𝑛+1 +
𝑁
∑

𝑘=1
𝐸𝑘 ⋅

(

𝜀𝑛+1 − 𝑞𝑛+1𝑘
)

. (5)

Similar to the projected Peridynamics elastic model of by He et al. 
[30], we use a linear co-rotational elastic energy model to simulate the 
hyperelastic body and decompose it into a deviatoric part dev and an 
isotropic part  iso

𝛹 = ∫
𝑤⟨𝝃⟩

(

𝜇dev
⟨𝝃⟩ + 𝜆

2
 iso

⟨𝝃⟩
)

𝑑𝝃, (6)

where 𝜇 and 𝜆 are the first and the second Lamé parameters, respec-
tively. Assuming that all particles in  share the same deformation 
gradient 𝐅, the ideal deformation tensor state can be expressed as 
𝐘̂ = 𝐅𝝃. dev is the energy of shear deformation and  iso is the energy 
of volume deformation, which are defined as 
dev = (|𝐘̂|∕|𝐗| − 1)2,

 iso = (|𝐘|∕|𝐗| − 1)2 .
(7)

When the horizon  is small and the deformation field is smooth, 
𝐘̂ ≈ 𝐘.

For each relaxation mode, we can now express the time evolution 
of the energy via our internal history variables as 

𝛹dev
𝑖,𝑗 = 𝜇∞dev

𝑖,𝑗 +
𝑁
∑

𝑘=1
𝜇𝑘

(

dev
𝑖,𝑗 − 𝑞dev,𝑘𝑖,𝑗

)

,

𝛹 iso
𝑖,𝑗 =

𝜆∞
2

 iso
𝑖,𝑗 +

𝑁
∑

𝑘=1

𝜆𝑘
2

(

 iso
𝑖,𝑗 − 𝑞iso,𝑘𝑖,𝑗

)

,

(8)

where, following (4), we have that 
𝑞dev,𝑘,𝑛+1𝑖,𝑗 = 𝛼𝑘𝑞

dev,𝑘,𝑛
𝑖,𝑗 +

(

1 − 𝛼𝑘
)

dev,𝑛
𝑖,𝑗 ,

𝑞iso,𝑘,𝑛+1𝑖,𝑗 = 𝛼𝑘𝑞
iso,𝑘,𝑛
𝑖,𝑗 +

(

1 − 𝛼𝑘
)

 iso,𝑛
𝑖,𝑗 .

(9)

The deviatoric force density is expressed as 

𝐓dev𝑖𝑗 =
2𝑤(𝝃)𝛾dev

|𝐗|2
(|𝐘| − |𝐗|)dir(𝐘̂), with

𝛾dev = 𝜇∞ +
∑

𝑘
𝜇𝑘

⎛

⎜

⎜

⎝

1 −
𝑞dev,𝑘𝑖,𝑗

dev
𝑖,𝑗

⎞

⎟

⎟

⎠

.
(10)

Similarly, the isochoric force density is given by 

𝐓iso𝑖𝑗 =
𝑤(𝝃)𝛾 iso

|𝐗|2
(|𝐘| − |𝐗|)dir(𝐘), with

𝛾 iso = 𝜆∞ +
∑

𝜆𝑘
⎛

⎜

⎜

1 −
𝑞iso,𝑘𝑖,𝑗

 iso

⎞

⎟

⎟

.
(11)
𝑘
⎝

𝑖,𝑗
⎠

3 
In the above, 𝛾 is the effective modulus, i.e., the effective stiffness of 
the deviatoric and isotropic components of the material at the current 
moment 𝑡. Using (10) and (11), we get the total force density 𝐓𝑖𝑗 =
𝐓dev𝑖𝑗 + 𝐓iso𝑖𝑗 .

Finally, we derive the discrete form of the equation of motion 
𝜌𝑖𝐚𝑖 = ℎ2

∑

𝑗∈

(

𝐓𝑖𝑗 (𝝃) − 𝐓𝑗𝑖(−𝝃)
)

𝑉𝑗 . (12)

5. Granular material simulation

Granular materials such as sand and snow often exhibit discrete 
elastoplastic behavior in the framework of continuum mechanics. We 
propose a peridynamics-based simulation method for granular flows 
under different yield criteria. We adopt the unified yield criterion 
proposed by Tu et al. [18] and implement three projection strategies 
for plastic mapping. Additionally, we dynamically update the Lamé 
parameters based on particle density to correct particle positions and 
enhance simulation stability.

5.1. Yield modeling for different materials

When the internal stress state of a particle reaches the yield condi-
tion, irreversible plastic deformation occurs. We employ the Drucker–
Prager yield criterion to define the yield surface as 
𝗒dp = 𝐶𝑓 tr(𝝉) +

√

𝐽2 − 𝐶𝑐 , (13)

 where 𝝉 is the Kirchhoff stress tensor, 𝐬 = dev(𝝉) is its deviatoric part, 
and tr(⋅) denotes the trace operator. The quantity 𝐽2 = 1

2 𝐬 ∶ 𝐬 is the 
second invariant of 𝐬, and √𝐽2 is used as the equivalent shear stress.

Here, 𝐶𝑓  is a friction-related parameter that controls the slope of 
the yield surface, while 𝐶𝑐 represents the cohesion of the material 
and determines the intercept of the yield surface. The ratio 𝜏max =
𝐶𝑐∕𝐶𝑓  defines the apex stress of the yield surface, corresponding to 
the maximum hydrostatic stress beyond which shear deformation no 
longer contributes to yielding. The effects of these parameters on the 
yield surface are illustrated in Fig.  2.

5.2. Plasticity mapping strategy

We simulate plastic deformation of granular materials such as sand 
or snow by implementing a plasticity mapping strategy within the 
SBPD framework. We use a classical ‘return mapping’ algorithm where 
plasticity is evolved by an elastic predictor step followed by a plastic 
corrector step: In the prediction step, plastic flow is temporarily ignored 
and stress and internal variables are updated elastically, yielding a trial 
deformation gradient 𝐅𝑡𝑟. If the yield surface is exceeded, we enter the 
plastic correction step and project stress back to the yield surface.

To incorporate plastic flow, we compute the elastic left Cauchy–
Green deformation tensor as 
𝐛𝑡𝑟 = 𝐅𝑡𝑟𝐅𝑡𝑟𝑇 . (14)

Assuming a purely elastic response, the Kirchhoff stress tensor can 
be defined using a Neo-Hookean model as 

𝐬𝑡𝑟 = 𝜇𝐽−2∕𝑑
𝑡𝑟

(

𝐛𝑡𝑟 − 1
𝑑 tr(𝐛𝑡𝑟)𝐈

)

,

𝝉 𝑡𝑟 = 𝐬𝑡𝑟 + 𝜅
2 (𝐽

2
𝑡𝑟 − 1)𝐈,

(15)

where 𝐽𝑡𝑟 = det(𝐅𝑡𝑟), 𝜇 and 𝜅 are the Lamé parameters, and 𝑑 is the 
spatial dimension. The tensor 𝐬𝑡𝑟 captures the shear response, while 𝝉 𝑡𝑟
includes both volumetric and deviatoric contributions.

Depending on the trial stress state relative to the yield surface, we 
distinguish three cases:

Case A (elastic region). If 𝗒dp(𝝉 𝑡𝑟) ≤ 0, the stress lies inside the 
yield surface and the state remains elastic 𝐅𝑛+1 = 𝐅𝑡𝑟.
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Fig. 2. Drucker–Prager yield surfaces and mapping mechanisms. (a) Illustration of the three projection cases on the Drucker–Prager yield surface. (b) Effect of 
the friction coefficient 𝐶𝑓  on the yield cone angle. (c) Effect of the apex stress 𝜏max, which controls the position of the cone tip. A larger 𝜏′max (blue region) 
corresponds to higher cohesion 𝐶𝑐 .
Case B (apex projection). If tr(𝝉 𝑡𝑟) > 𝜏max, the stress reaches the 
apex of the yield surface. We then perform an isotropic correction 

𝐽 𝑛+1 =
√

2
𝑑𝜅 𝜏max + 1,

𝜮𝑛+1 = (𝐽 𝑛+1)1∕𝑑 ⋅ 𝐈,
(16)

and reconstruct 

𝐅𝑛+1 = 𝐔𝜮𝑛+1𝐕𝑇 . (17)

where 𝐔 and 𝐕 are obtained from the singular value decomposition of 
𝐅𝑡𝑟.

Case C (general yield projection). If 𝗒dp(𝝉 𝑡𝑟) > 0 but the apex 
condition is not met, we project the deviatoric stress magnitude while 
preserving its direction 
‖𝐬𝑛+1‖ = max

(

0, ‖𝐬𝑡𝑟‖ − 𝗒dp(𝝉 𝑡𝑟)
)

,

𝐬𝑛+1 = ‖𝐬𝑛+1‖ ⋅ 𝐬𝑡𝑟
‖𝐬𝑡𝑟‖

.
(18)

The updated Cauchy–Green tensor is reconstructed as 

𝐛𝑑𝑒𝑣 = 𝐬𝑛+1

𝜇𝐽−2∕𝑑
𝑡𝑟

, 𝐛𝑏𝑎𝑠𝑒 = 𝐛𝑑𝑒𝑣 +
1
𝑑 tr(𝐛𝑡𝑟)𝐈. (19)

To ensure consistency of the volumetric response, we introduce a 
correction 𝛽 in the principal basis such that 

(𝑏0 + 𝛽)(𝑏1 + 𝛽)(𝑏2 + 𝛽) = 𝐽 2
𝑡𝑟, (20)

 where 𝑏0, 𝑏1, 𝑏2 are the eigenvalues of 𝐛𝑏𝑎𝑠𝑒. The corrected tensor is 

𝐛𝑛+1 = diag(𝑏0 + 𝛽, 𝑏1 + 𝛽, 𝑏2 + 𝛽), (21)

 and the updated deformation gradient follows as 

𝐅𝑛+1 = 𝐔 diag(
√

𝐛𝑛+1)𝐕𝑇 . (22)

5.3. Dynamic adjustment of stiffness

In granular flow simulation, we no longer use fixed Lamé parame-
ters, but instead update these adaptively based on local material com-
paction. Drawing from snow material handling methods in MPM [5], 
we estimate elastic response changes based on the particle’s current 
compression density. We compute the local density as 

𝜌𝑖 =
∑

𝑗
𝑚𝑗𝑊 (𝐱𝑖 − 𝐱𝑗 , ℎ), (23)

where 𝑊  is a kernel function with support radius ℎ. The local density 
reflects the current compression level of the material, and the rest 
density reads 𝜌𝑡 = 𝜌𝑡 |det(𝐅𝑡)|.
0,𝑖 𝑖 |

|

𝑖 |
|

4 
Using the ratio of this rest density to the initial density, we dynam-
ically adjust the current Lamé parameters as 

𝜆𝑡𝑖 =
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
exp

(

𝜉 ⋅
𝜌𝑡0,𝑖 − 𝜌0

𝜌𝑡0,𝑖

)

,

𝜇𝑡
𝑖 =

𝐸
2(1 + 𝜈)

exp

(

𝜉 ⋅
𝜌𝑡0,𝑖 − 𝜌0

𝜌𝑡0,𝑖

)

.

(24)

This can be seen as a compression rate driven exponential hardening 
rule, which effectively enhances the response stiffness of materials such 
as snow in compacted states.

6. Boundary handling

In the overall coupling of viscoelastic materials, granular flow 
materials, and rigid body boundaries, boundary collision mechanisms 
strongly influence simulation stability and realism. We introduce a 
boundary handling method using Sparse Signed Distance Fields (SDF) 
which improves stability and physical fidelity.

We directly sample and store SDF information on each rigid bound-
ary particle, where each particle maintains a signed distance value 𝜙
and its gradient ∇𝜙, representing the shortest distance to the boundary 
and its direction, respectively. This design allows particle-to-particle 
collision detection and avoids repeated grid-based sampling. Collisions 
are triggered when the distance between particles is below a threshold 
‖𝐱𝑖 − 𝐱𝑗‖ < 𝑟, or when |𝜙| < 𝑟 for boundary contact.

Upon collision, particles are displaced along the contact normal 
direction with penetration depth 𝑑 = min(|𝜙𝑖|, |𝜙𝑗 |) and mass-based 
weighting. The contact normal is approximated by the gradient of the 
closer particle’s SDF. For example, the position correction for particle 𝑖
is given by: 

𝛥𝐱𝑖 = −
𝑤𝑖

𝑤𝑖 +𝑤𝑗
(𝑑 ⋅ 𝐧𝑖𝑗 ),

𝛥𝐱𝑗 =
𝑤𝑗

𝑤𝑖 +𝑤𝑗
(𝑑 ⋅ 𝐧𝑖𝑗 ),

(25)

where 𝑤𝑖 = 1∕𝑚𝑖.
To resolve sliding or sticking effects at boundaries, we introduce 

both dynamic and static friction models, as follows.
Dynamic friction: During particle-boundary contact, we compute 

the change in velocity due to collision 𝛥𝐯𝑖 = 𝐯𝑛+1𝑖 − 𝐯∗𝑖 , where 𝐯𝑛+1𝑖  is 
the post-collision velocity and 𝐯∗𝑖  is the elastic response velocity. We 
compute the tangential velocity as 

𝐯𝑖𝑡 = 𝐯𝑛+1𝑖 − 𝐧𝑣𝑖𝑛, 𝑣𝑖𝑛 = 𝐧 ⋅ 𝐯𝑛+1𝑖 . (26)

With 𝐣 = 𝑚 𝛥𝐯  the impulse, the friction constraint reads ‖𝐟 ‖ ≤ 𝑐 ‖𝐣‖.
𝑖 𝑖 𝑡 𝑏



J. Wang et al. Computers & Graphics 133 (2025) 104463 
Table 1
Simulation information for selected examples. 𝑃  is the number of particles.
 Exp. 𝑃 𝛥𝑡 FPS 𝐸0 𝜈  
 Fig.  4 80k 5 ms 68.67 1 × 108 0.45 
 Fig.  5 195k 2 ms 27.20 1 × 107 0.45 
 Fig.  6 30k 5 ms 102.48 1 × 107 0.45 
 Fig.  7 348k 2 ms 13.19 3 × 105 0.20 
 Fig.  8 95k 5 ms 17.06 2 × 105 0.20 
 Fig.  9 167k 2 ms 7.56 2 × 105 0.20 
 Fig.  10 151k 2 ms 8.80 5 × 107 (elast.) 0.45 
 1 × 105 (sand) 0.20 

When the friction force can completely eliminate the tangential 
velocity, the velocity correction is simply 𝐯𝑛+1𝑖 = 𝐧𝑣𝑖𝑛. Otherwise we 
set 
𝐯𝑛+1𝑖 = 𝐯∗𝑖 −

𝑐𝑏
𝑚𝑖

‖𝐣‖
𝐯𝑖𝑡

‖𝐯𝑖𝑡‖
, (27)

where 𝑐𝑏 is the dynamic friction coefficient.
Static friction: To prevent persistent sliding near boundaries and 

simulate stacking behavior, we find stationary particles using a geo-
metric criterion: If the motion of particle 𝑖 satisfies 
(𝐲𝑡+1𝑖 − 𝐲∗𝑖 ) ⋅ (𝐲

𝑡
𝑖 − 𝐲∗𝑖 ) ≥ 𝜂‖𝐲∗𝑖 − 𝐲𝑡𝑖‖

2, (28)

we freeze its position, i.e., set 𝐲𝑡+1𝑖 = 𝐲𝑡𝑖. 𝜂 is the static friction 
coefficient, set to 𝜂 = 0.8 in our simulations.

7. Implementation

We implemented our framework on an NVIDIA GeForce RTX 4090 
GPU using the Taichi programming language for efficient parallel sim-
ulation. The overall simulation procedure is outlined in Algorithm 1, 
where we typically set the maximum number of iterations itermax to 6, 
and terminate early if the maximum iteration displacement falls below 
a predefined threshold 𝜖 = 10−4. All visual results were rendered offline 
via Houdini. Detailed simulation performance information is given in 
Table  1.
Algorithm 1 Elastomer-Sand Coupling Simulation Based on SBPD
1: Input: 𝐲𝑡, 𝐯𝑡, phase, 𝛥𝑡, itermax, 𝐸0, 𝜈, 𝐸∞, 𝐸𝑘, 𝜃𝑘, 𝐶𝑓 , 𝐶𝑐 , 𝜂, 𝜖
2: Particle advection: 𝐲𝑡+1 ← 𝐲𝑡 + 𝐯𝑡𝛥𝑡
3: while iteration < itermax and max

(

‖𝛥𝐱𝑖‖
)

> 𝜖 do
4:  // Elastic Phase:
5:  Compute deformation gradient 𝐅
6:  Compute force density 𝐓 (Eq. (10), (11))
7:  Compute displacement 𝛥𝐱 (Eq. (12))
8:  Update position: 𝐲𝑡+1 ← 𝐲𝑡+1 + 𝛥𝐱
9:  // Sand Phase:
10:  Compute deformation gradient 𝐅
11:  Project 𝐅 onto yield surface (Cases A/B/C)
12:  Compute force density 𝐓
13:  Compute displacement 𝛥𝐱 (Eq. (12))
14:  Update position: 𝐲𝑡+1 ← 𝐲𝑡+1 + 𝛥𝐱
15: end while
16: // Constraints and Collisions:
17: while iteration < itermax do
18:  Apply self and inter-phase collision response (Eq. (25))
19:  Apply boundary advection
20: end while
21: // Post-processing:
22: Update velocity: 𝐯𝑡+1 ← (

𝐲𝑡+1 − 𝐲𝑡
)

∕𝛥𝑡
23: Apply static friction constraint
24: Apply dynamic friction constraint
25: Update neighbor list 𝑗
26: Update Lamé parameters (Eq. (24))
5 
Fig. 3. Exponential decay of relaxation modes in the Prony model.

We validate our algorithm using a 𝑁 = 3 (rd) order Prony model. 
The total Young’s modulus 𝐸0 gives the initial stiffness of the material, 
while the long-term modulus 𝐸∞ characterizes its stiffness at infinite 
time. Each 𝐸𝑘 denotes the relaxation modulus of the 𝑘th component, 
with 𝜃𝑘 being the corresponding relaxation time. The material behavior 
is defined using the empirical relation: 𝐸0 = 𝐸∞ +

∑𝑁
𝑘=1 𝐸𝑘. The 

configuration of relaxation times at each order can be determined 
according to the empirical rules of exponential decay, as shown in Fig. 
3.

8. Results and discussion

Viscoelastic simulation: Fig.  4 shows a rotational stretch-release ex-
periment to compare the post-release recovery behavior of hyperelastic 
and viscoelastic materials. The hyperelastic model was configured with 
𝐸0 = 𝐸∞, corresponding to a purely elastic response. Upon removal of 
the external load, the object rapidly rebounds and exhibits pronounced 
oscillations. For the viscoelastic model, we set 𝐸∞ = 0.4𝐸0, 𝐸𝑘 =
[0.3, 0.2, 0.1] ⋅ 𝐸0, and 𝜃𝑘 = [1.0, 3.0, 5.0]. After unloading, the material 
gradually returns to its original shape without oscillations (see the 
supplemental video).

We further illustrate the flexibility of our viscoelastic model by 
an ‘‘armadillo stretch-rest-unload’’ experiment with 𝐸0 = 1 × 107 and 
𝜈 = 0.45. We compared three different viscoelastic material parameters:

• Purely elastic: 𝐸∞ = 𝐸0;
• High viscosity: 𝐸∞ = 0.3𝐸0, 𝐸𝑘 = [0.3, 0.2, 0.2] ⋅ 𝐸0, 𝜃𝑘 =
[0.5, 2.0, 5.0];

• Low viscosity: 𝐸∞ = 0.5𝐸0, 𝐸𝑘 = [0.25, 0.15, 0.1] ⋅ 𝐸0, 𝜃𝑘 =
[0.5, 2.0, 5.0].

Fig.  5 shows the evolution of energy (in red) throughout the sim-
ulation and presents a quantitative analysis. During the stretching 
phase, the total energy of all three materials increases non-linearly due 
to the work done by external forces, consistent with the non-linear 
characteristics of stress–strain relationships. For hyperelastic material, 
the external work is entirely converted into elastic potential energy, 
whereas for viscoelastic materials, a portion of the energy is dissipated 
through viscous effects. In the constant-stretching phase, the energy of 
the elastic material remains unchanged, while the viscoelastic materials 
exhibit stress relaxation, demonstrating the physical plausibility of our 
model. In the relaxation phase, hyperelastic material released energy 
most rapidly and almost completely returned to its original state. 
Highly viscous materials release energy more slowly, showing signifi-
cant hysteresis effects as part of the energy is converted to heat through 
viscous mechanisms. The energy release rate of the low-viscosity elastic 
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Fig. 4. Comparison of recovery behavior during a rotational stretch-release experiment.
Fig. 5. Energy evolution of the armadillo stretching experiments.
material lies between the two. These results demonstrate the effective-
ness of our viscoelastic model and its strong tunability in capturing 
diverse material responses.

To further evaluate the time-dependent behavior of the three ma-
terials, we perform a quantitative analysis of their creep and stress 
relaxation responses. As shown in Fig.  6(a), under a constant gravita-
tional load, the elastic material exhibits continuous oscillations in strain 
due to inertia and elastic rebound. In contrast, the high-viscoelastic 
material shows a continuous increase in strain over time, eventually 
approaching a steady-state value. The low-viscoelastic material also 
undergoes time-dependent strain growth under the same load, albeit 
with a smaller magnitude. As illustrated in Fig.  6(b), during the interval 
from 0 to 0.75 s, the material is stretched at a constant rate, after 
which the strain remains fixed. In this constant-strain phase, the stress 
in the elastic material remains unchanged, indicating the absence of 
stress relaxation. In contrast, the stress in the high-viscoelastic material 
decreases significantly over time, demonstrating that internal viscous 
damping continuously dissipates energy, thereby reducing the stress 
required to sustain the same deformation. 

Sand simulation: We designed a series of granular flow experi-
ments and compared them with MPM simulations based on the
6 
Drucker–Prager yield criterion. These comparisons validate the effec-
tiveness of different yield mapping schemes under the peridynamic 
framework in reproducing physically plausible granular flow and pile-
up behaviors.

Fig.  7 shows a sand pile experiment with 𝐸0 = 3 × 105 and 𝜈 =
0.2. Under high friction coefficients, our method successfully produced 
stable, high-friction sandpiles in which the upper particles resisted 
sliding. Compared to the MPM approach under the same friction angle 
and coefficient, our method achieved more pronounced pile-up effects 
by introducing stronger cohesive forces. Additionally, the peridynamics 
framework, extended from elastic energy, allows for larger time steps, 
improving overall simulation efficiency.

To further study the influence of cohesion, we conducted a slope-
divided sand pile experiment (Fig.  8). We used the Drucker–Prager 
yield criterion with 𝐸0 = 2×105 and 𝜈 = 0.2, and used materials with dif-
ferent cohesion coefficients. Under higher cohesion, some sand particles 
could adhere to the inclined surface forming local accumulations. For 
lower cohesion, only a thin layer of particles remained, with the rest 
quickly sliding down. The accumulation patterns on the ground also 
showed significant differences: high-cohesion materials formed more 
compact sand pile structures; low-cohesion materials appeared more 
dispersed.
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Fig. 6. Creep and stress relaxation behavior of elastic and viscoelastic materials.

Fig. 7. Sand piling simulation experiments.

Fig. 8. Sand-slope experiments.
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Fig. 9. Hourglass experiments.
Fig. 10. Elastic cloth and bunny-shaped sand coupling experiment.
To evaluate the influence of friction coefficients on granular flow 
behavior and accumulation patterns, we conducted an hourglass exper-
iment under constant cohesion (Fig.  9). The results show that higher 
friction coefficients yield in poorer flow of particles near boundaries, 
while internal particles still show a certain flow. In contrast, materials 
with low friction exhibited more uniform flow between interior and 
exterior regions. After exiting the funnel, high-friction materials formed 
taller and steeper piles, while low-friction materials produced flatter 
deposits.

Coupling simulation: To evaluate the capability of our framework 
in simulating interactions between thin films and granular materials, 
we designed an experiment involving an elastic cloth and bunny-shaped 
sand (Fig.  10). The material parameters of the cloth are 𝐸0 = 5 × 107, 
𝜈 = 0.45, while those of the sand are 𝐸0 = 1 × 105, 𝜈 = 0.2. During the 
experiment, the sand falls freely and accumulates on the cloth surface 
without penetration, while the cloth undergoes significant deformation 
under the coupled contact forces. The results demonstrate realistic two-
way coupling, where both materials mutually influence each other’s 
motion and deformation during collision and accumulation.
8 
9. Conclusions and future work

We proposed a unified visco-elasto-plastic simulation framework 
based on SBPD to address the limitations of CCM in modeling discon-
tinuities. Our framework demonstrates flexibility and effectiveness in 
simulating both viscoelastic solids and granular materials.

In terms of viscoelastic simulation, we derived time-dependent force 
density formulations based on the Prony model, accurately capturing 
complex response characteristics such as stress relaxation, creep, and 
hysteresis. For granular flow simulation, we integrated various yield 
criteria and mapping strategies, combined with density-based dynamic 
stiffness adjustment mechanisms, achieving natural flow, accumulation, 
and separation behaviors of particles. The framework further supports 
interactions among viscoelastic solids, granular media, and rigid bodies 
via a multi-material coupling mechanism, enhancing its robustness and 
applicability.

However, the computational efficiency of the current method for 
large-scale granular flow simulations still remains a challenge.

In future work, we will focus on developing implicit iterative accel-
eration strategies to enhance the stability and efficiency of large-scale 



J. Wang et al. Computers & Graphics 133 (2025) 104463 
computations. Furthermore, we plan to leverage the advantages of Peri-
dynamics in handling fracture and crack propagation by incorporating 
fracture mechanics mechanisms into the viscoelastic model, enabling 
the simulation of richer material discontinuity behaviors. Building on 
the extensibility of our framework, we will also integrate viscoelastic 
fluids into the unified framework, extending its application capabilities 
in biological fluid and soft matter simulations.
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