APPA: A Cluster-Preserving Approximating Parametric Projection

Keywords:

Abstract:

Algorithm

Alister Machado!®? and Alexandru Telea!®P

! Department of Information and Computing Sciences, Utrecht University, The Netherlands
{a.machadodosreis, a.c.telea} @uu.nl

Dimensionality Reduction, Neural Networks, Parametric Projections.

Dimensionality Reduction (also called projection) is the tool of choice for visualizing high-dimensional data
due to its applicability to datasets of different kinds, sizes, and dimensionalities. However, many projection
algorithms scale poorly with dataset size, limiting their applicability on large datasets. A particularly successful
approach to scalability is to approximate the projection by computing it for a subset of the data, and use the
(fast) approximation to project the full dataset. Neural Network Projection (NNP) is one such approximation
algorithm which is fast at both training and inference, is projection- and dataset-agnostic, has out-of-sample
ability, and is simple to implement. Yet, NNP creates projections in which data points diffuse over the projection
space even if they were clustered at training time. Since groupings are crucial features of projections this
severely limits NNP’s attractivity as an alternative projection technique. We propose APPA (Approximating
Parametric Projection Algorithm), a refinement of NNP that inherits all of NNP’s qualities while strongly
reducing the diffusion problem. We evaluate APPA across a variety of datasets and projection techniques,

demonstrating its ability to maintain the quality of the reference projection.

1 INTRODUCTION

Exploratory data analysis is an increasingly common
task given the widespread use of data collection tech-
niques in the most varied domains. Visually exploring
data that has a large number of attributes, also called di-
mensions, per measurement (also called sample) calls
for the development of specific techniques. In this con-
text, projection — also called Dimensionality Reduction
(DR) — algorithms support exploratory data analysis by
transforming data-space tasks such as measuring corre-
lations, relationships, and naturally-occurring clusters,
into visual tasks. They do so by mapping the data from
its original data space to a lower-dimensional space
(typically 2D or 3D). The data is then visualized by
means of a scatterplot, giving rise to a projection plot
in which visual patterns can be used to infer properties
of the data.

Tens of DR methods exist with readily avail-
able implementations in public software packages.
At a high level, one can group these into lin-
ear and global methods such as Principal Com-
ponent Analysis (PCA) (Pearson, 1901), non-linear
global methods such as Multidimensional Scaling

https://orcid.org/0000-0002-1129-4628
5@ nttps://orcid.org/0000-0003-0750-0502

(MDS) (Kruskal, 1964a), and non-linear local meth-
ods such as t-SNE (van der Maaten and Hinton, 2008)
and UMAP (Mclnnes et al., 2020). Linear and global
methods are simple to implement and fast to execute
but can only preserve a limited range of data patterns
in the resulting projections. Non-linear local methods
are typically more expressive than their linear (and/or
global) counterparts, i.e., they have more flexibility as
to where they project each data point. This comes at
a cost in time and/or space complexity though. The
computation of the distance matrix and pairwise inter-
actions for t-SNE, or the creation of a graph approxi-
mating the data manifold in UMAP are costly steps in
each respective algorithm. Additionally, both of these
methods (and several others in the same class) are non-
parametric — they require the complete recalculation
of a projection when new data points arrive or exist-
ing points change values. Given this high complexity,
avoiding their complete recalculation introduces sig-
nificant performance benefits.

While parametric versions of specific algorithms
have been proposed, such as Parametric t-SNE (van der
Maaten, 2009), an algorithm-agnostic solution allows
one to use any DR algorithm to new data and also to
speed up the projection computation. To do this, one
would apply the desired DR algorithm to a small subset
of the data (which is fast) and then use a fast parametric

/|
o 5l
o 5 _;;__" Z

§ ig & ® l 2 :§
% aumAp & e B o APRA

Figure 1: Diffusion effect of NNP. a) Projection of the USPS
dataset created by UMAP. b) The approximate projection
created by NNP. Diffusion smooths out well-defined clusters
in (a) and merges neighboring clusters. c) Our technique,
APPA, shows reduced diffusion and well-separated clusters.

approximation to project the remaining data. A recent
algorithm capable of doing so is NNP (Neural Network
Projection) (Espadoto et al., 2020b). This algorithm
builds a Neural Network approximating any projection
P by minimizing a regression error.

NNP enjoys a set of properties that make it inter-
esting for projecting large datasets. It is projection-
agnostic, meaning it does not place any requirements
on the projection P which it approximates. Its back-
bone is a deep neural network, so it inherits the de-
sirable properties of those: training is fast and can
be done on the GPU using any off-the-shelf gradient-
based optimizer. Inference scales linearly with the
number of data points, as opposed to e.g. UMAP
and t-SNE, which scale super-linearly. Additionally,
NNP builds a function that works on unseen data (also
called out-of-sample data), avoiding costly recomputa-
tion. NNP’s implementation is simple and requires no
parameters to be tweaked with in inference mode. Last
but not least, NNP’s neural network can be adapted
depending on the data type one wishes to project — i.e.,
convolutional networks for time series data or images
and attention networks for text data.

However, NNP has a key drawback: Its projection
function causes well-defined point clusters in the train-
ing projection to spread out, or diffuse, over the pro-
jection space, reducing the inter-cluster distance and
mixing different data categories (see Fig. 1). This is
highly undesirable since it conveys a far poorer cluster
separation than the actual training projection captures
from its input data. The diffusion effect worsens when
projecting out-of-sample data — while this is the key
use-case for NNP. All in all, diffusion negates all other
desirable properties of NNP and makes it unable to re-
place slower, but higher-quality, projection techniques
such as t-SNE or UMAP.

In this work, we propose APPA, standing for
Approximating Parametric Projection Algorithm, a
technique that strongly reduces the diffusion problem
of NNP. APPA does so by using regularization tech-
niques with the help of soft barrier functions, with
only O(n) extra computational cost in its training loop
for n data points and no additional cost at inference

time. Its structure is otherwise identical to NNP, mean-
ing it inherits all of NNP’s desirable properties, e.g.,
genericity, speed, out-of-sample ability, and ease of
implementation and use. We make APPA’s Python
code openly available (Machado and Telea, 2025a).

The structure of this paper is as follows. Section 2
covers related work with a focus on approximating
methods for projection. Section 3 details both NNP
and how we extend to it that tackle NNP’s diffusion
problem. Section 4 evaluates our method against sev-
eral well-known projection methods, including NNP,
on a variety of datasets and shows our method’s ability
to compute high-quality, low-diffusion, projections.
Section 5 discusses our method’s key features and
concludes the paper with future work directions. We
provide additional information and experimental data
in the supplemental material (Machado and Telea,
2025b).

2 RELATED WORK

Notations: We denote by X a dataset containing n
data points x; € R? where x = (x1,...,x;). The pro-
jection of a single data point is denoted by y; = P(x;),
where P : X — R is any DR algorithm; the projection
of the entire dataset is denoted by Y = P(X). P is
computed so as to minimize various types of costs, or
errors, between X and P(X). A neural network used
to approximate P is denoted by I, : R? — RY, where
0 are weights and bias parameters. We denote the Eu-
clidean norm, respectively L1 norm, of a vector by

i .
IIx|l2 = (ij;)f, respectively by [|x||; = ¥; |x;].
2.1 Dimensionality Reduction

Tens of DR algorithms exist, each with different prop-
erties and mathematical underpinnings. For example,
PCA (Pearson, 1901) is a linear parametric method
that minimizes the so-called reconstruction error over
a dataset. MDS (Kruskal, 1964a; Kruskal, 1964b) com-
putes P so as to minimize the differences in normalized
pairwise distances in Y vs those in X. t-SNE (van der
Maaten and Hinton, 2008) and UMAP (Mclnnes et al.,
2020) are non-linear and non-parametric methods that
approximate local point-neighborhood structures in
the data space and map them to the projection space.
Such methods are described in further detail in a range
of surveys (Espadoto et al., 2019; Nonato and Aupetit,
2018; Sorzano et al., 2014).

Non-parametric methods allow for greater flexibil-
ity during the optimization of their (often complex)
cost functions. For example, in t-SNE (van der Maaten
and Hinton, 2008), Gaussian probability distributions
with varying scales are used to model the data in R.

Those are mapped to Student ¢ distributions in the
projection space by iterative gradient descent on their
KL divergence — a measure of dissimilarity between
probability distributions. This effectively creates a
force-directed placement, where each point in the pro-
jection can individually move in space to find its best
projection spot. This is not true for parametric meth-
ods: Since they compute a single function P : R" — R?
that is applied to every data point to compute its pro-
jection, as opposed to a mapping P : X — RY, altering
the position of one point typically affects other points
as well.

Parametric methods have several key advantages,
however. First and foremost, they can compute the pro-
jection of new, unseen data points — they effectively
project the entire space R” rather than a specific fixed
set X C R". This allows one to construct P based on
data X existing at some point in time and next aug-
ment the result with new points coming from the same
distribution without having to recompute the entire pro-
jection (which would be slow but could also cause spu-
rious changes in the resulting scatterplot). Separately,
a parametric method can be fit on a subset X; C X of
the data, where |X;| < |X|. The learned parameters
can then be used to project the entire dataset X. Using
a representative subsample X yields typically small
approximation errors. Projecting the entire dataset X
can then be done using the learned parameters, provid-
ing major performance improvements (Espadoto et al.,
2020b).

2.2 Projecting Unseen Data

The advantages of parametrized projection algorithms
have led to numerous such techniques. We next high-
light a few examples relevant to our work.

Parametric t-SNE (van der Maaten, 2009) uses a
multi-staged pipeline to build an approximation that
preserves the local structure present in a computed
t-SNE projection. This approach accurately extends
t-SNE to a parametric setting but is computationally
expensive; is complex to implement; and requires care-
ful setting of many hyperparameters.

PCA and NCA (Goldberger et al., 2004) are (by
design) parametric approaches. They compute linear
transformations X — XW, where W can also be ap-
plied to unseen data. However, their expressiveness is
limited by their linear nature.

Auto-Encoders (AEs) (Hinton and Salakhutdinov,
2006) can be used to learn projections by setting the
number of neurons in the bottleneck of the network to
qg. The Encoder creates a projection to RY and the
Decoder outputs a reconstruction to R?. As plain
AEs are typically poor at capturing local relationships
and showing good class separation in projections, sev-

eral extensions thereof have been proposed (Makhzani
et al., 2015; Espadoto et al., 2021; Machado et al.,
2024). These rely, among others, on pseudo-labels
inferred from clustering or use Generative Adversarial
Networks (GANs) to increase the desired class separa-
tion in the resulting projections.

As it is hard to design an algorithm that can pro-
duce a parametrized, high-speed projection without
incurring significant quality penalties, alternative ap-
proaches aim to mimic reference projections. Neural
Network Projection (NNP) (Espadoto et al., 2020b)
learns to mimic any given reference projection P(X)
by fitting a feed-forward neural network with a re-
gression target. This method suffers from what we
claim is overfitting (see next Sec. 3) which manifests
visually as diffusion when the learned projection is
applied to unseen data (see Fig. 1). Attempts to allevi-
ate this problem, for example learning projections of
neighborhoods instead of single points (Modrakowski
et al., 2022), or tweaking the training hyperparam-
eters (Oliveira et al., 2023; Espadoto et al., 2020a),
have shown only very limited success — the diffusion
phenomenon is still visible in their results.

We present a principled justification as to why
NNP degrades in the out of sample regime, and our
new APPA algorithm that yields a measurable qual-
ity improvement in terms of learning to approximate
any given reference multidimensional projection. We
further develop a sample-based version of APPA, al-
lowing control over the amount of desirable diffusion
introduced in the learned projection.

3 METHOD

Looking again at Fig. 1, we see that in dense regions of
the projection space, NNP is reasonably accurate, so
we do not want to strongly modify it there. Between
clusters, however, NNP degrades and introduces diffu-
sion. As such, we design our method APPA to regu-
larize NNP by avoiding placing points in low-density
regions in the scatterplot, as described next.

3.1 Neural Network Projection (NNP)

(Espadoto et al., 2020b) first proposed to use a neural
network Iy : R" — R? to parametrically approximate
any reference projection computed on some dataset
X by a DR technique of choice P. The idea is simple
and quite effective: Given training data Y = P(X),
NNP learns the parameters ¢ by optimizing the mean
squared error loss

Laxe(0) = Y [lyi — Ty (xi) 5)]
i=1

Smooth

)

[Project)/\CI' rain \

Minimize
1Y - Y3
Maximize
s '..: n ﬂlOgPKDE(Y)

Figure 2: APPA’s architecture. APPA takes as input a dataset and its projection, computed by any method. APPA then builds a
smooth KDE which determines the low (dark blue) and high (yellow) density areas in the projection. The approximating neural
network is then fit to the reference projection with the additional goal of avoiding low-density areas. See Section 3.2.

between the network’s predictions and the reference
projection Y.

NNP additionally uses early stopping, a simple
form of regularization. Once the error on a held-out
validation set stops decreasing, training is stopped.
While valid, this technique is not enough to prevent
overfitting, which is responsible for low projection
quality when using the trained network I, on unseen
data. This quality loss is reflected both by lower quality
metrics and visually by the ‘diffusion’ of point clusters
that are well separated in the reference projection.

k-NNP (Modrakowski et al., 2022) aims to improve
NNP by learning to project neighborhoods of points
from the data space to the projection space. This is
motivated by the observation that projections are in-
herently non-local: the position of each point depends
on the position of possibly every other point in the pro-
jection — with influence diminishing according to dis-
tance between such points. While k-NNP marginally
improves on NNP’s quality, it still fails to prevent the
mentioned diffusion problem. Separately, a wealth
of training heuristics, hyperparameters, and loss func-
tions have been explored with NNP (Oliveira et al.,
2023; Espadoto et al., 2020a). As for k-NNP, these
only yielded marginal quality improvements.

3.2 APPA: Avoiding Low-Density Areas

NNP’s training procedure consists of fitting a regres-
sion model from R¢ to RY. This can be understood
as finding the maximum likelihood estimate (MLE)
under a Gaussian conditional model

po(ylxi) = N(y|u = Ty (x;),1) 2)
¢ = arg max log py (yilx;) < [lyi — T (x;) |3, (3)

where the maximization is performed over the training
set (X, Y = P(X)).

While this works for learning point-wise relation-
ships between data points x; and their projections y;,

it fails to consider how the projection algorithm P
induces a probability distribution over the projection
space. The overall effect of P can be taken into account
by introducing a prior and resorting to Maximum A
Posteriori (MAP) estimation

¢ = arg max, log p(y|TTy(x;)) +log p(TTy(x;)). (4)

Note that NNP uses only the first term in the right hand
side of Eqn. 4. The second term — that we introduce
with APPA — constrains the projection, sharpening its
shape by explicitly avoiding low-probability regions.

The choice of an appropriate prior is crucial for
APPA’s success. We use a prior derived by Kernel Den-
sity Estimation (Rosenblatt, 1956), p(y) = KDE(Y),
computed over the reference (training) projection Y =
P(X). We use a Gaussian kernel with small bandwidth
(0.01) since we want our prior to quickly decay away
from the training projection. While non-parametric,
this prior is differentiable with respect to its argument,
so it is suitable for use in APPA’s loss function. We
also replace NNP’s Gaussian likelihood by a Laplacian
likelihood to further strengthen the desired sharpen-
ing effect. This amounts to replacing NNP’s Mean
Squared Error loss with a Mean Absolute Error (LL1)
loss.

Putting all above together, APPA’s loss function to
be minimized is

=

Lappa = _ [—log po(yilxi) — Blog p(I(x:))]

—_

[
D=

[lyi =T (xi) [l — Blog p(Tly(x:)), (5)

Il
—_

where the first term in the summation is a regression
error from the reference projection, and the second is a
regularization term with weight § encouraging the dis-
tribution of the approximating projection to match that
of the reference projection. Simply put, our training
combines two objectives: in high-density regions, we

reproduce the reference projection; in low-density re-
gions, we regularize towards the reference projection’s
shape. In all our experiments, we use B = 0.002.

To allow training to focus only on faithfully repro-
ducing the projection in high-density areas, we clip
the log-prior values to a maximum of —2. This flattens
high prior probability areas causing the gradient of the
regularization term to vanish there. For this we use

n
Lavea = Y |lyi —p![l1 — Bmin(log p(p}), ~2), (6)

i=1

where we denote p? =TTy (x;).

As Sec. 4.2 next shows, our loss function (Eqn. 6)
produces slightly worse results than NNP’s loss
(Egn. 1) on the training set, as expected given our
extra regularization — but strongly reduces diffusion
on unseen data.

3.3 Sampled APPA

As explained in Sec. 3.2, APPA’s regularization term
(Eqn. 6) introduces an effect opposite to diffusion,
which we call sharpening. In practice, users may want
to control the strength of this sharpening effect. This
is difficult to do reliably in APPA. For this reason, we
present next a Sampled version of APPA (SAPPA),
which allows simple sharpening control.

SAPPA achieves the same effect as APPA —i.e.,
avoid low-density areas — by sampling the projection
space regions we would like to avoid and then explic-
itly penalizes closeness to such samples — see Fig. 3.

For this, we first compute a barrier function B :
R? — R that combines the effect of two terms as fol-
lows. The first term Z(y) disables the barrier close
to points in the training projection Y and enables it
slightly further away from such points; this prevents
diffusion close to points in Y. We compute Z as

1
Z(y) = ——— 7
W) =17 o) ()
where p is the KDE-based prior introduced in Sec. 3.2
and y is any point in the projection space R?.
The second term disables the barrier at points y that
are far away from all points in the reference projection.
This term is defined as

D(y)

which we compute by using a nearest-neighbor algo-
rithm. The rationale behind using D is that we do not
want to explicitly constrain our projection in areas far
away from the training projection Y.

The final barrier is computed by multiplying the
two desired effects as

B(y) =Z(y)D(y) ©)

1
~ 1+mingey ly—y/|’

®)

Table 1: Datasets used for evaluation in this work. T: post-
processed subsets of original datasets. See supplemental
material for additional details.

Name Dims. (d) Size (n) # Classes
Cats and Dogs 2048 25000 2
CIFAR10" 1920 12 000 2
CIFAR100" 1920 6 000 2
FashionMNIST 784 60000 10
HAR 561 7 352 6
IMDB 500 25000 2
MNIST 784 60000 10
Reuters 5000 8432 6
Spambase 57 4601 2
USPS 256 9290 10

We uniformly sample B on a 300 x 300 grid and keep
only the 80% highest values, creating a set of barrier
points B = {b;}. Using these barrier points, we con-
struct the loss

Lsarea = Y lyi =P 1 +BY.(8— b —bj3)-,
i=1 J

(10)
where p? =TITy(x;) and (x); = max(0,x). Simply put,
this loss adds a linear penalty to points within a band
of width & from the training projection Y, so limits
diffusion close to Y; and has no effect further away
from Y. Users can then control 8 to tune the desired
sharpening effect. In our experiments, we fix B = 1.0.

4 EVALUATION

We evaluate our approach for a variety of projection
methods P — namely t-SNE, UMAP, Isomap, and PCA
— across 10 datasets commonly present in DR litera-
ture benchmarks (see Tab. 1). We compare our results
with NNP (Sec. 4.1) and see how (S)APPA strongly
alleviates the diffusion problem. We further show
that APPA yields better quality as measured by stan-
dard projection quality metrics (Sec. 4.2). Next, we
explore how users can control sharpening via the pa-
rameter 8 (Sec. 4.3). We also explore how (S)APPA
behaves when projecting increasing amounts of data
unseen during training (Sec. 4.4). Finally, we show
how our APPA computationally scales to handle pro-
jecting large datasets (Sec. 4.5).

4.1 Generating projections

We design our evaluation as follows. Each combina-
tion of dataset X and projection P makes an exper-
iment dataset D = (X, Y = P(X)). We split D into
a training set Dy = (X7,Y7) and an evaluation set
Dg = (Xg, Yg), with [D7| = 1|X| and [Dg| = 3|X].

ﬁamer Functlon \

Z(Y) - D(Y)

|

’

J 5

oy H

‘\

\L‘ VAN

éample Barrier \

{b;}j-1...5

i B i :
o || LA &

v g
g# g
L%% BN

ﬂroject

PECHEE

Minimize
Y - I3

Minimize

(6 =11y = bjll)+

RVAY /

J

Figure 3: SAPPA’s architecture. This version of APPA uses an explicit set of barrier points b ;. The algorithm minimizes the
regression error with respect to the reference projection Y as well as a penalty linear in the distance of all points to the barrier.
See Section 3.3 for further details on sampling the barrier and the proximity penalty.

We then train the approximation algorithms NNP,
APPA, SAPPA on (X7,Y7) for at most 300 epochs
using the Adam optimizer (Kingma and Ba, 2015),
compute their output Y = ITy(XE), and compare it to
the unseen part of the projection (Yg).

Figure 4 shows the resulting projections (additional
examples are present in the supplemental material).
We immediately see diffusion arising when using NNP,
both on the training data X7 and, even more so, on
the test data Xg. For example, consider NNP’s output
when trained on the t-SNE projection of the FashionM-
NIST dataset (Fig. 4, row 3 from top). In the reference
projection, we see well-isolated sample groups such
as the orange ones (A1) or yellow ones (B1). These
strongly diffuse to mix with the other sample groups
for both the training and testing NNP projection (mark-
ers A2, A3, B2, B3 in the image). For the (S)APPA
training projection, these samples re-create the t-SNE
training projection patterns almost exactly (markers
A4, A6, B4, B6). For the (S)APPA testing projection,
these groups become slightly more diffuse but still sep-
arate clearly from the adjacent groups in the projection
(markers A5, A7, BS, B7).

(S)APPA’s ability to contain diffusion is even more
visible when learning UMAP, a DR method known to
produce sharp separation — small dense clusters sep-
arated by a lot of white space. For the HAR dataset
(Fig. 4, row 2 from top), the reference projection shows
two very clearly separated clusters of cyan samples
(C1) and yellow-and-pink samples (D1). These clus-
ters exhibit very strong diffusion in both NNP train-
ing and testing projections (markers D2, D3, C2, C3).
(S)APPA’s training projection keeps these clusters al-
most identical to the reference projection (markers C4,
D4, C6, D6) and creates minimal diffusion for the
testing projection (markers C5, D5, C7, D7).

The trend of (S)APPA producing less diffusion
than NNP, i.e., better preservation of finer structures
from the reference projections, holds across every sin-
gle test case. Evidently, (S)APPA does not completely

prevent the diffusion problem, for reasons already ex-
plained when outlining our design in Sec. 3: There is
still a small amount of data that gets placed in regions
that were not populated by the reference projection.
This is due to the continuous nature of I1y: It is always
possible to construct an x’ such that it falls in an inter-
cluster location in the learned projection. Separately,
we see how (S)APPA cannot create additional separa-
tion which was not present in the reference projection
— see the Cats & Dogs dataset projected with PCA in
Fig. 4. Since PCA cannot separate well the two clus-
ters (cyan and brown points) due to its linearity, neither
NNP nor (S)APPA can do this. Yet, even in this case
we see that (S)APPA yields less diffusion than NNP.

4.2 Projection Quality Metrics

As is standard practice when evaluating projections,
we further back up the visual evidence outlining
(S)APPA’s higher quality in mimicking the reference
projection (Sec. 4.1) by computing projection qual-
ity metrics for the compared methods and datasets.
We use a total of 15 quality metrics, all common in
DR literature, implemented by the library described
in (Machado et al., 2025). For all metrics that operate
on k-neighborhoods, we use k = 51. We next discuss
a subset hereof; all remaining ones are detailed in the
supplementary material.

True Neighbors Rate: Measures, for every projected
point y;, the fraction of its k-nearest neighbors (KNN)
that match the k-nearest neighbors of x;, its pre-image
through P or Iy (Martins et al., 2014).
Trustworthiness and Continuity: Measure the
amount of false neighbors (resp. missing neighbors) of
each projected point, penalizing proportionally to the
rank of the introduced (resp. missing) neighbor (Venna
and Kaski, 2006).

Distance Consistency: This supervised cluster sep-
aration metric yields high values for projections in
which each projected point is closer to the centroid

t-SNE NNP Train NNP Test APPA Train APPA Test SAPPA Train SAPPA Test
:f

(o'
< B
T §

UMAP ~

‘/ T
- o

= { . 4
T na «‘f 3 i o {

t-SNE)
'_
%) 5
=
C w
o W
E b s
Iie W

PCA

wv
o
o
[a)
3
©
U

t-SNE
'_
%)
=
=

Figure 4: Using (S)APPA to reproduce different projections of different datasets. For each row we show, from left to right: the
projection used for training; the result of running NNP on the training data and next on unseen data; APPA’s output on the
training data and next on unseen data; and finally, SAPPA’s output on training data and next on unseen data. Overall, we see
that (S)APPA better captures the training projection, and creates sharper clusters, than NNP.

of the points of its own class than to any other class
centroid (Sips et al., 2009).

Neighborhood Hit: Counts the fraction of points
around y; that have the same class as y; (Paulovich
et al., 2008).

Stress: Measures the amount of pairwise distance
distortions induced by Iy or P, taking as ground truth
the pairwise distances d;; = d(x;,x;) (Kruskal, 1964a;
Smelser et al., 2024).

Figure 5 shows these metrics computed for all ref-
erence projections and datasets described in Sec. 4.1.
In general, the reference projection method yields best
values as expected — an approximation method, like
NNP or (S)APPA, will likely not exceed this baseline.
(S)APPA metrics come next, practically equal to each
other and just slightly lower than the reference val-
ues. NNP metrics are consistently lower than (S)APPA
ones indicating what we qualitatively saw so far, i.e.,
that (S)APPA is a better approximator. Indeed, if dif-
fusion is reduced, then a projected point’s neighbors

are more often correct (True Neighbors, Continuity,
Trustworthiness); those neighbors more often share
the same class (Neighborhood Hit); and distances are
better preserved (Stress). Conversely, if a projection
becomes diffuse, like in the NNP case, then neigh-
borhoods break apart and/or lose accuracy (impacting
True Neighbors, Continuity, Trustworthiness). Diffu-
sion also causes points that should be close together to
shift away from each other. If the reference projection
had good Neighborhood Hit, this shifting will lower
its value, since previously well-defined neighborhoods
start mixing. Distance Consistency also goes down
in diffuse projections: If classes spread around the
projection space, their centroids tend to be potentially
close to each other. Finally, diffusion also increases
Stress, as points become more uniformly distributed in
the projection space, something that unlikely happens
in data space due to the curse of dimensionality.
Figure 6 shows the accuracy of the approximate
projections vs the projection they are trained to approx-

» 1.00 .
B Algorithm
0.75
; —— APPA
S 0.50 ISOMAP e
---- NNP
© 0.25
é ---------- Reference
0.00
1.00
Algorithm
8 § Lo APPA
c
30 SAPPA
i ---- NNP
05 0.25
Soasi Reference
0.00
£ 1.00
. Algorithm
g1 APPA
o
_g om SAPPA
n ---- NNP
5025
R e Reference
= 0.00
1.00
" /-.-.%m*_‘ S
2 0.75 e \“\’, o
§ 050 ISOMAP TSNE UMAP SAPPA
---- NNP
% 0.25
5 Reference
F 0.00 ==
o - — e
“‘wm““% - ——— M /ﬁ«,f Algorithm
20.75 >)
g | —— APPA
2 050 ISOMAP UMAP SAPPA
[
o ---- NNP
0.25
Soasi L Reference
0.00
o 1.00
-g Algorithm
g m Lo APPA
E @ 050 ISOMAP ",a\\ TSNE UMAP SAPPA
G N ---- NNP
o 0.25 g
g —_—-———\W// Reference

% 4
%, S5, W

% % O %
i 75, 7, Y,
% %

£ON

Dataset

Figure 5: Projection quality metrics for (S)APPA and NNP when approximating different projection techniques. ‘Reference’
gives the value of each quality metric for the approximated projection. We see a clear “sandwiching” pattern: the reference
projection has best quality metric values, followed by APPA, then by NNP.

10 APPA SAPPA | NNP
C
s
= 5 . .
0 1=l : ol . IL'I h :
10 - . .
%
'i) 5 B - .
0 L , fiina . ﬂﬂ.-ﬂm]
0.00 0.05 0.00 0.05 0.00 0.05
MSE MSE MSE

Figure 6: Mean Squared Error measured over training and
test data for APPA, SAPPA, and NNP. Each plot shows the
distribution of projected points per MSE value.

imate, measured as Mean Square Error (MSE), both
on training data Y7 and on the held-out data Y. We

see that, during training, both APPA and SAPPA yield
MSE values (close to) zero for most points. This is evi-
dence that using a prior to shape the learned projection
— be it an explicit barrier function or a KDE directly,
see Sec. 3 — allows training to focus on placing points
only in regions of interest. In contrast, NNP produces
such low-error projected points about half as often
and also yields higher MSE values overall. On unseen
data, all algorithms yield slightly larger MSE values
than on training data. Yet, (S)APPA still yields lower
MSE values than NNP, which numerically confirms
the diffusion effect we saw.

Table 2 summarizes the MSE errors computed over
all the tested dataset-projection combinations. We see
that (S)APPA yield practically identical values which

are significantly better than those given by NNP.

Table 2: Mean Squared Error with respect to reference pro-
jections for APPA, SAPPA, and NNP, averaged over all
studied datasets and projections. Lower is better.

APPA SAPPA NNP
Train 0.0032 0.0032 0.0088
Test 0.0086 0.0079 0.0112

4.3 Controlling projection sharpening

As shown so far, both SAPPA and APPA substantially
decrease diffusion. In particular, SAPPA does this
explicitly by linearly penalizing placing points closer
than a threshold & to any barrier point b; (see Sec. 3.3).
In detail, the penalty term for a single projection point
yi and barrier point b; in Eqn. 10 is

0, if [lyi —b;[3 > 8
8— |lyi —b,||3, otherwise
)
Hence, we can see d as a sharpness parameter: The
more we increase it, the farther away from the barrier
points SAPPA must place its learned projection, yield-
ing increasingly more concentrated point clusters from
the training projection.

Figure 7 explores this effect. At & = 0, SAPPA
reduces to NNP — there is no barrier-related penalty.
We see slight sharpening with § = 0.02, with fewer
points falling in the inter-cluster spaces in the projec-
tion. For & = 0.04, clusters become overall thinner
or more densely packed. If we increase 6 too much
(6 =0.1), clusters collapse and merge, which is unde-
sirable. In our experiments, & = 0.02 produces good
sharpening results. Using & thus allows analysts to
easily control the overall sharpening effect they want
to achieve in the learned projections.

(3~ llyi = bjl3)+ = {

8=000 8=002,T7 8=004, 77] 8=01

Figure 7: Setting the § parameter in SAPPA for a t-SNE
projection of the MNIST dataset. The higher § is, the farther
away from the barrier SAPPA learns to place its projection.
Increasing & sharpens the projection, up to where the projec-
tion becomes degenerate (8 = 0.1).

4.4 Projecting unseen data

As already mentioned, diffusion is an artifact, we
claim, of NNP overfitting to its training data. This

matches the finding that NNP degrades strongly for
data not seen during training — the network is not able
to generalize well to new data. Moreover, NNP de-
grades further as it is asked to project increasingly
more data points that were not seen during training
(see Fig. 11 in (Espadoto et al., 2020b)).

One can avoid this issue if, instead of approximat-
ing P — where P is any projection algorithm — we sim-
ply re-ran P on the new data. Two main problems exist
with this. First, this is highly expensive if the underly-
ing P is itself expensive as in the case of e.g. t-SNE.
Secondly, many such algorithms (among which t-SNE)
produce unstable projections due to their stochastic
nature. Hence, visualizing a sequence of such projec-
tions showing increasingly more data (even if drawn
from the same distribution) will not allow analysts to
uncover any meaningful insights.

(S)APPA strikes a good trade-off between NNP’s
ability to quickly produce an approximate projection
for unseen data (but with high diffusion) and the exact
projection P’s ability to produce a projection with high
quality (but in a costly and unstable manner). Fig-
ure 8 illustrates this by showing projections obtained
via several methods for an increasingly large subset
of the MNIST dataset. We use two different training
projection techniques: t-SNE and UMAP. We then
train NNP, APPA, and SAPPA to approximate each
projection, using 5K training samples. We next use
each of t-SNE, UMAP, as well as the three approxi-
mations of each (NNP, APPA, SAPPA) to project a
growing number of unseen data points. For reference,
the black-outlined images show the training projec-
tions. The results show how both t-SNE and UMAP
yield well-separated clusters (in line with the known
cluster separation in MNIST) but also high projection
instability. At the other end of the spectrum, NNP
shows very good stability — the same clusters get pro-
jected in the same areas — but increasing diffusion as
the sample count increases. The latter is clearly a mis-
leading artifact of NNP — we know, for this dataset,
that drawing more samples does not create more mixed
clusters. (S)APPA strike a good balance in the middle:
Its projections show identical stability to NNP; and
diffusion increases far less than NNP as the sample
count increases.

4.5 Computational scalability

An approximating projection algorithm, such as
(S)APPA or NNP, is only useful if it increases comput-
ing speed as compared to the reference DR algorithm
it is trained on. To assess this, we compared two such
DR algorithms (t-SNE and UMAP) with both NNP
and (S)APPA for datasets ranging from 500 to 250K
samples. In all cases, training used a maximum of 300

Points 2000 10000 30000 55000

APPA

SAPPA

NNP

t-SNE

-
sapen

NP ,» | .

owap %ﬁk% V. . ‘"

%

ol 030,

Figure 8: We train NNP and (S)APPA on a reference projection (t-SNE and UMAP, shown with a black border). We then take
samples from a dataset unseen during training and compare the effects of re-running the full projection algorithm (bottom
row in each group) to what we obtain by running NNP (third row) and both versions of APPA (first two rows). We see clear
instability whenever we re-run the full projection algorithm and strong diffusion when we re-run NNP. (S)APPA alleviates both
those issues, combining stability with significantly lower diffusion.

epochs and 5K training samples. Figure 9 shows the
results. For growing dataset sizes, we see a strong in-
crease in run time for t-SNE and UMAP. NNP runs the
fastest of all due to its use of early stopping; yet, as dis-
cussed in Secs. 4.2 and 4.4, it produces lower quality,
diffuse, projections. APPA’s training is roughly two
times slower than NNP since it does not use early stop-
ping. SAPPA is roughly 20% slower than APPA for
small datasets due to the explicit computation of dis-
tances to the barrier (Sec. 3.3). However, once trained,
(S)APPA is as fast as NNP.

1000 | ™= t-SNE
n UMAP
o 800 - WEE APPA
£ EE SAPPA
T 600- mmm NNP
Eel
<
& 400 A
+
&= 2004

0 .

500 1000 5000 15000 46000 4000 10000, 50000
Dataset Size

Figure 9: Computational speed of (S)APPA, NNP, t-SNE
and UMAP. We train (S)APPA and NNP for at most 300
epochs with 5K samples. Each value is averaged over 3 runs.

APPA and SAPPA are both twice as slow as t-SNE
for datasets of up to 5K samples. For 15K samples,
(S)APPA are on average as fast as t-SNE. (S)APPA
has about the same speed as UMAP for datasets with
100K samples, being slower for all smaller datasets.
However, for the largest dataset size we experiment
with — 250K samples — (S)APPA are between 25
and 30 times faster than t-SNE and UMAP. More im-
portantly, the trends in this chart are telling: t-SNE and
UMAP costs increase superlinearly with the sample
count while both NNP and (S)APPA are linear with
this count and have a quite low slope. All in all, this
means that (S)APPA practically offer the same signif-
icant speed-ups vs classical projection algorithms as
NNP but, as shown earlier, with increased quality.

S DISCUSSION AND
CONCLUSION

In this work, we have presented APPA and its sample-
based version, SAPPA, two techniques that learn to
approximate dimensionality reduction algorithms in
ways that combine several desirable features. Com-
pared to NNP, our closest competitor that we improve
upon, (S)APPA cover the following points:

Genericity: As NNP, (S)APPA can learn to mimic
any DR technique in a black-box fashion, that is, irre-

spective of the data dimensionality, nature of the data,
or internals of the learned DR technique.
Quality: (S)APPA significantly improves upon NNP’s
weakest point, namely the latter’s tendency to gener-
ate diffusion effects in projections of otherwise well-
separated samples. Both visual comparisons and study
of projection quality metrics show that such improve-
ments consistently happen for all studied datasets and
learned DR techniques. Quality increase is done in a
principled fashion, i.e., by regularizing the projection
via the addition of a simple cost term that favors the
creation of point distributions similar to those present
in the training projection. This removes, for the first
time to our knowledge, the key weakness of NNP.
Out of sample: As NNP, (S)APPA can project chang-
ing datasets in a stable manner, i.e., by placing the
same samples at the same locations in these multiple
projections. However, while NNP shows increased dif-
fusion as such datasets grow, (S)APPA keeps stability
and only adds minimal diffusion to the process.
Ease of use: As NNP, once trained, (S)APPA requires
no parameters to be set, making its use immediate.
During training, SAPPA proposes one extra parameter
d that models the amount of sharpness of the resulting
projections, which comes with a given preset (3 = 0.2).
Scalability: As NNP, (S)APPA is very fast to train,
yields good training results with about 5K training
samples on all tested examples, and is linear in sam-
ple count in inference (projection) mode. While
(S)APPA’s training is roughly two times slower than
NNP, its inference cost is identical to NNP, which is
orders of magnitude smaller than expensive DR meth-
ods such as t-SNE. This makes (S)APPA an attractive
method for projecting datasets of millions of samples.
Applications: As (S)APPA provides a more accurate
drop-in replacement for NNP, it can be used in any
applications where NNP-like approximations are rel-
evant. For example, NNP’s desirable properties have
recently motivated its use in fields beyond DR such as
Graph Drawing (Hartskeerl et al., 2025). (S)APPA can
be directly used to improve such applications.
Limitations: (S)APPA works well to reduce diffusion
if the reference projections have good cluster separa-
tion. If the reference projection places points close
to each other without much inter-cluster distance, our
regularization will not be as effective in reducing diffu-
sion (see e.g. the PCA example in Fig. 4). Additionally,
even if clusters are well-separated, they might consist
of too few points. This makes the KDE p in Eqn. 6 too
sharply peaked, with near-zero gradients almost ev-
erywhere, which hinders regularization effectiveness.
One way to fix this — to be explored in future work — is
by oversampling such small clusters according to the
KDE, akin to a bootstrapping process.

We see several directions of future work. SAPPA’s

training can be easily accelerated by using distance
transform methods to compute the barrier, even on
higher resolutions than our current 300> pixels, yield-
ing finer-grained sharpening control (Eqn. 9). Adap-
tive diffusion can be incorporated to e.g. model true
dataset distances in the projection while keeping clus-
ters sharp where appropriate. Finally, (S)APPA can
be easily extended to efficiently and accurately project
time-dependent datasets, an area where few methods
exist in the DR literature (Vernier et al., 2020).

REFERENCES

Espadoto, M., Falcdo, A., Hirata, N., and Telea, A. (2020a).
Improving neural network-based multidimensional pro-
jections. In Proc. IVAPP.

Espadoto, M., Hirata, N., and Telea, A. (2021). Self-
supervised dimensionality reduction with neural net-
works and pseudo-labeling. In Proc. IVAPP, pages
27-37. SciTePress.

Espadoto, M., Hirata, N. S. T., and Telea, A. C. (2020b).
Deep learning multidimensional projections. Informa-
tion Visualization, 19(3):247-269.

Espadoto, M., Martins, R., Kerren, A., Hirata, N., and Telea,
A. (2019). Toward a quantitative survey of dimension
reduction techniques. IEEE TVCG, 27(3):2153-2173.

Goldberger, J., Hinton, G. E., Roweis, S., and Salakhutdinov,
R. R. (2004). Neighbourhood components analysis. In
Advances in Neural Information Processing Systems,
volume 17. MIT Press.

Hartskeerl, I., Mchedlidze, T., van Wageningen, S., Vangorp,
P., and Telea, A. (2025). NNP-NET: Accelerating t-
SNE Graph Drawing for Very Large Graphs by Neural
Networks . In Proc. Graph Drawing.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the
dimensionality of data with neural networks. Science,
313(5786):504-507.

Kingma, D. P. and Ba, J. (2015). Adam: A method for
stochastic optimization. In Bengio, Y. and LeCun, Y.,
editors, Proc. 3rd ICLR 2015.

Kruskal, J. B. (1964a). Multidimensional scaling by op-
timizing goodness of fit to a nonmetric hypothesis.
Psychometrika, 29(1):1-27.

Kruskal, J. B. (1964b). Nonmetric multidimensional scaling:
a numerical method. Psychometrika, 29(2):115-129.

Machado, A., Behrisch, M., and Telea, A. (2025). Extensi-
ble TensorFlow implementations of projection quality
metrics. In Proc. VisGap. Eurographics.

Machado, A. and Telea, A. (2025a). APPA implementation.
https://github.com/amreis/appa.

Machado, A. and Telea, A. (2025b). APPA supplemental ma-
terials. https://surfdrive.surf.nl/s/CjtqnZHdjmDbRea.

Machado, A., Telea, A., and Behrisch, M. (2024). Control-
ling the scatterplot shapes of 2D and 3D multidimen-
sional projections. Computers & Graphics, 124.

Makhzani, A., Shlens, J., Jaitly, N., and Goodfellow,
I. J. (2015). Adversarial autoencoders. CoRR,
abs/1511.05644.

Martins, R. M., Coimbra, D., Minghim, R., and Telea, A.
(2014). Visual analysis of dimensionality reduction
quality for parameterized projections. Comput. Graph.,
41:26-42.

Mclnnes, L., Healy, J., and Melville, J. (2020). UMAP:
Uniform Manifold Approximation and Projection for
Dimension Reduction. arXiv:1802.03426 [stat.ML].

Modrakowski, T. S., Espadoto, M., Falcdo, A. X., Hirata, N.
S. T., and Telea, A. (2022). Improving deep learning
projections by neighborhood analysis. In Proceedings
of the 17th VISIGRAPP, volume 1474, pages 127-152.
Springer International Publishing.

Nonato, L. and Aupetit, M. (2018). Multidimensional pro-
jection for visual analytics: Linking techniques with
distortions, tasks, and layout enrichment. /IEEE TVCG,
25(8):2650-2673.

Oliveira, A., Espadoto, M., Hirata, R., Hirata, N., and Telea,
A. (2023). Improving self-supervised dimensional-
ity reduction: Exploring hyperparameters and pseudo-
labeling strategies. In Communications in Computer
and Information Science, pages 135-161. Springer.

Paulovich, F. V., Nonato, L. G., Minghim, R., and Lev-
kowitz, H. (2008). Least square projection: A fast
high-precision multidimensional projection technique
and its application to document mapping. /[EEE TVCG,
14(3):564-575.

Pearson, K. (1901). On lines and planes of closest fit to
systems of points in space. Philosophical Magazine
and Journal of Science, 2(11):559-572.

Rosenblatt, M. (1956). Remarks on some nonparametric
estimates of a density function. The Annals of Mathe-
matical Statistics, 27(3):832-837.

Sips, M., Neubert, B., Lewis, J. P., and Hanrahan, P. (2009).
Selecting good views of high-dimensional data us-
ing class consistency. Computer Graphics Forum,
28(3):831-838.

Smelser, K., Miller, J., and Kobourov, S. (2024). “Nor-
malized Stress” is Not Normalized: How to Interpret
Stress Correctly . In Proc. IEEE BELIV, pages 41-50.
IEEE Computer Society.

Sorzano, C., Vargas, J., and Pascual-Montano, A. (2014).
A survey of dimensionality reduction techniques.
arXiv:1403.2877 [stat. ML].

van der Maaten, L. (2009). Learning a parametric embed-
ding by preserving local structure. In Proc. AISTATS,
volume 5, pages 384-391.

van der Maaten, L. and Hinton, G. (2008). Visualizing data
using t-SNE. J Mach Learn Res, 9(86):2579-2605.

Venna, J. and Kaski, S. (2006). Local multidimensional
scaling. Neural Networks, 19(6):889-899.

Vernier, E., Garcia, R., da Silva, 1., Comba, J., and Telea,
A. (2020). Quantitative evaluation of time-dependent

multidimensional projection techniques. Computer
Graphics Forum, 39(3):241-252.

