
Technical tips for INFOMDV

General notes

Report structure

There are several aspects to consider here. They all stem from the fact that your final report should
be resemble (in structure, style, and level-of-detail) to any white paper or scientific article. Your
report should be self-contained and structured so that any interested reader (having the required
technical background) can understand and replicate your work just by reading the report. Several
aspects flow from this:

Structure: Do not structure the report as a per-week progress. Rather, structure it so that every
section covers a step of the assignment. List explicitly the aims/goals of each step at the start of
the respective section. This way, the reader knows exactly what that section will cover. Split large
sections (roughly: taking more than 2 pages) in subsections, to ease reading.

Sections and subsections: Apart the above per-step sections, you should add a general intro-
duction, describing the overall aims and scope of the document and a short overview of what comes
in the next sections, as in any technical report), a section with notation used throughout the docu-
ment and, a conclusion section. For every step, you can, if you find it appropriate, add some other
subsections such as Algorithm, Implementation Choices, Experiment, etc.

Number: figures, tables, equations, sections, and pages. This makes it easy for you (and also
the reader) to refer to any such element by its number. Any figure or table should have a simple
and self-contained explanation in its caption (text below the figure or table) that tells what the
respective element shows. This allows one to quickly skim through the report and understand what
all such visuals are about, before diving into the detailed explanations in the main text.

References: Add references (listed in a bibliography at the end, not in footnotes) to all elements
which are not your own creation. These include algorithms, methods, software toolkits, libraries,
and frameworks. For software artefacts, specify explicitly the version number and URL you got them
from. This helps the reader in precisely seeing what you have used in your work and thus makes
your work replicable. Preferred references are published papers or technical reports. However, URLs
that point to web pages are also allowed as references.

Source code/pseudocode: You do not need to list the source code in the report, since you will
provide this code separately. Listing extensive code fragments makes the report unnecessarily long
without bringing in additional clarity. Additionally, if you use a package to perform an operation,
it is highly preferred that you describe that operation by using math notation (e.g., computing an

1



average or performing an iterative update of a point’s position) instead of listing the API call. The
reader will then immediately see what you are doing in the math without needing to know the
respective API. The only case where using API calls is preferred is when you (a) refer to operations
which are too complex to express by simple math; and (b) you use specific parameter settings of the
respective API.

If you find yourself describing what your code does, consider writing a high-level pseudocode
instead. For writing pseudocode we recommend the package algorithm2e. However, feel free to write
pseudocode (if needed) in any suitable notation you find easy to use.

Finally, you do not need to provide complete source code with each progress iteration. Source
code will change a lot over the iterations. Having the lecturer assess it continuously is neither
practical nor useful. The source code will only be assessed at the end when you provide its final
version.

Language: Do not describe your report in a chronological manner, for instance “We did A and
then we did B”. Instead, describe the logical flow of your work – as driven by both the assignment
steps and the implementation decisions you took. For intermediate report versions: If parts are not
ready, simply mark them e.g. with a tag “work in progress”.

Always use present tense in your report. Do not make paragraphs in the text overly long. Each
paragraph should have a single message; all messages (taken from all paragraphs) together need
to make a logical story. If you find yourself writing a paragraph containing 3 messages, consider
splitting it in three paragraphs. However, paragraphs of one sentence also do not look good. Avoid
using passive voice as well – say “we do A” and not ”A is done”.

Text formatting: Whenever you define a term for the first time, make it italic, using the \emph
command. Use math mode for all mathematical notations (variables, metrics, formulas, equations).
Use \texttt to mark all elements which suggest code fragments, e.g., MyAlgorithm. To avoid
retyping same lengthy command multiple times consider defining a command, for instance in the
beginning of the document type \newcommand{\R}{\mathbb{R}} and then use \R throughout your
document. In case you want to write text in math environment, do that using \texrm command, to
obtain y = myFunction(x) instead of y = myFunction(x).

Level of reporting

It is crucial that you understand what is the right level of detail for reporting. A good report tells
(1) what was done, and how ; and (2) shows proof that the results are correct and complete. That
means:

(1) What was done: For every step, explain in detail what that step aims to accomplish. To do
this, you have to introduce notations in the report early on. Easiest: Introduce as many notations
right in or before step 1 (e.g., graph, nodes, edges, graph characteristics, quality metrics, etc).
Consider creating an introductory ‘notations’ section which lists as many of these as possible. This
is quite similar to listing declarations, when coding, before actually writing the functions. This will
also force you to think well about all needed terms and how to define them. If you do this properly,
writing the rest of the report will be much easier!

Once introduced, any notation should be used consistently throughout the whole report. Same
as in coding: Once you define a type A, you call it A all over the place; and you don’t call something
else A.

2

https://mlg.ulb.ac.be/files/algorithm2e.pdf


(2) Proof of completeness and correctness: For every computational step of your pipeline,
you have to give proof (evidence) that that step was designed and implemented correctly. How you
do this, depends on the actual step. For example:

• Computing some simple quantities (e.g., the length of a sampled curve): Just provide the math
formula describing what you did; this is enough;

• Computing more complex results of an algorithm which you cannot reduce to a simple formula.
To support your claims, consider (a mix of) the following:

– Visual evidence: Show a few results generated by your algorithm for di↵erent inputs.
Think it this way: You have an algorithm A : B ! C, that is, which reads some data
of type B and generates results of type C. How to prove it works right? Show as many
pairs (x 2 B,A(B) 2 C) as practically possible! This statistically shows that your A does
the right job. If A depends on parameters p (besides its input A), then show additional
images of how A works for di↵erent p values.

– Numerical evidence: For some visualization algorithms, you can gauge their quality by
a few quality metrics, including number of crossings, stress, crossing angles, etc. Simply
put: You evaluate the quality of a force directed layout F algorithm, by applying F on few
graphs Gi, i = 1 . . . , n, thus constructing the layouts F (Gi), i = 1 . . . , n and by measuring
metric M of these layouts, thus computing the values M(F (Gi)), i = 1 . . . , n. If these
values of the metric look good (for instance are smaller after applying the algorithm), then
likely the layouts are good and therefore the algorithm F is good as well. For instance,
for a force-directed algorithm, you can compute the stress and the number of crossings of
the layout of a graph. In case of small scale experiments, e.g. n is very small, just present
the numbers for each graph individually. In case of large values of n, present the values
M(F (Gi)), i = 1 . . . , n in perspective: describe how many graphs (number n) you used to
compute them; how you selected these graphs; and how the metrics values spread, e.g.,
using statistics such as averages, standard deviations, histograms.

Generic tools

As you execute the assignment, you will find that a number of tools will be useful in many di↵erent
steps. Hence, it is good to think upfront about implementing them in a generic way. Once you
do that, you can then reuse them very easily in subsequent steps. Examples include: graph data
structures, graph data structure traversal-algorithms, computation of quality metrics, visualizers for
a graph, etc.

As always in software engineering:

• Don’t jump in randomly coding stu↵; think about what you will need to code;

• Think 1..2 steps ahead when coding something; find general patterns; then, design a single
code for those steps;

• Do not invest time in designing complex user interfaces. We do not grade, nor aim to teach
how to design, interactive systems.

3


	Step: Compute a force directed layout
	Step: Compute a layered layout
	Step: additional bonus tasks on existing lectures
	Step: Multilayer/clustered graphs and edge bundling
	Step: Projections for graphs
	Step: Quality measurement of graph projections

