ARRAY PROCESSING MACHINES

J. van Leeuwen & J., Wiedermann

RUU~CS~84~-13
December 1984

Rijksuniversiteit Utrecht

Vakgroep informatica

Budapestiaan6 3584 CD Utrecht
Corr. adres: Postbus 80.012 3508 TA Utrecht
Telefoon 030-531454) -
The Netherlands

ARRAY PROCESSING MACHINES

J. van Leeuwen & J, Wiedermann

Technical Report RUU~CS-84-13
December 1984

Department of Computer Science
University of Utrecht
P.0.Box 80.012, 3508 TA Utrecht

' the Netherlands

ARRAY PROCESSING MACHINES*
J. van Leeuwen and J. Wiedermann¥#

Department of Computer Science, University of Utrecht
P.O. Box 80.012, 3508 TA Utrecht, the Netherlands.

Abstract. We present a new model of parallel computation called the
"array processing machine" or APM (for short). The APM was designed to
closely model the architecture of existing vector- and arréy proces-
sors, and to provide a suitable unifying framework for the complexity
theory of parallel combinatorial and numerical algorithms, After an
introduction to the model and its basic programming techniques, we
show that the APM can efficiently simulate a variety of extant models
of parallel computation and vector processing. In particular it is
shown that APMs satisfy Goldschlager's "parallel éomputation thesis",

Several extensions to the basic model of the APM are discussed.

1. Introduction. The technical development of ever faster computers

requires that we review the adequacy of the current models of (sequen~
tial) computation. The Turing machine (see e.g. [1]) and the Random
Access Machine (or RAM, cf. Cook & Reckhow [5]) are the outstanding
members of a class of models which have captured the fundamental
notions of computability and the main architectural features and capa-
bilities of existing early-generation computers, respectively. Current
designs of (super~)computers, however, are based on a variety of
architectural innovations which attempt to incorporate advanced forms
of pipelined and parallel processing (cf. Hockney & Jesshope [11]).

Programming languages are being designed that provide a choice of

*This work was carried out while the second author was visiting the
Dept. of Computer Science, University of Utrecht, the Netherlands
(Fall 1984).

¥%pddress: VUSEI—AR; Dubravska 3, 8u2 21 Bratislava; Czechoslovakia.

-2 -

high-level primitives for "parallel programming" based on the expedi~
ence of certain operations on a given line of (super-)computers, like
in the early FORTRAN days (see e.g. Hwang et. al. [12]) New notions of
computational complexity have emerged to measure the performance of
vector- and parallel algorithms which are not immediate from the tra-
ditional class of models of computation.

In recent years a "second" class of computational models has
emerged, whose members attempt to abstract and formalize the salient
features of vectorized and/or parallel computation. We mention the

following examples:

(i) vector machines (Pratt & Stockmeyer [14]),
(ii) MRAM's (Hartmanis & Simon [10]),
(i11) P~RAM's (Fortune & Wyllie [81),
(iv) k-PRAM's (Saviteh & Stimson [17]),
(v) alternating Turing machines (Chandra, Kozen & Stockmeyer [2]),
(vi) LPRAM's (Savitch [16]),
(vii) Concurrent Read-Exclusive Write PRAM's (CREW PRAM's, see e.g.
Stockmeyer & Vishkin [19]),
(viii) SIMDAG's (Goldschlager [9]).

For definitions we refer to the open literature. See Cook [4] for an
excellent account of the current research on parallelism using
circuit~-based models,

As pointed out by van Emde Boas [22] there are various computa~
tional correspondences between the members of the "second" machine
class. One is the property of satisfying the "parallel computation
thesis" (after Goldschlager [9]) which asserts that PARALLEL TIME on
these machines is polynomially related to SPACE on traditional
(sequential) models. (Wiedermann [25] has proposed a model of parallel
computation that appears to belong to an "intermediate" class of
machines.) None of the existing models in the "second" class can be
held as a very realistic model of existing parallel computers, either
because of the highly idealised architectural assumptions that are

'.3;.

made (as in SIMDAG's) or because of the extreme power of certain prim—
itives in the instruction set (as in vector machines). On the other
hand one may argue that no machine model from the "second" class can
be completely realistic as e.g. the capability to activate an exponen;
tial number of processors invpolynomial time (as in P-RAM's) is not in
agreement with physical 1law. (Compare Chazelle & Monier [3], Schorr
[18].) Yet an adequate model is required for the proper study of com~
binatorial and numerical algorithms in a vectorized or parallel com-
puting environment.

Our aim is twofold: (a) we like to have a computational model
that relates as closely to current parallel computers (in the sense of
[11]) as RAM's do to early-generation computers and (b) we 1like to
have a model that incorporates, perhaps indirectly, the essential
features of all (known) members of the "second" machine class. In this
paper we present the "array processing machine" or APM (for short),
which we belleve to be a suitable model of parallel computation that
satisfies our aim, The APM can be viewed as an extension of the RAM-
model with a vector-processing capability, but with primitive opera-
tions that are quite different in detail from Pratt & Stockmeyer's
"vector machines". The model is described in Section 2, where we also
introduce the basic complexity measures for APM computations. In Sec-
tion 3 we show basic programming techniques for APM's ineluding pro~
grams to sort in 0(1032N) time and to solve a tridiagonal system of
linear equations in O(logZN) time as well, (It is presently open to
solve a tridiagonal system on APM's in O(iog N) time.) In section 4 we
show that APM's belong to the "second" machine class by proving that
they satisfy the T"parallel computation thesis", and show efficient
simulations of some common models of parallel computation on the APM.
In Section 5 we discuss the flexibilities in the APM~model and proposé
a variety of extensions to its basic instruction set that might be
suitable for implementation in existing vector computers.

2. The basic model of the "array processing machine". We assume the
reader to be familiar with the ordinary RAM-model (see e.g. Aho, Hop~
croft, & Ullman [1]) and the global characteristics of current

-4 -

supercomputer architectures (cf. Hockney & Jesshope [11]). The "array
processing machine" or APM (for short) can be viewed Aas a RAM,
extended with suitable primitives for vector processing. Its name
derives from its capability of addressing any row of contiguéus memory
locations (an "array") for processing purposes. In this section we
outline the basic model of the APM.

2.1. Architecture of the APM. An APM consists of the following com-
ponents (see figure 1):

(a) a (one-way) read-only input file, divided into fields (loca-
tions or cells) that contain one datum of input each. We only allow
scalar input. Either single data or vectors of (consecuﬁive)'data can
be read from the input file.

(b) a (one-way) write-only output file, 1likewise divided into
fields that can contain one datum of output each. We limit the model
to scalar output. Either single data or vectors of'data (from consecu~
tive locations in memory) can be output to the output file. The output
file is initially empty. |

(¢) a (random access) data memory, divided into words (locations
or cells) that can be individually addressed. No limit is set to the
wordsize. Memory can be viewed as a linear arréy with addresses rang-
ing from O to N, for some N sufficiently large; Either single words
or entire vectors of consecutive words, i.e., liﬁear subarrays, can be

addressed.

figure 1

-5 -

(d) a (random access) program memory, containing the APM program
that is executed. Each APM instruction is assumed to fit in one word.
Memory addressed can be used as labels. APM programs are always loaded
at address 0.

(e) a program ‘counter, containing the address of the next
instruction in program memory that must be executed., Jump instructions
(viz. tests on zero) can alter the contents of the program counter in
a straightforward manner.

(f) a (scalar) accumulator AC, which is simply a "special" word
or register. Many instructions use the AC as an implicit source or
destination (scalar) operand.

(g) a vector accumulator VAC, which is a potentially unbounded
linear array of words or registers. Many vector instructions use the
VAC as an implicit vector operand. Vectors are loaded into the VAC
starting at its first wvord, overwriting the entire previous contents
of the VAC. Thus the VAC always has a length equal to the length of
the current vector stored in it. There can be no addressing of words
within the VAC. Operations on the VAC can make use of "masks".

(h) buffer registers for 1/0 and memory accesses and arithmetic-
logic circuitry, collectively referred to as the ALU. It is assumed
that the ALU is engineered for executing both scalar ahd vector opera-
tions with great efficiency.

The parts (e) through (h) together form the "processor" of the
APM (ef. figure 1). When a vector in memory is addressed we assume
that it "streams" as one unit into the VAC. Thus the VAC 1is the
model-equivalent of the vector registers encountered in all supercom-
puter architectures. Masks are vectors with 0-1 valued components. No
separate registers are provided for storing masks, and (hence) masks

should always be developed in memory.

2.2. Instruction set of the APM. Clearly the instruction set of the

APM must include all ordinary RAM-instructions (see e.g. Aho, Hop~
croft, & Ullman [1]), referred to as scalar instructions. The capabil~

jties of the APM as a parallel computer Yerive from its assortment of

-6 -

vector instructions, which normally operate by applying a fixed scalar
operation to the components of specified vector-operands in parallel.
(One of the operands is normally stored in the VAC.) The instruction
set 1is kept small and simple, to serve the purposes of the model. In
section 5 we discuss various additional instructions that one might
like to include, |

The scalar instructions of the APM are similar to the correspond-
ing RAM-instructions (see figure 2). Each instruction consists of an
operation code and an address field. The address field denotes either
an address in data memory (in which case the AC is implicit as the
source or destination register) or an address in program memory (in
which case it serves as an instruction 1label). In the former case
addresses can be specified "direct" or "indirect" in one of the fol-
lowing ways:

a) = i, indicating the integer i itself,

b) i , indicating the contents of word i (denoted as [il).

e¢) *i , indicating the contents of the word addressed by the
contents of register i (error if out of bounds).

In the latter case we allow symbolic addresses or "labels" that must

occur as (unique) prefixes to instructions in the APM program,

The vector instructions of the APM can be viewed as parallel ana-
logs of the scalar instructions discussed above (see figure 3). We

assume that each vector instruction is counted as "one unit", Vectors

figure 2

figure 3

and masks are adressed through scalar registers, i.e., by direct
addresses, by giving both the address of the first ahd of the last
component. A vector instruction is performed by applying the
corresponding scalar instruction to the vector operand and/or the VAC
component-wise "in parallel". When a mask is specified, the instruc-
tion only applies to the components in positions corresponding to the
1-values in the mask. (Thus the components in positions corresponding
to O~values are "masked" from the operation and remain unaltered.)
Masks must be explicitly constructed in memory, typically by means of
the VTGTZ or VTZERO instruction. In all vector instructions that
involve more than one vector operand (e.g. a mask), the length of the
vector operands involved must be identical. There is no implicit

"compression" or "decompression", cf. Section 5.

2.3. APM-programs. In its most basic form, an APM-program is a

seqﬁence of APM~instructions. The instructions are implicitly numbered
0, 1, 2, ... corresponding to their ultimate address in the program
memory. Scalar and vector instructions can be mixed in arbitrary
order. Execution begins at address 0 and proceeds sequentially. Only
branching instructions could cause "jumps". Execution proceeds‘until a
HALT instruction is encountered (normal ending) or an instruction is
undefined (abnormal ending), like division by zero. Only the former is
counted as a valid ending of a computation. The "result" of a (valid)
computation is the contents of the output file after the normal ending
of the program on a given input file. The result of 1invalid

computations is undefined,

Definition. A function or problem f is APM~computable if and only if

there 1is an APM-program = that realizes the exact input-output
behaviour of f.

Observe that all "computation" in an APM is bound to the AC and the
VAC.

We shall use various simplifications when dealing with APM-
programs, These include the use of symbolic addresses and labels, and
of Pascal-type control structures. The "translation" to a basic APM-
program will wusually be straightforward, and maintain the essential
instruction count (to within a constant factor). We assume the reader
to be familiar with the similar practice for RAM~computations and
RAM-programs (cf. Aho, Hoperoft, & Ullman [1] or e.g. Engeler [6]).

The time complexity of APM-computations is defined in analogy to
RAM-computations (cf. Aho, Hopcroft, & Ullmann [1]): each instruction
is charged "one" unit of time (uniform cost criterion) or "log M"
units of time (logarithmic cost criterion), where M is the maximum
scalar value of a component or address involved in the instruction
when it 1is executed. Thus in the latter case an instruction may be
charged differently each time it is executed., Which cost criterion is
used will depend in the sort of quantitative result we are after. Most
interesting is the charging principle for vector instructions: the
time charged is equal to time charged for the most expensive scalar
operation on a component. In particular when the uniform cost cri-
terion is used all vector instructions take "one" unit of time, just
like all scalar instructions. The space complexity of APM-computations
is defined exactly as for RAMs: it is the largest address in data
memory used in the computation,

One additional complexity measure is introduced that is specific
to APMs. The "degree of parallelism" of an APM-computation is defined
as the size of the largest vector that is loaded in the VAC during the

computation,

Notation

T(n) = the time complexity of and APM-program, maximized over all
admissible input files of size n.

S(n) = the space complexity'of an APM-program, maximized over all
admissible input files of size n.

L(n) = the degree of parallélism of an APM-program, maximized
over all admissible input files of size n.

Note that the "parallelism" of APMs derives from the 1implicit paral-
lelism of "identical" operations and not from any parallelism of
instructions. Thus it is a prototypical SIMD machine (see e.g. Flynn
[71) in its basic mode of operation. In the model we assume that there
is no & priori bound on the maximum length of the vectors that can be
processed in one instruction, to facilitate the study of vectorized
algorithms without further conceptual complication. If a maximum
length L is in effect, then the real processing time of an APM-program
may rise to as much as O(EéElT(n)).

3. Basic APM algorithms. We contend that the APM model is well-suited

for analysing the vectorisable structure of numeric and non-numeric,
i.e., combinatorial, problems. In this Section we present efficient
APMFprograms for a number of tasks, to give an impression of the power
of vector instructions. The programs also illustrate a number of pro~
gramming techniques that are essential in deriving efficient parallel
algorithms on APM's in general. We use the uniform cost criterion
throughout. V

Lemma 3.1. The sum of a vector of N scalars is APM-computable in O(log
N) steps.
Proof.

-~ -

We assume that N is given in address Na and that the vector is

stored as an array A[0..N-1] at address Aa. The program for computing
N

S=FA[1] illustrates the techniques of folding a vector., The first step
1

- 10 -

is to sum A[O..M—1] and A[M..N—1] (M=N/2) and to store the result in
A[O..M—1] This is repeated for the array A[0..M-1], until eventually
M=1 and the value of S is in A[0]. Care is needed when N or M is odd,
and clearly all vector-adding is done into the VAC. The resulting
APM-program is shown in figure 4, Clearly the computation requires
about log N iterations of the basic loop. and each iteration involves
3 vector instructions and another-0(1) scalar instructions. This gives
a total time bound of 0(log N). O |

Lemma 3.2. The rank of an element X in an ordered set of N elements is
APM-computable in 0(log N) steps.
Proof.

Wé assume that N and X are given, and that the set of N elements
is given as an array A[0..N-1] (not necessarily in sorted order).
First compute a vector Y of léngth N consisting of all X's by the

technique of recursive doubling, as follows. For i from 0 to log N,

construct a vector Y1 of length 2i consisting of all X's. Because Y1+1
can be viewed as the juxtaposition of two copies of Yi' two VLOAD~ and
VSTORE-operations and 0(1) scalar instructions suffice per iteration.
The vector Y is assembled by Jjuxtaposing vectors Y for values of i
corresponding to the 1's in the binary expansion of N To compute the
rank of X one can now proceed as follows. VLOAD the vector Y, VSUB the
array A, and do a VTGTZ to obtain a 0-1 vector 7. The rank of X wil be
one plus the sum of the elements of Z. Using lemma 3.1 the entire

figure 4

- 11 -
algorithm can be performed in 0(log N) steps on an APM. ©

The results that follow will all make use of the technique of
masking. Masking enables an APM to perform its vector instructions
over seiected components of the vector in the VAC only. The components
that are selected correspond to the 1's in an appropriate mask. As in
a real vector computer, masks must be explicitly computed and thus add
"practical" overhead costs to the ideal parallel or vectorized APM~
algorithms,

Lemma 3.3. The maximum of an ordered set of N elements is APM~
computaple in 0(log N) steps.
Proof . |

We assume that N is given, and that the set of elements is given
as an array A[0..N-1]. Once again we use the idea of folding. Let
M=N/2. By VLOADing AFO..M-1] and vector-comparing it to A[M..M-1]; one
can éompute a mask o phat has 1's precisely in the positiohé i(0sisM~
1) such that A[i] is less than A[M+i]. Now VLOAD AfO0..M-1], and do a
masked VLOAD of A[M..N-1] on top of it using mask a. VSTORE the result
in A[0..M~1], and it should be clear that the maximum of the original
array is confined to this vector. (If N is odd, a similar modification
as in the proof of lemma 3.2. will do.) Repeat the procedure until
M=1, and the desired maximum is availéble in A[0]. The APM~-program (in
more informal notation this time) is shown in figure 5. As there are
log N iterations that take 0(1) instructions each, the algorithm takes

figure 5

—12-—
0(log N) time, o

Lemma 3.4, The merge of two sorted vectors of N elements (N-2k, some
k20) is APM-computable in O(log N) steps.
Proof .

We assume that N-2k is given, and that the sorted N*vectobs are
stored in consecutive order in an array A[0..2N-1] with the first vec-
tor in increasing order and the second in decreasing order, The pro-
gram implements Batcher's "bitonic merge", see e.g. Stone [20] or
Knuth [13]. The first step compares the elements A[i] and A[N+i] and
swaps the smaller to the left and the larger to the right, for i from
0 to N~-1. The procedure is repeated on the two halves of A and
proceeds ' recursively, until blocks of length 1 are reached. After j
steps (j21) the array is divided into 2J blocks Ao,...,AZJ -1 of length
N/2j each, such that for each 151(23-1 the elements of block A1 are
all less than or equal to the elements of the succeeding blocks
A1+1.... . The program will make sure that at the beginning of the
next step a mask a is available with a[0..2N-1] equal . to

J J 53 .
(ON/2 1N/2)2 . Denote the two halves of A1 by Alo and Al1 (OSISZJ—
1). Let LOW correspond to A00A01A10A11...A2J,10 and HIGH to

" "
A01A10A11... AZJ,10 2J 11° A Batcher step is implemented "in parallel
by comparing the vectors LOW and HIGH, constructing the appropriate
mask, and exchanging elements within the blocks again by suitable

operations on the vectors LOW and HIGH (see figure 6). As there are

figure 6

- 13 -

only 0(1) instructions involved in executing a Batcher step and there
are log N steps in all, the algorithm takes 0(log N) time on an
APM, D

By executing the technique of Lemma 3.4. one can implement Batcher's
sorting algorithm (cf, Stone [20]) and prove that an N-vector can be
sorted on an APM in 0(log2 N) steps.

For the next result, let {x be defined by a three-term

1}051$N

recurrence X,=a;X, ,+b;X, , (2sisN) with initial values x,=1 and

X,=a,.

11

Lemma 3.5. The terms {x1}051SN of a three~term recurrence (N-2k, some
k20) are APM-computable in 0(1032 N) steps.

Proof.

We assume that N is given and that the coefficients
2° N voer et bN
respectively. By vector-comparing e.g. A to itself, one can compute on
N-vector C of all zeros in 0(1) time., Interpret the vertical slice of
4 elements in position i as a 2x2 matrix Yi with

a1, a .esy @, and o, b are available in N-vectors A and B

A[i] B[i]
Y1
cfil fi]
and define the "2-vectors" xi by xi-(xi x1;1)T (18isN). Define Xo-(1
i \
O)T. It follows that X,=Y K oX and hence X, =(NY,)eX_ . Our task is
i 7177181 i 1 J 0

i
completed once we have computed the N products HYJ. We shall accumu~
1

late the results in the very vectors A through D.

At the i step, beginning with 1i=0, the positions will be

divided into N/21 blocks of length 21. The slices in a block represent
i : j+21
the 27 subproducts YJ+1, YJ+1 YJ+2,..5,J21 Yl for the corresponding

value of Jj. Also a mask M will have been computed of the form

- 14 =

take the 1last matrix in every block, e.g. HJ Yl, and multiply it
' j421+1

with all matrices in the succeeding block. It should be clear that we

obtain N/21*' blocks of size 2'*! with the desired "doubled length"

chain of subproducts, and we can proceed with the (i+1)St step. After

log N steps the N products %YJ are available in one "block“f

The ith step can be implemented on the APM as follows, By doing a

vector-compare between M and its left-shift over 1, one can compute a
N

ol 23’1 ol
mask M'=(0 1) 0° . Using M' we can select the multiplicants from

the blocks and store'the elements in the corresponding positions of
four N-vectors E, F, G, and H. (Note that E, F, G, and H contain zeros
in all remaining positions.) By uniform recursive doubling one can
create 2i copies of each multiplicant inE, F, G, and H and align them
with the 21 matrices as they are represented in A, B, C, and D. The
matrix multiply in every position (slice) can be uniformly caried' out
in 0(1) vector-multiply's and vector—add's. The mask for the next step
is easily computed from M. As the 1th step thus required 0(i) instruc-

tions, due largely to the'recursive doubling of the multiplicants, the
logN
algorithm requires in the order of I 0(i) = 0(log N) time on the
0
APM. ©

Lemma 3.5. shows an interesting distinction between traditional
(idealizéd) models of parallelism and APM's. Whereas the N terms of a
three-term recurrence are evaluated in 0(log N) parallel time when
some kind of unbounded parallelism is assumed (see e.g. van Leeuwen
[23]), the implementation on an APM apparently cannot avoid the
greater expense of every "parallel" step leading to an 0(log N) total
time bound., It is presently open to compute the N terms of a three-

term recurrence in 0(log N) time on an APM.

Lemma 3.6. The solution of an NxN tridiagonal system of linear equa-
tions Ax=b (N-2 , some k20) is APM-computable in O(log N) steps.

—15’

Proof.

(We assume that A is non~singular and admits an LU~decomposition.)
It was shown by Stone [21] (see also [23]) that the LU-decomposition
of a tridiagonal system can be computed by evaluating the terms of a
suitable three-term recurrence. The solutions of Ly=b and Ux=y are
computed by evaluating the corresponding two-term recurrences. By

lemma 3.5. all phases can be computed in 0(1og2 N) time on an APM. 0O

It is presently open to solve NxN tridiagonal systems in 0(log N) time
on an APM.

4, The computational power of APMs. There are two ways to establish

the computational power of machineimodelz (i) by studying the hierar-
chy of its complexity classes, and (ii) by comparing it to other prom~
inent machine models., In this Section we will follow the latter
approach. The larger part of this Section will be devoted to showing
that APM's are polynomially related to SIMDAG's, and thus belong to
the "second machine class" (cf. Section 1). Alternatively the result
may be seen as an argument for‘the practicality of the "second machine
class", as APM's capture the salient features of existing vector com~
puters. Note that SIMDAG's are more or less identical to CRCW~PRAM's
("concurrent read- concurrent write parallel random access machines")
and the results of Stockmeyer & Vishkin [19] can be brought to bear on
APM's. We will briefly discuss the relation between APM's and circuits
later in this section. In all results the logarithmic cost criterion

will be assumed,

A SIMDAG (Goldschliager [9]) consists of a CPU, a set of parallel

processing units (PPU PPU ...) with local memory (y-locations),

’ ’
and a global random4accgss me;ory (x-locations). The PPU's carry
their own index in a "signature" register. The SIMDAG is an "SIMD"
machine (Flynn [7]). The CPU executes a SIMDAG—program serially, and
either applies an‘ instruction directly to global memory (indirect
addressing allowed) or broadcasts it to an initial segment of the
PPU's for parallel execution in the local memories or on global memory

(with indirect addressing only via y-locations). For theoretical

- 16 ~

reasons there is no explicit multiplication or division instruction in
the instruction set (cf. Hartmanis & Simon [10]). PPU's are allowed
to simultaneously read the same location in giobal memory, but when
PPU's attempt to simultaneously write to the same location only the
PPU of lowest index succeeds. SIMDAG's satisfy the "parallel computa-
tion thesis" (cf. Section 1).

In the simulation of a SIMDAG by an APM, the 1local and global
memories are represented as vectors. To simulate a fetch by the PPU's
from global memory, the following teéhnique is useful., Suppose there
are P processors;v and let global memory have size's. Represent the
global memory by a vector GLOB, and let the corresponding addresses be
stored in a vector ADDR. Let the requests (s addresses in global
memory) be stored in a vectér REQ, with the indices 0 through P~1
stored in vector PROC. Use an auxiliary vector DEPOS to store the
desired values, and vectors MARKP and MARKM to "mark" locations
corresponding to processor requests and memory. See figure 7 for the
conceptual relationships between the vectors. Think of PROC//GLOB,
REQ//ADDR, and MARKP//MARKM as single vectors (//denotes concatena~
tion).

Lemma Y4.1. A "parallel” fetch of the PPU's of a SIMDAG can be simu
lated on an APM in 0(1032(P+S)) steps.

figure 7

.'-172.

Proof.

- g g~ g

(Note that the steps cost log max {P+S, L} each, where L is the
largest value stored in global memory.) Sort the vector REQ//ADDR
using Batcher's algorithm (cf. Section 3), and carry out the same
sorting steps to the vectors PROC//GLOB and MARKP//MARKM. The ordering
should be such that requests appear immediately to the ﬁight of the
corresponding addresses. In case there are several requests for a sin-
gle address, the requesis should appear in order of increasing proces#
sor index. Although the construction of the proper masks in each step
will be slightly more tedious, this part will require 0(1052(P+S))
steps. In 0(1) further vector steps, beginning with the construction
of a ﬁask that shows the first requests 1lined up for every memory
address (if any), one can copy the corresponding values from GLOB into
DEPOS and thus satisfy the fetches of the contending processors with
lowest index. Now sort "back" by first sorting MARKP//MARKM into order
and next sorting PROC and ADDR seperately, using Batcher's algorithm,
The sorting steps are carried out identically on the corresponding
"parallel" vectors, this time including DEPOS.

Next consider the vectors REQ, PROC, and DEPOS'= DEPOS[0..P-1].
Sort REQ and apply the same sorting steps to PROC and DEPOS'. The ord~
ering should be such'that requests for the same address appear in
order of increasing processor index. The result is that REQ is divided
into blocks of identical requests of which the first in every block
has been satisfied (with the desired value appearing in the
corresponding location of DEPOS'). Now repeat the following for 1i=0,

1, +.., log P: 1load DEPOS' into the VAC, construct a mask M of the
i
locations that have not been previously written into, add 02

//DEPOS'[O..P—1-21J into the VAC, using M, and store the result back
into DEPOS'. Note that this method copies ("broadcasts") the first
value of a'block into all further locations of a block for all blocks
simultaneously, with the proper masking to make sure that a value 1is
not "broadcas" beyond the limits of its block. Finally, sort REQ and
PROC and DEPOS' back into the order of increasing processor index. The
number of steps required is 0(log2 P), 0(log P), and again O(log2 P),

- 18 -

hence 0(log2 P) total. The fetched value for each processor can now be

read directly from the corresponding location of DEPOS. ©O

It should be clear that parallel fetches from local memory and paral-
lel store's to local or global memory can be simulated in “1032—"
steps by the same technique of lemma 4.1,

Theorem 4.2. Let T(n), P(n), Q(n), and S(n) be APM-countable. Any SIM-
DAG that uses T(N) time, P(N) processors with Q(N)~-bounded local
memory, and S(N) global memory can be simulated by an APM in O(TZ(N)
1og2 max{P(N)+S(N), P(N)Q(N)}) time.

Proof.

(For simplicity we use T, P, Q, an S to denote the various time,
processor, and memory bounds.) In addition to the vectors PROC, REQ,
GLOB, ADDR and alike (cf. figure 7) we use the vectors LOC-M and LOC~
ADDR of size P.Q to simulate the local memory locations and addresses.
In a vector LOC-INDEX of size P.Q we store the processor index for
every location, and it is helpful to think of the locations as organ~
{zed into P blocks of size Q and equal processor index. It is clear
that every (global) step of a SIMDAG's CPU can be directly simulated
by an APM,

The execution of a "parallel" instruction by a SIMDAG can be
divided into the following phases:

I (Read phase) The PPU's of index sl fetch a value from global
memory, possibly with indirect addressing through a local register;

II (Compute phase) The PPU's of index S 1 fetch values from local
memory and execute a "compute~"step, and store the result in local
memory.

III (Write phase) The PPU's of index S 1 write a value to global
memory, possibly with indirect addressing through a local register and

resolving contention write-conflicts by giving priority to the proces;
sors with lowest index.

An APM can simulate a "parallel" instruction in the following
manner. In phase I the APM first broadcasts the address of a local

- 19 -

register to the first 1 locations of the REQ vector and fills the
remaining locations with =, ("=" is a fictitious address that serves
to void the actions with the'locations that contain it.) By the tech-
'nique of lemma #.1. the corresponding requests aré satisfied from
LOC~M, and the results are stored in a new REQ vector. The .resulting
requests are then satisfied from GLOB. The values fetched from global
memory are now stored into LOC-M, by following the same technique.
Phases II and III are handled in exactly the same way. Note in phasé
II that the SIMDAG is an SIMD machine, and thus the "compute~" step is
the same for all PPU's and can be simulated in 0(1) vector instruc-
tions by the APM,

Let L(N) be the largest value accumulated during the SIMDAG com~
putation on an input of size N. Each parallel instruction will require
0(log2 max {P+S, PQ}) steps in the APM and each step takes O(log max
{p, Q, S, L}) time. For a T~time bounded SIM DAG one has L-O(2T) (see
Goldschlager [9]). Thus each parallel instruction takes up to O(T 1032
max {P+S, PQ}) time on an APM. It follows that the complete simulation
is carried out in O(T2 1032 max {P+S, PQ}) time. n
Corollary 4.3, Let T(n) be APM-countable. A T(N)-time bounded SIMDAG
can be simulated on an APM in O(Tu(N)) time.

Proof.

The largest integer value that can be accumulated during a T(N)~
time bounded SIMDAG computation has size O(ZT(N)) (ef. Goldschlager
{91). Thus P(N), Q(N), S(N) are bounded by O(éT(N)).
bound from theorem 4.2. o

Now apply the

Conversely, time-bounded APMs can be simulated efficiently by
SIMDAG's within similar bounds.

Theorem U.4. Any T(N)-time and S(N)-memory bounded APM (with no multi~
plication or division instruction) can be simulated by a SIMDAG that
uses 0(T2(N)1og2S(N)) time, S(N) processors with O(1)-bounded local
memory, and O0(S(N)) global memory.

- 20 -

-

(For simplicity we use T and S to denote the relevant time and
space bounds.) The random access memory of the APM is simulated
directly by the SIMDAG's global memory. Scalar instructions of the APM
are executed by the SIMDAG's CPU, which also contains the simulated
accumulator (AC). The vector accumulator (VAC) of the APM s
represented indiréctly, by the row of (ordinary) accumulator registers
of the PPUs. To access locations in global memory, we assume that all
PPUs have reserved register 0 as "memory address register" (MAR) and
register 1 as "memory buffer register" (MBR).

In the simulation of vector instructions we distinguish Dbetween
unmasked and masked instructions. First consider unmasked vector
instructions, e.g. VLOAD i,j. Assumé that the CPU first "reads" i and
j to resolve ‘any indirect addressing and computes 1=[j]-[i]+1 (the
length of the vector). As a SIMDAG can only "instruct" initial seg-
ments of the PPUs, we must arrange that the vector is loaded into PPUs
0 through 1-1 (which subsequently act as the VAC). To this end the CPU
first broadcasts the value of [i] to all PPUs of index $ 1~-1, and then
broadcasts the instruction "add SIG(nature) and store the result in
yo" to the very same processors. Now every PPU of index i with 0sisl-1
contains in its MAR the address of the 1t'h element of the vector in
global memory. The parallel fetch is accomplished by letting the CPU

broadcast the instruction "y1 « xy " to all PPUs of indexsl-i1. When
0 .
the (unmasked) vector instruction is a VADD, a VSUB, or another vector

operation, the "argument" is fetched from global memory in the same
way and the CPU subsequently broadcasts the corresponding "ADD®,
"SUB", or other instruction to the row of PPUs. (The accumulator
values are assumed to have moved to, say, register 2 so as to clear
the MBR in the PPUs.) When the (inmasked) vector instruction is a
VSTORE a very similar procedure is followed, with the CPU broadcasting
an instruction "xyo « y1" to all PPUs of index s1-1.

Next consider the simulation of a masked vector instruction, e.g.
VADD i,j,p,q. Let the CPU compute 1 as above. Now the difficulty is‘to

- 21 -

prevent the SIMDAG from applying the vector instruction to the PPUs
that are in "masked" positions. As the SIMDAG has no mechanism for
conditional execution, we have to use an expensive intermediate simu-

lation, First arrange that PPU_. through PPUl;_1 read both the argument

veetor‘and the mask, very much gike before, Without loss of generality
we may assume that the PPUs are fully described by four-field record
of the type [SIG, maskbit, ac-value, argument]. Arrange that PPU
through PPU_.L__1

free area of global memory. (Note that 41 S US(N) locations suffice.)

0
dump their record of values in consecutive order in a

Now use a SIMDAG routine bésed on e.g. Batcher's algorithm to sort the
records such that the records with maSkbit 1 appear up front. In loga-
rithmic time the CPU can determine the length 1' of this front part,
using binary search over the sorted records. Now arrange that PPU0
through PPUl,'_1 read the records with maskbit 1, and let the CPU
broadcast the desired instruction to these processors. Upon comple~
tion, 1let PPU0 through PPUl,;_1
into the stored records in global memory and sort the records back
into the original order by SIG-value. Next let PPU0 through PPUl;_1

read their records back into local memory. (When desired a similar

write the updated record values back

routine can be used to void the the argumént¥field in the records with
maskbit O before all values are stored back.)

An unmasked vector instruction may cost a SIMDAG up to O(log
S(N)) extra time but the costs stay within the same order of magnitude
as for the APM. A masked vector instruction will cost the SIMDAG
O(log2 S(N)) extra steps of cost O(log max{S(N), L(N)}), where L(N) is
the largest value accumulated during the APM computation. As L(N) =
O(ZT(N)) the bound of O(T(N)log2 S(N)) for simulating a masked vector
instruction follows. Hence the total time bound of the simulation is
o(T2(N) 10g” S(N)). ©

Corollary 4,5. A T(N)-time bounded APM (without multiplication or
division) can be simulated by a SIMDAG in O(Tu (N)) time,

From corollaries 4.3, and 4.5. one immediately concludes that
APMs (without multiplicétion and division instructions) and SIMDAGs

- 22 -
are polynomially related.

Theorem 4.6. APMs (without multiplication and division instructions)

belong to‘the nsecond" machine class.

In particular it follows that time-bounded APMs are polynomially
related to space-bounded Turing machines and RAMs (the "parallel com~
putation thesis"), just like SIMDAGsS are.

Stockmeyer & Vishkin [197 discuss the relation between resource~
bounded CRCW PRAMs (i.e., SIMDAGs) and various other models of paral-
lel computation, In pafticular they prove a result attributed to Ruzzo
& Tompa that states that for well-behaved functions T(n) and S(n) with
1og T(n)sS(n)sST(n) and S(n)2log n, the class of languages accepted by
CRCW PRAMs that wuse T(n) time and ZO(S(H)) processors, The results
carry over to resource bounded APMs, using theorems U4.,2. and 4.4, As
an example (cf. [19], corollary 2) it follows that context—free
languages can be'accepted in O(logu n) time on an APM. It |1is likely

that the bound can be improved by a more direct algorithm.

In recent studies of parallelism considerable attention is given
to the uniform circuit model (see Cook [4]). In the remainder of this
Section we show that APMs can efficiently simulate circuits, provided
a suitable representation of the circuits is given on input, A circuit
is a directed acyclic graph with, say, N input nodes and M output
nodes. Internal nodes must be reachable from input, and are assumed to
have in—degree 1 or 2. We assume that every node computes one of a
fixed number of primitive operations f1”“’fr (e.g. the boolean
operations) that are simulated in 0(1) scalar instructions on an APM.

The fan~out can be arbitrary.

Theorem 4.7. A (uniform) circuit of size C(N) and depth D(N) can be
simulated by an APM in O(D(N)log C(N)) time and O(C (N)) memory .

-23;

Proof.

For technical reasons we assume that the given circuit is modified
such that in a parallel (i.e., "level-by-level") elaboration of the
circuit no node of degree 2 receives 1its arguments simultaneously.
(This is achieved by inserting dummy nodes of degree 1 where needed,
at the expense of increasing C(N) and D(N) by a factor of at most 2.)
Represent the circuit by a C(N)xXC(N) adjacency matrix, stored row-wise
as a vector ADJ of size CZ(N) in the APM memory. We assume the nodes
ordered such that ¢the input nodes are listed first, and the output
nodes last, In addition we assume that r masks F1""’Fr of size C(N)
are provided that identify the nodes in the listing which compute
f1""’fr respectively. The representation of the circuit is stored in
0(1) steps of cost O(log C(N), using the VREAD instruction.

In order to simulate a computation by the circuit several vectors
and masks are needed. Initialize vectors ARG1 and ARG2 of size C(N) to
hold the first and second argument, respectively, of the Jth node in
location j (0sjsSC(N)-1). Also use a vector VAL of size C(N) to hold
the computed values at the nodes. The computation begins by vector-
reading N input values into the first N locations of VAL. Let V be the
set of nodes of the circuit. Define the following subsets of V:

V. = the set of input nodes,

0
i-1
v, = {x € V| the predecessors of x are &€ U Vj but x isn't}
0

(i>0),
W, = (xev|3 there is an edge from y to x} (iz20).
i yevi

The sets Vi are the "levels" of the circuit. Wi

that receive an argument from the computation in the ith level. By

is the set of nodes

assumption no node receives more than one argument at a time. The sets
Vi and Wi (i=0,1,...) will be computed as masks of size C(N)f In an
additional mask we keep track of the nodes of indegree 2 that have
received one of their two arguments., The ith step of the simulation
(i20) now consists of the following phases:

I Compute wi. If Wi-¢ then the computation (hence: the simula-
tion) halts, and the results are stored with the output nodes.

II Broadcast the values computed at level i to the nodes of wi.

- 2 -

III Compute V

i+r*
IV "Evaluate" the nodes in level Vi+1
i
We assume that the masks xi - UVJ and Vi are available from the
0

preceeding step.

To implement phase I, observe that Wi consists of all nodes that
are reached in one "step" from Vi. The information must be retrieved
from ADJ by a suitable sequence of vector instructions. First build a
vector AUX1 consisting of the mask w1 repeated C(N) times, using the
technique of recursive doubling (cf. Lemma 3.2.). View AUX1 as a vec~
tor of size C2(N) that represents a C(N)xX(N) matrix stored row-wise.
Apply an APM~routine to compute a vector AUX2, which represents the
transpose of AUX1. Assuming wlog that C(N) is chosen to be a power of
two, a nice technidue of Stone [20] can be used based on log C(N)
iterations of the perfect shuffle. One iteration consists of a selec~
tion of the even- and odd-indexed components respectively, followed by
a Batcher sort to "move" out the intermediate zeros and a JuxtaposiF
tion of the resulting, collapsed even and odd vectors, Thus one
iteration takes 0(103 C(N) steps, of a cost of 0(log C(N)) per step.
The vector AUX2 consists of C(N) blocks of size C(N), with the j
block consisting of all 1's or all O's depending on whether the j
node is or is not in Wi. Compute AUX3 = AUX2 A ADJ and "fold" AUX3
back into one block of size C(N) by or-ing all blocks using the tech~
nique of lemma 3. 1. The resulting block is precisely W (as a mask).
Phase I 1is seen to require O(log C(N)) time, using the logarithmic
cost criterion.

In phase II the values computed at the nodes in Vi must be passed
on. The values are assumed to be stored in the corresponding locations
of the vector VAL. Use the method described above to compute a vector
AUX2' consisting of C(N) blocks of size C(N), in which the j block
consists of the value of the Jth node repeated C(N) times of the node
belongs to V, and 0's otherwise, By a masked VLOAD using ADJ as a
mask, we obtain a vector AUX3' which contains in every "occupied"

position the value that must be stored as argument with the

-25;.

corresponding node. Fold AUX3' back into block AUXY of size C(N) using
the technique of Lemma 3.1. Because of the technical assumption at the
beginning of the proof, there is no clash of values during the fold~
ing. Now store the values of AUXY4 into the corresponding locations of
AR61 or ARG2. (Use wi and the mask that kept track of the preceding
store's into nodes of degree 2 to decide which values to store in ARG
and which in ARG2. Update the latter mask for use in the next step.)

Phase II requires O(logu C(N)) time as well,

Phase III is-easy, after having computed wi. Clearly V1+1 is com~
puted as Vi+1 = wi A\(ﬂxi), which takes the-APM 0(1) steps of cost
0(log C(N). For later use we also compute xh1 = xi A.Vi+1. Phase 1V
{s somewhat cumbersome because the nodes in vi+1 can compute different
functions, By using the masks F1 through Fr one can divide the nodes
of V1+1 into r = 0(1) groups and for each group store the ARG1 values
into the VAC and execute the corresponding (simulated) vector instruc-
tyion with the ARG2 values in memory. Using the same mask the result
values are transfered into the corresponding locations of VAL. Phase
1V also costs 0(1) steps of cost O(log C(N)) assuming, as we méy, that

the accumulated values in the coordinates remain bounded.

It follows that the complete simulation of the circuit on an APM
requires- O(logu C(N)) time per level, hence O(D(N)logu C(N)) time
total. O

It is likely that the time~bound in theorem L.,7. can be improved, but
the result leads to a number of useful conclusions as it is. We also
note that theorem 4.7. assumes that a n"ocoding" of the circuit is
presented on the 1ﬁput. In a further analysis one might want the cir~
cuit to be "APM-constructable".

The study of the uniform circuit model (cf. Cook [4]) has
emphasized Boolean circuits of polynomial size and polyFlogarithmic
depth.

Definition. NCk is the class of all problems that can Dbe solved by

- 26 -

(uniform) circuits with C(N) = NO(l)

and D(N) = 0(log" N).
Ruzzo [15] has shown that NCk is precisely the class of problems
solved by alternating Turing machines in 0(log K N) time and 0(log N)

space. From theorem 4.7. we conclude:

Corollary 4.8. The problems in ch can be computed by an APM in

O(logk*uN) time, using a polynomial-size bounded memory.

(Note that the logarithmic cost eriterion is used in deriving the
timebound.) The classes NC1 and NC2 contain many familiar numeric and
non~numeric problems, such as matrix inversion and minimum spanning

tree construction in undirected connected graphs (see Cook [4]).

5, Extensions of the basic APM model. The APM-model as presented in

Section 2 was based on the simplest primitives as can be observed in
presenthay supercomputers. We have emphasized the processing capabil¥
ities of a vector machine, to facilitate the study of "vectorized"
algorithms. Essential are the fast transfer of vectors to and from
specified areas in memory, and the fast execution of vector instruc-
tions. In practice the assumptions of the model are approximated by
the use of "parallel memories" for vector-storage and ~retrieval (see
van Leeuwen & Wijshoff [24]) and highly pipelined processors and vec-
tor buffers.

Compared to existing vector machines (see Hockney & Jesshope
[11], Hwang et. al. [12]) several, more complex vector instructions
were omitted from the APM instruction set that can be very attractive
from the programmer's point of view. We list the following, typical
instructions as examples:

(a) testing whether all components of a vector are zero,

(b) loading a vector-constant of specified length into the vector

accumulator,

(¢) summing a vector (VSUM),

(d) computing the maximum component of a vector (VMAX),

(e) sorting a vector (VSORT),

-27 -

(f) compressing a vector according to a mask (VCOMPRESS), 1i.e.,
the construction of an new vector by simply ommiting the
masked components,

(g) "masked merging" of two vectors (VMMERGE), i.e., the merge of
two vectors in which the components of thebfirst are written
into the O-position of the mask and the components of the
second into the 1-positions of the mask.

The reason why instructions of this sort are often found in the reper-
toire of current vector computers is simply the efficiency and ease of
implementation on the underlying hardware. The choice of instructions
is further determined by the presumed needs of the programmar of vec-

torized (numerical) software, for increased flexibility and produe;
tivity. |

With the emphasis on the needs of large-scale scientific comput~
ing (as exemplified in e.g. computational physics), it is clear that
vector computers do not provide instructions that are primarily aimed
at non-numeric computations. Yet a variety of vector instruetions can
be formulated which would facilitate the programming of e.g. combina~
torial or graphétheoretic (parallel) algorithms. We list a few exam~
ples:

(n) computing the rank of a specified element in a vector (when

viewed as a set),

(1) determining whether a given scalar occurs in a vector,

(j) computing the position of a given scalar in a vector (take the

first occurence when the scalar occurs more than once),

(k) determining the element of a specified rank in a vector.

Every set of reasonable vector primitives gives a new starting’ point
for studying the complexity of "yectorized" algorithms to perform cer-
tain computational tasks., The "instructions" (h) through (k) would
enable an implementatidn of priority queues dictionaries and other
dynamic structures (cf. Aho, Hoperoft, and Uliman [1]) in 0(1) "time".

One easily verifies that the instructions (a) through (k) can be
implemented on the basic APM in 0(log N) or O(log2 N) steps. In a
computation of time T(N) using the logarithmic cost criterion; the

~ 28 ~

instructions would only lead to a "polynomial" increase in the simu-
lated computing time and the extended APM is still "second class" (cf.
Section 2, Section i),

6. Conclusion. We presented a new model of parallel computation
called the "array processing machine" (APM), which is intended to be
the RAM-equivalent of present-day supercomputer designs. The model
facilitates a complexity analysis of vectorized numéric and non~
numeric algorithms., It was shown that APMs (without multiplication and
division instructions) belong to the "second" machine class (cf. van
Emde Boas [22]), and thus time-bounded APMs are polynomally related to
space-bounded sequential computers. Feasible parallel computability is
thus translated into poly—logarithﬁic time computability on an APM

using polynomial-sized memory.

References

[1] Aho, A.V., J.E. Hoperoft, and J.D. Ullman, The design and analysis
of computer algorithms, Addison-Wesley Publ. Comp., Reading,
Mass., 1974.

[2] Chandra, A.K., D.C. Kozeh, and L.J. Stockmeyer, Alternation, J.
ACM 28(1981) 114-133. '

[3] Chazelle, B,, and L. Monier, Unbounded hardware is equivalent to
determihistic Turing machines, Theor. Comput. Sci. 2U4(1983)
123-130. |

[4] Cook, S.A.,‘the classification of problems which have fast paral-
lel élgorithms, Proc. FCT'83, Springer Lecture Notes in Com~
put. Sei. 158(1983) 78-93.

[5] Cook, S;A.. and R.A. Reckhow, Time-bounded random access machines,
J. Comput. Syst. Sci. T(1973) 354=375.

[6] Engelér, E., Introduction to the theory' of computation, Acad,
Press,'New York, NY, 1973.

{7] Flynn, M.J., Some computer organisations and their effectiveness,
IEEE Trans. Comput. C-21(1972) 948-960.

;.29-

[8] Fortune, S., and J. Wyllie, Parallelism in random access machines,

Proc., 10th ACM Sympos. Theory of Comput., San Diego, 1978, pp.
89~94,

£9] Goldschlager, L.M., A universal interconnection pattern for paral-

(101

(1]

(12]

[13]

[14]

(15]

[16]

(171

(18]

(191

(20]

[21]

[22]

lel computers, J. ACM 29(1982) 1073-1086.

Hartmanis, J., and J. Simon, On power of muitiplication in random
access machines,‘ Proc. 15th Ann. IEEE Sympos. Switching and
Automata Theor., New Orieans, 197&, pp. 13-23.

Hockney, R.W., and C.R. Jesshope, Parallel computers, Hilger,
Bristol; i981. o

Hwang, K., S.P. Su, and L.M. Ni, Vector computer architecture and
processing techniques, in: M.C. Yovits (ed.), Advances in Com
puters, vol 20, Acad, press, New York, NY, 1981, pp. 115-197.

Knuth, D.E., The art of computer programming, vol3: sérting and
searching, Addison-Wesley Publ. Comp., Reading, Mass., 1975.

Pratt, V.R., and L.J. Stockmeyer, A chabacterization of'the power
of vectbr machihes, J. Comput. Syst. Sci. 12(1976) 198~221.

Ruzzo, W.L., On uniform 'circuit' compiexlty, J. Comput. Syst;
Sei. 22(1981) 365-383. | '

Savitch, W.J., Parallel random access machines with powerful
instruction sets, Math. Syst. Theor. 15(1982) 191-2210.

Savitch, W.J., and M.J. Stiméon, Time-bounded random access
machineé with paraliel processing. J. ACM 26(1979) 103—118;

Schorr, A., Physical parallel devices aﬁe not much faster than
sequential ones, Inf. Proc. Lett. 17(1983) 103-106.

Stockmeyer, L.J., and U, Vishkin, Simulation of parailel random
access machines by circuits, SIAM J. Comput. 13(1984) 409~422.

Stone, H.S. Parallel processing with the perfect shuffle, IEEE
Trans. Comput. C=20(1971) 153-161.

Stone, H.S., An efficient parallel algorithm for the solution of
a tridiagonal linear system of equations, J. ACM 20(1973) 27~
38.

van Emde Boas, P., The second machine class: models of parallel-~
ism, in: J.‘ van Leeuwen, and J.K. Lenstra, (eds.), Parallel
computers and computations, CWI Syll., Centre for Mathematics

“.30.'-

and Computer Science, Amsterdam, 1985, pp - (to appear).

[23] van Leeuwen, J., Parallel computers and algorithms, Techn. | Rep.
RUU-CS-83-13, Dept. of Computer Science, University of
Utrecht, Utrecht, 1983.

{24] van Leeuwen, J., and H.A.G. Wijshoff, Data mappings in large
parallel cdmputers; 'iﬁ: I Kupka (ed.), GI-13 Jahrestagung,
Informatik Fb 73, Springer Verlag, Berlin, 1983, pp. 8-20.

[25] Wiedermann, J., Parallel Turing machines, Techn, Rep; RUUch—
84-11, Dept. of Computer Science; University of Utrecht,
Utrecht, 1984.

PROCESSOR
ALU —
pc [=3 MEMORY
ac 1 PROGRAM |

VAC

MEMORY

DATA
MEMORY

. e OO

Figure 1. The APM model.

INPUT FILE

OUTPUT FILE

type op~code address effect
1/0 READ operand read a (next) value from input
into the specified address
WRITE operand write the specified operand to
output
transfer LOAD opérand copy the operand into the AC
STORE operand copy the contents of the AC
into the specified address
arithmetic ADD operand add operand to the AC
SUB operand subtract the operand from the
AC
MULT operand multiply the AC by the operand
DIV operand 1nteger;d1vide the AC by the
operand
branching JUMP label goto label
JGTZ label if the AC contains a value >
0, then goto label
JZERO label if the AC contains 0, then
goto label
HALT end the program

Figure 2. Scalar instructions of the APM,

{Aa, Na, Ma, and MIDa are reserved addresses]}
LOAD Na
{if [AC] = 1 then jump to exit}
SUB = 1
JZERO exit
ADD = 1
loop: {if [AC] is odd, we first add A[N-1] to A[0]..}
DIV = 2
MUL = 2
SUB Na
JZERO even
LOAD Aa
ADD Na
SUB = 1
STORE Ma
LOAD ¥*ha
ADD *Ma
STORE *Aa
{.. and effectively reduce the vector length by 1}
LOAD Na
SUB = 1
STORE Na
even: DIV = 2
{store A[0..M-1] into the VAC..}
STORE Ma :
SUB = 1
ADD Aa
STORE MIDa
VLOAD *Aa, *MIDa
{.. and add A[M..N-1] to it}
ADD = 1
STORE MIDa
ADD Ma
VADD *MIDa, *[AC]
LOAD MIDa
SUB = 1
STORE MIDa
VSTORE *Aa, ¥MIDa
{now set N to M and repeat}
LOAD Ma
STORE Na
JUMP loop
exit: {write Aa to output or desired register}
HALT

Figure 4, Summing a vector

n := N;
shile n>1 do
begin
if n is odd then (A[0] := max {A[0], Aln-11}; n := n=1);
m:=n El! 23
a := mask of A[O..m=1] < Alm..n~1];
AL0..m~1] := A[m..n~1] masked by a;
n :-,m V
end;
max := A[0];

Figure 5. Computing the maximum element

zeros[0..2N-1] := mask of A[0..2N-1] « A[0..2N-1];

af0..2N-1] := mask of A[0..2N-1] = A[0..2N-1];

n := N;

vhile n 2 1 do

begin
8{0..2N-n=1] := aln..2N~17];
8[2N~-n..2N~1] := zeros [0..n-1];
{thus 8 equals the left-shift of a over n positions followed by On}
al0..2N~1] := mask of a[0..2N~1] « B[0..2N-1];
{a is the mask (o™™MN/My
LOW[0..2N-n-1] := A[O..2N-n~1];
HIGH[O..2N-n~1] := A[n..2N-11;
Y[0..2N-n~1] := mask of LOW[O..2N-n~1] > HIGH[O..2N-n~1];
AUX[0..2N-n-1] := LOW[O0..2N-n-1];
LOW[0..2N-n~1] := HIGH[O..2N-n~1] masked by Y;
HIGH[O..2N-n~1] := AUX[O..2N-n-1] masked by Y;
A[0..2N-n-1] := LOW[O..2N-n~17;
Aln..2N-1] := HIGH[O0..2N-n-1] masked by aln..2N-1];
n :=n div 2
end;

{A in sorted order}

Figure 6. Merging two sorted N-vectors,

DEPOS

PROC GLOB
REQ ADDR
MARKP MARKM
0 . O 1 .

Figure 7. Simulating global memory.

