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“In the near term, one natural way to think about
minimizing risk of harm from robots is to program
them to obey our laws or follow a code of ethics.”

Lin, Abney, and Bekey [24], 2011, p. 946

Abstract. We consider scenarios in which autonomous robots are expected to
interact in accordance with certain rules of law or ethics, or any other set of
formally expressed constraints. Can an ‘observer’ actually tell from inspecting a
robot’s program and interactions whether the robot will always follow the rules
it is said to obey in its interactions with other robots? We argue that, under
reasonable assumptions about robot programming and about an observer’s ca-
pabilities, no (deterministic) module, algorithmic or otherwise, will enable an
observer to do so for all robots in any feasible way. It means that, in general,
guarantees about the legal or ethical behaviour of autonomous robots are not
verifiable at runtime by any means, given the assumptions we made. The result
holds for all ‘non-trivial’ robot interaction properties.

Keywords: autonomous robots, computability theory, cyber-physical systems,
impossibility, machine ethics, observer dependence, robot law, verification.

1 Introduction

Autonomous robots are programmed to deal with complex situations with min-
imal or no human intervention. The robots are increasingly applied in advanced
products like self-driving cars and in smart manufacturing. It is commonly envi-
sioned that, in the not-too-distant future, autonomous robots will be interacting
with other robots and with humans on a large scale, aiming to achieve any de-
sirable effect in the environment in which they operate.

The promises of autonomous robot technology are daunting. The robots are
often viewed as intelligent machines that can be programmed to perform, or
learn, any task that is normally carried out by humans. The complexity of the
tasks and situations they are able to handle on their own is steadily increasing.
However, so are the potential safety risks when deploying them [16, 30].

* Version dated: April 30, 2021. This work was partially supported by ICS CAS fund RVO
67985807, CAS Programme Strategy 21, and the Karel Capek Center for Values in Science
and Technology (Prague, Czech Republic).
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In order to prevent autonomous robots from causing any harm, to humans
and to themselves, the governing software of these robots should guarantee
that they adhere to the desired norms and moral standards, keeping them from
taking any actions that violate these standards ‘by design’ [12]. In particular,
the robots should be programmed such that they obey accepted rules of law
and ethics during their operation [4, 9,23, 24, 36] at any time. The all-important
question that arises is: can robot software of this quality be constructed?

It is generally difficult to determine whether any software system adheres
to its specification in all respects. Focusing on robotic systems now, can one be
certain of any presumed moral behaviour of these systems if this is specified
in their design? Note that the ‘moral layer’ of any autonomous robot system
is likely to involve an implementation of the known and specified moral rules
that apply and a reasoning system for them, and possibly a learning mechanism
to expand the rule base during the operation of the system as well [6, 28, 41].
When a robot is said to obey the rules of law or ethics, what guarantee do we
actually have that it does so at any time. Can the robot be trusted?

Verification Legal and ethical requirements clearly extend, and complicate,
the correctness issue for robot programs. Assuming that the requirements are
‘formally specified’ for the purpose of software engineering, it has to be verified
that they are implemented correctly and that they are complete, i.e. applicable
to all circumstances that a robot can encounter [10, 26]. Will a robot always act
in a legally or ethically responsible manner as expected, even when restricted
to some well-delineated domain?

To investigate this question, we assume a simple model of robot verification.
The model consists of an observer which can inspect a robot program and
monitor the robot’s behaviour under all circumstances in practice. When the
observer disagrees with the observed behaviour of the robot, we assume that a
‘problem’ has been detected and that the robot program can not be certified as
being correct. It leads to the central question of this report:

Can an observer always tell from inspecting and monitoring a robot’s
program whether the robot will always obey the given rules of law or
ethics, or any other set of formally expressed constraints, in any inter-
action with other robots (or humans)?

The answer will prove to be no, in general (or at least, not within feasible
resource bounds). More precisely, under reasonable assumptions about robot
programs and an observer’s capabilities, no realistic (deterministic) module,
algorithmic or otherwise, will enable an observer to tell whether a robot always
acts correctly or not. It means that in general, under suitable assumptions, legal
or ethical guarantees about the interactive behaviour of autonomous robots are
not verifiable by any kind of classical algorithm. The result holds for all robot
properties that are non-trivial, in a sense that will be defined later.

Reflections From a computability-theoretic viewpoint, the result does not
come as a surprise. By Rice’s theorem [33], any non-trivial semantic property
of computer programs is undecidable. Thus, if Rice’s theorem could be applied
to robot programs, compliance to a given set of rules of law or ethics would be
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‘undecidable’ for them, just like any other non-trivial semantic property. How-
ever, robot programs are not classical programs as formalized in computability
theory. For example, unlike classical ones, robot programs operate interactively
and always produce an output action in finite time, for any situational input
they keep on receiving. Let’s consider some further aspects of the results we
intend to prove.

a) Robots Interestingly, Kant believed that ethics is ‘decidable’, in the sense
that every ethical/moral problem would have only one correct resolution (with
various criteria such as ‘universalizability’) [32]. (This is not the same notion
of decidability as we know it in computability theory.) However, what if we
consider the claim for the behaviour of robots, e.g. operating in an ensemble
with other autonomous robots? Can it always be decided, based on a robot’s
program, whether a robot will act ethically or not, in all situations that it can
encounter in the ensemble? Can an observer always tell, also when it comes to
determining how robots act on ethical dilemmas (in the observer’s view)?

b) Impossibility In order to derive a generic result similar to Rice’s theorem in
computability theory, we will define a general framework for robot programming
that allows us to understand how complex robot programs can be, and thus,
how complex a task it can be for an observer to verify them. We will then show
that, if an observer had a (deterministic) module to determine whether a robot
always complies with a given set of rules of law or ethics (or not, according to the
observer) during its interactions, then a robot can be designed for which realistic
interactive situations exist in which the module must fail. This contradicts the
assumption that the module could always determine, when called, whether the
robot would comply or not comply.

Strictly speaking, our result is an impossibility result rather than an ‘unde-
cidability’ result: it shows that, in the broad framework that will be defined and
given any non-trivial set of legal or ethical constraints, no deterministic module
can correctly verify the legal or ethical behaviour of a robot in all situations,
based on the robot’s program alone. The result does not even assume that the
module is necessarily algorithmic.

¢) Machine ethics The question we consider is relevant for the formal verifi-
cation of (programmed) moral behaviours of autonomous systems in all of Al
[7-9], especially in machine ethics [1,4,41]. The latter field concerns the ethical
principles that are implemented in (the programs of) artificial agents and ap-
plied in their interactions with other agents, notably other autonomous robots
and humans. It is non-trivial to argue that the term ‘ethics’ is indeed justified
in the context of artificial agents [19,25,29]. A well-known example of a set
of principles is given by Asimov’s Three Laws of Robotics [2,22,39], but many
other examples can be imagined, depending on the specific context in which a
robot operates and the regulations that apply [21, 31].

d) Complexity Complete verification of program specifications is computation-
ally hard in general, and this appears to be no different when restricted to the
legal or ethical specifications of robot programs [6, 10,23, 26,27, 35]. Charisi et
al. [8] note that ‘full formal verification is likely to be unrealistic [...] both
because of non-symbolic components and because of practical complexity’. Yet
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there seem to be only a few theoretical results concerning the verification of
legal or ethical constraints for robot programs. For example, Englert et al.
[14] construct a somewhat special problem in which the ethical ‘correctness’ of
an autonomous robot’s decision depends on its ability to resolve the Halting
Problem of another agent’s program. This will not be algorithmically possible
in general, as the halting problem for computer programs is undecidable [33].
(The argument has been discussed from a practical point of view in [18].)

We prove a general result that, given any non-trivial set of constraints to be
monitored, purely addresses the possibility or impossibility of a module (e.g. an
algorithm) for the observer that will enable the observer to determine whether
(the program of ) an autonomous robot always decides correctly in any situation
that the robot may encounter, based solely on its monitoring of the program
of the observed robot. The result we prove includes both the practical and
theoretical impossibility.

Outline The remainder of this report is organized as follows. In Section 2
we describe our general assumptions about autonomous robots and their in-
teraction, and about the kind of programs that control them. In Section 3 we
introduce a plausible scenario for how an observer might ‘check’ the behaviour
of an autonomous robot, and define what it means for a robot property, like that
of producing only legal or ethical actions, to be non-trivial. As a first result we
show that, when robots can resort to unbounded memory, no algorithmic pro-
cedure can exist that will enable an observer to tell whether the actions of a
robot always satisfy P, where P is any non-trivial robot property.

In Section 4 we refine the scenario, include the possibility that robots only
have bounded memory (in terms of the size of the observed programs), and
define what it means for an interaction property to be non-trivial. In Section
5 we then prove the main result, showing that, for any non-trivial property
P, no deterministic module of any kind can exist that will enable the observer
to determine whether a given robot (program) always acts ‘correctly’ during
its interactions with another robot, i.e. while satisfying property P, under all
circumstances. In Section 6 we discuss the result and the various assumptions
we made to prove it. Finally, in Section 7 we offer some conclusions.

2 Programming model

In order to claim that certain robot properties are impossible to verify, we need
to be precise about the programs and the scenarios we allow. In this section
we summarize the basic assumptions about robots and robot programming.
We sketch a general model of groups of interacting autonomous robots, and
describe how the behaviour of the robots in this setting is supported by suitable
constructs in their program.

2.1 On robots and their programs

Autonomous robots will be viewed as cyber-physical systems. Following [37], we
assume that the robots have a finite number of processors, sensors, actuators,
and effectors that enable them to monitor themselves and their surroundings,



Impossibility Results for Online Verification 5

and to operate in their environment. The actions of a robot at any moment
are assumed to be determined by its program and its so-called cognitive state,
which consists of all important variable data of the system such as the state of
its processors and the signals and controls received from and sent to its sensory
and motor units at that moment, respectively. All system data is assumed to be
finitary. Given a robot A, we distinguish between the‘internal’ state information
(ga) of the robot, and the ‘external’ information (S4) that it senses about the
situation in its environment (which may depend on the way the robot senses,
but not on its internal state).

Programs Robot programs use the input obtained from a robot’s sensors
and effectors (signals, sensory information, and feedback reports) to update the
cognitive state of the robot and to compute and direct its subsequent actions,
i.e. motions and interactions, towards achieving a certain task. We assume that
every robot only interacts with a bounded number of other robots at a time,
that it is distinguished by a unique identity (used for this purpose only), and
that at every moment it can ‘read’ some, or all of the state information of every
robot it is interacting with.

We assume that autonomous robots can move around, interact, face ‘situa-
tions’, and act in their own way in the environment in which they operate. We
are especially interested in notable properties of their interactions, e.g. when
one robot influences another robot in a particular way (in a certain situation).
We say that robot A interacts with robot B if A and B know of each other’s
presence and A can send messages to B (and usually vice versa). We will say
that A targets B if A and B know of each other’s presence and A specifically
‘intends’ to send some kind of ‘disrupting message’ to B, if and when its pro-
gram tells it to. Targeting is an important special case of interaction, and we
assume that it is recognizable when a robot targets another one.

Robot software consists of many cooperating processes, but we will focus
on the chief control program that controls and directs the actions of the robot
(agent) as an entity. Robots with the same control programs are said to be
of the same sort and we use this term implicitly to refer to their program as
well. We make the following concrete assumptions about robot programs, their
control structures and their operation.

Situations We assume that robots maintain some kind of representation of
their (physical) environment, which enables them to keep track of all relevant
objects in it (including other robots). Given a robot A, the information about
the current (external) situation as it perceives it, is represented in its cogni-
tive state by S4, a structured constant or variable that captures the, finitely
many, determining aspects of its surroundings that are relevant for its effective
handling. Processing (the values in) S4 at a certain moment may involve all
kind of modellings and subroutines that use the sensed data. We assume that,
once it is set, Sy remains valid long enough for A, and for any robot C that
is interacting with it, to take appropriate actions based on it (if any). In the
sequel we will identify ‘S4’ and the situation it represents.

A robot may run into situations of many different kinds, and all may lead to
their own specific response. It may well happen that a robot must make a choice
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between several different options (actions), with each choice having potentially
different effects. The actual choice will be computed according to the robot’s
program when a concrete response must be determined, depending on the other
inputs at the time and any further criteria.

Example 1. In many situations, a robot will have the option to move forward, to pass left or
right, to turn a corner, or to stop. Each option may come with more or less severe consequences
if chosen, depending on the obstacles in the vicinity. In the well-known Trolley problem [40],
the option to turn a corner or to stop does not always exist, making it a philosophical challenge
to program a robot such that it always decides for the ‘right’ action, in every situation.

Basic data and variables Every robot A of a given sort is assumed to main-
tain variables for the following information: its current internal state g4, the
sort and current internal state of every robot B that it can currently inter-
act with and/or target, the sort of every robot C' it can currently be targeted
by, the data that characterizes its situation S4, and a copy of the data that
characterizes the situation Sp of every robot B that it can currently target.
(One may well assume that A has access to this information for all robots it
can interact with, but we won’t need or use this in our model.) In addition,
robot A has variables to hold the information it receives from, or will send to,
the respective robots and to any candidates for future interactions. We assume
that by knowing all this information, A can update its cognitive state and, in
particular, infer which robots B it should ‘interact with’ or ‘target’, and how.
We may assume w.l.o.g that every robot keeps a record of the robots it can
interact with, target or could be targeted by at any time

H-list We assume that, in each application of our framework, there is a given
recursive set H of exceptional situations, represented in the format utilized
by our robots, that induce the following behaviour. Suppose that some robot
B, in internal state ¢p, is facing a situation Z = Sp which is recognized as
belonging to H. Then any robot A that can target B in this case will, if and
when it actually targets B, target it with a message that only depends on B,
g, and Z. Thus, the action of A that is triggered towards B in this case, is
fully determined by the information in S, that pertains to the ‘exceptional
circumstance’ that it sees, without resort to any other variable data kept by A.
(In contrast, when Z ¢ H, A’s action may well depend on all information in
A’s cognitive state.)

It will depend on the application which (classes of) situations S with the
stated property are actually declared to be ‘exceptional’. However, as a common
feature we will require that, whenever a robot B is facing one of these situations,
it potentially has a choice between actions that are and actions that are not
preferred, in the view of the observer, with the actual choice depending on B’s
cognitive state at the time. Thus, exceptional situations always require robots
to make dichotomous decisions.

As H is assumed to be recursive, the elements of H as well as those of
its complement can be effectively enumerated, even without repetitions [33].
However, this will usually not be a very efficient way of deciding whether a given
situation Z belongs to H or not. More typically, H will be given by means of a
effective routine that tries to match a situation Z = Sp that is sensed by a robot
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B to one that fits (the description of) one of finitely many exemplary situations
which are considered to be ‘representative’ for the exceptional situations in H.
Note that situations are assumed to be finitary, and we may thus assume that
they can be subjected to algorithmic analysis and classification.

Note that, when A targets robot B with Z = Sp € H at a certain moment,
then A knows the data needed to determine its targeting message, namely B’s
sort (i.e. program), its current g, and Z = Sp. Notice that different robots A
may well send different messages to B in this scenario.

Example 2. An H-list could consist e.g. of the situations that can occur in a medical op-
erating room, in the cabin of a spacecraft in orbit, when approaching a traffic light at an
intersection, in instances of the Trolley problem [40], or in a combination of any of these. It
is easily seen that in all these cases, any robot B that is facing any of these situations can
choose between good and bad actions, and that any robot A that targets such a robot B
can potentially influence it to take one action or the other in a way that only depends on its
knowledge of B, gg and Z = Sp.

Operational cycle - general The program of every autonomous robot is
assumed to consist of a basic Sense-Plan-Act cycle, following one of the standard
robotic paradigms (cf. [37]). Concretely, the program of any robot A is assumed
to consist of an initialization part init 4, followed by a cycle of three consecutive
parts: sense4, plana, and act 4. The cycle is repeated over and over, as long as
the robot is ‘on’. Before specifying this further, we make some general remarks
about its programmatic realization.

Clearly, as a robot will be scanning and analysing various other robots and
their situations simultaneously, its program may well have to consist of several
different commands in the plan 4-part that may be ‘triggered’ simultaneously,
with further criteria to choose between them or sequence them at runtime.
Thus, we assume that the (entire) plan4-part is structured as, what we call, a
hyper-command.

Definition 1. A hyper-command is a program construct consisting of finitely
many concurrent command blocks and a supervisory control that determines
(chooses) which command block(s) should be executed in a given iteration, i.e.
at runtime.

The command blocks correspond to the different lines of action which a robot
must keep under consideration simultaneously.

For our arguments we do not need to know how, and by what criteria, a robot
(program) actually makes its choices in the plan 4-part of the program, as long
as each command block that could be triggered has a non-zero probability of
being chosen (or, included). For example, when a certain robot B is in reach, and
robot A can target it according to its hyper-command, then it must be possible
for A to target B any time this happens and thus to execute the command(s)
it has for it. Hyper-commands generalize so-called guarded commands [13], as
implemented in various robot programming languages.

Operational cycle - parts During every iteration of its Sense-Plan-Act cycle,
a robot has to process (‘digest’) the newly sensed information (in sensen),
‘compute’ the actions that A could take and choose between them (in plan,),
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and ‘execute’ the selected action or sequence of actions (in act4). The three
parts of the operational cycle are dedicated as follows:

— sensey4: in each iteration of sensey, robot A determines and/or updates the
values of all its variables for which it has new data. In particular, it updates
its situation data and the list of robots it can interact with, target or be
targeted by (and their current state and situation data).

— plan 4: in this part, robot A matches the information it got with any backed-
up or stored data from previous situations and interactions, and determines
(computes) the action(s) it intends to take or continue. Based on whatever
considerations, it leads to a choice of the command block in A’s program
that triggers the appropriate action. More concretely, the plan4-part is a

hyper-command composed of the following types of command blocks:
o type I (‘targeting commands’): any command block that may be exe-

cuted when A targets a particular robot B in its vicinity. The action
it computes consists of a well-determined ‘special instruction’ that A
wants to send to B. We assume that the command block can only be of
one of the following two sub-types, with Z = Sp being the situation B

is facing (and known to A by assumption):
x type I-a: Z € H and, corresponding to the special (‘exceptional’)

status of situations like Z, the action (instruction) that is computed
only depends on B, qp, and Z = Sp. In particular, it does not depend
on any other variable data that A maintains.

« type I-b: Z ¢ H, and the action (instruction) that is computed may

depend on all variable data that A maintains.
Note: We assume that every robot program contains at most one com-

mand block of type I-a and one of type I-b. The command types will be
discussed in more detail below. Recall that H is the H-list, assumed to
be uniform for all programs in an application.

e type II (‘general computation and interaction commands’): any other
command block in which A aims at acting on its own and possibly in-
teracting with its environment in general, i.e. by computing an action
to be taken, based on the current internal state g4 and current situation

S4 (and any data A has available on other robots).
— act z: finally, during the subsequent iteration of act 4, robot A carries out

the concrete instructions for the action(s) it has computed, ranging from
internal actions to be taken (e.g. based on influencing messages it received
or other inputs) to external ones (e.g. sending an influencing message or
performing a motion).

We assume that the processor hardware of the robots is fast enough to do all
necessary computations in practice quickly. Some or all of the computations
may be performed, asynchronously, in parallel. (For a more refined version of
the standard robotic paradigm, see [37].)

Universality We assume that all robots programs that conform to our frame-
work can be implemented to run on at least some of the robots in the application
we consider. It means that the ‘architecture’ of these robots will be essentially
the same, although their appearance may be different. For our purposes, all
robots we consider may well be copies of one and the same ‘prototype’.
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2.2 On robot programming in the framework

We assume that all robot programs in our framework are written in a suitable
symbolic ‘programming language’. We leave it largely open how the programs
must look like exactly except, of course, that the programs should implement
the Sense-Plan-Act cycle and satisfy the other assumptions from Section 2.1. We
also assume that simple, ‘straight-line’ compositions of robot programs within
this framework are allowed. We now discuss these assumptions in somewhat
greater detail.

We first discuss the ‘composition’ of robot programs in our framework, at
a very general level. Then we focus on the format of type I command blocks,
which specify what action(s) may be triggered when one robot ‘targets’ another
one. Finally, we consider a number of general features of robot programs, such
as the phenomenon of situational determinism in interactions when robots are
facing situations from the H-list, and the possibility of allowing robot programs
to learn from experience (not assumed here).

Composition We assume that the symbolic programming language supports
natural constructions like composition. By this we mean that the set of robot
programs is ‘closed’ under simple constructions that create new robot programs
by ‘combining’ suitable parts of other robot programs, if this is meaningful.
For example, segments of the plan-parts of different programs may be (re-)
combined into the plan-part of a new program, provided this does not lead
to any indeterminacies in the resulting hyper-command which a robot cannot
resolve when ‘in action’. As another example, one may well want to use the
following type of branching statement in the act-part of a robot program:

if (condition) then segment of actx else segment of acty

for an effective condition (condition) and robots types X and Y (pre-named or
determined by assignment from sensed data). Normally, we will just want to
compose appropriate segments of acty and acty.

In this report we will only ‘compose’ blocks of straight-line code and always-
ending loops, i.e. without creating any code within the parts of the operational
cycle that might not end. This avoids that robot programs are created that sud-
denly ‘halt’ in action forever because of an internal loop that does not terminate,
which we clearly do not want. (Note that one cannot just allow arbitrary loops
and count on ‘general software’ to detect whether they will terminate or not,
as the Halting Problem for loop programs is undecidable [33].)

Interaction We now consider in more detail how the interaction between robots
is assumed to be ‘expressed’ in our programming model. (We are only interested
in ‘what’ must be expressed, and assume that the given programming language
supports whatever is needed, in some way or another. This keeps the framework
as generally applicable as possible.)

When we say that robot A is ‘interacting with’ (another) robot B, we may
mean various things, like: A ‘sees’ B (with its current state and situation), A is
exchanging information with B, A is ‘talking’ to B, or A is taking (or preparing
to take) any other kind of action towards B. When we say ‘robot B’, we mean
any (active) robot of the same ‘sort’ as robot B that is facing a situation Z
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with Z = Sp. And ‘facing’ may also mean ‘acting in’ or ‘acting in a particular
way’. These are not exactly synonyms but we do not need to be more specific
for our purposes.

a) Targeting When we say that robot A is ‘targeting’ (another) robot B, we
mean that A aims to interact with B by sending it an (instruction) like a
suggestion, an influencing statement, etcetera, meant to persuade (‘instruct’)
B to ‘do’ something, usually adversely, in the situation Z = Sp it is facing.
The commands to compute the instruction will occur as a type I block in the
hyper-command of the plan 4-part of A’s program. We allow that the computed
instruction is nil, meaning that no concrete instruction is to be send. Recall that
every robot knows the robots it can target and can be targeted from, and that
it has access to the cognitive state of every robot it can target.

The (instruction) to be sent by robot A will generally depend on all infor-
mation (constants dnd variables) that A has available at the time the command
block is triggered. However, in our programming model this is qualified further,
depending on whether situation Z = Sp occurs on the H-list of exceptional
situations of the application or not. In case it does, then we assume that the
computed instruction depends solely on the data A keeps on B. This depen-
dence on Z being ‘exceptional’ or not is emphasized in the distinction between
type I-a and type I-b command blocks. The blocks have the following effects,
respectively:

type I-a:
when targeting robot R = B (in state ¢ = ¢p) in situation Z = Sp
with Z € H then send it (instruction 1)(R,q, Z)

type I-b:
when targeting robot R = B (in state ¢ = ¢p) in situation Z = Sp
with Z ¢ H then send it (instruction 2)(A, qa,Sa, R,q,Z)

where R,q and Z are the relevant parameters for the data of the robot (B)
that A is targeting and (instruction 1) and (instruction 2) are subroutines
for computing the appropriate (instruction) in each case, with the indicated
parameters. The actual sending of a computed instruction will be done in the
act g-part of the program.

b) Uniqueness of type I command blocks In the definition of the plan-part of
a robot program, we noted an important constraint on the hyper-command in
it, namely that every program can contain at most one command block of type
I-a and one of type I-b. A consequence is the following:

Proposition 1. In every robot program, the type I-a and type I-b command
blocks are uniquely determined.

The condition is a reasonable one, and easily verified, even though it is imposed
mostly to facilitate and simplify our later arguments.

¢) Being targeted In case a robot A receives ‘instructions’ (such as suggestions
and influencing messages) from a robot C that is interacting with or targeting it,
then these incoming instructions are collected in the sense 4 part and elaborated



Impossibility Results for Online Verification 11

again in the plan module. Presumably, the instructions A receives can set off
a response of some kind and affect its behaviour in some way or another. Later
on, we will be interested in properties of these interactions, like whether they
are legal or ethical.

d) Other interactions The interactions in which one robot targets another one
will be the interactions we focus on later. Clearly, other forms of interaction
will be possible and allowed, even though we do not specify them. We simply
assume they are covered by command blocks of type II. For our purposes we do
not need to know how, and for what goals, these blocks may be composed.

Program execution Robots consist of many components that can act simul-
taneously, and even independently. Their control programs will be constantly
busy, choosing and selecting the command blocks (modules) whose actions
should be scheduled. In our model, we assume that all robot control programs
are fair, meaning that:

— every command block or action that is eligible for execution at some moment
in an iteration of the operational cycle, has a non-zero probability of being
included among the commands and actions selected by the program in that
iteration, over all variations of circumstances in which the command block
or action is eligible.

The assumption is reasonable for any model of robot programming and we
adopt it here, for the sake of argument. We do not need to know how this
works, it simply doesn’t matter for our arguments. All we need to know is that
the control programs are deterministic and fair.

The assumption of fairness can be recognized as the one we already made
for the implementation of hyper-commands in particular, i.e. for the assumed
supervisory control of these commands (cf. Definition 1). The assumption will
be useful when discussing the potential options when robots interact.

Situational determinism In particular, assume that robot A is targeting some
other robot B during one or more iterations of its operational cycle, where B
is facing a situation Z = Sp with Z € H. Assume that the hyper-command
in the plan-part of A’s program indeed contains a command block C for this
situation, in this case necessarily a command block of type I-a. By Proposition
1, block C is uniquely determined.

In general, the supervisory control of A’s hyper-command cannot be as-
sumed to guarantee that C is always included among the command blocks that
are selected for execution in an iteration of the operational cycle. We speak of
situational determinism to refer to the fact that, due to the assumed fairness of
the hyper-command, it must occasionally happen that the command block s
included in the selection. Even when this requires that the circumstances must
be ‘right’ for it, situational determinism implies that such circumstances must
eventually occur, at least once.

Learning In general, robots (i.e. their programs) may also learn from what
they experience in the course of their interactions with each other and with
the environment. If we assume that robots can learn, we immediately have to
realize that ‘different copies’ of the same robot need not learn from the same
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experiences during the course of their operation and thus, that they need not
respond to same situations in the same way after a while.

For our present arguments we need not, and thus do not assume that robots
learn. After all, if we can prove our results for robots that have no learning
ability, these results will remain valid for robots that do but do not exploit
it, or that have reached the same phase in their learning process. Thus, we
may assume that robots of the same sort all follow the same (fixed) rules and
reasoning when they are implementing a particular behaviour, as is the case
e.g. when their modules are entirely pre-programmed and not based on active
learning during operation.

Multiple copies A robot program p can be installed in many different robots.
Thus, if we consider an ensemble of autonomous robots, many robots can be
of the same sort (and even have the same state as well). It means that it is
perfectly possible in an ensemble that two different, interacting robots are of
the same sort. However, very likely they will be in different states and observing
different situations, at any one time.

3 On observers and robot properties

With a general model of robot programming in place, we can now return to the
main question in this report:

Can an observer always tell from inspecting and monitoring a robot’s
program whether the robot correctly obeys the given rules of law or ethics,
or any other [non-trivial] set of formally expressed constraints, in any
interaction with other robots (or humans)?

Before we can answer this question, several further details must be clarified.
For example, what kind of properties are we concretely talking about? How are
they defined, and how can they be tested? What does ‘non-triviality’ mean for
a given property? And, what abilities do we assume observers to have?

The properties we consider, like ethicality, will all concern the behaviour
of either single robots or of any two interacting robots ‘in context’. Concretely,
we distinguish between the following properties:

— robot properties, i.e. general properties of the actions of an autonomous robot
as it is acting and interacting in an ensemble, and

— interaction properties, i.e. properties that hold for (during) specific inter-
actions between two autonomous robots in an ensemble, for example when
one robot is ‘targeting’ the other one.

The question we consider is whether an observer is always able to decide, and
thus to verify, whether a given property holds.

One may think that a ‘sufficiently informed observer can come a long way’.
In the case of robot properties, we assume that the observer has access to a
robot’s program and can observe and appraise its actions over any finite pe-
riod of time. In the case of interaction properties, we even assume that the
observer has access to all state information and operating data, of both inter-
acting robots, at the time of the observed interaction. Nevertheless, we will
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show that, as soon as properties are non-trivial in a well-defined sense, no algo-
rithmic means will enable an observer to always decide the case. For interaction
properties we will prove an even stronger impossibility result.

In the remainder of this section we focus on the verification of robot prop-
erties. The lead question then becomes the following;:

Can an observer always effectively verify whether the actions of a robot
will satisfy a given property P, like adherence to a specified set of rules
of law or ethics, or any other [non-trivial] set of formally expressed con-
straints, in any interaction with other robots or humans?

The question is simple enough from a computability-theoretic viewpoint but,
in answering it, we have to take the assumptions on the structure and syntax
of robot programs into account.

In Section 3.1 we first argue that robot programs can be viewed as well-
defined formal constructs and, thus, that one can properly discuss properties
of them and their behaviour, either formally or informally. We also link robot
identities and sorts, i.e. programs. Next, we turn to observers and the means
they are assumed to have to verify robot properties.

In Section 3.2 we show that, given any ‘non-trivial’ robot property P, there
is no effective (i.e. algorithmic) procedure that will enable an observer to tell
whether P always holds for the actions of a given robot, under sensible as-
sumptions on the composition of robot programs. It can be seen as an analogue
to Rice’s theorem in recursion theory [33]. The result is proved under the ad-
ditional assumption that robots can have unbounded memory and that their
programs are allowed to exploit this feature, e.g. for building up increasingly
large data sets over time. (For the later results in Section 4 this assumption will
not be explicitly required.)

3.1 Definitional matters

In our programming model, we assumed that all robot programs are written
in a (fixed) symbolic programming language. As we also assumed that robots
only have finitely many programmable components and that all robot data is
finitary, thus finitely presented, this implies that all robot programs can be
viewed as finite strings over some fixed, finite alphabet Y. It follows that there
can be only countably many different robot programs and thus, only countably
many different ones in any application.

In fact, we assume that one can algorithmically decide which strings over X'
qualify as valid robot programs, with all assumptions of the programming model
into effect. (This certainly holds when an implementation of the programming
language is given. If it is not a complete implementation, we may assume that
it at least identifies an infinite recursive subset of the set of all valid programs
that is meaningful and closed under compositions.) We assume that robots can
be distinguished by unique identifiers, which also imply to their sort.

It follows that robot programs are well-defined formal objects and that one
can properly consider properties of their actions, as for concurrent programs.
We assume that properties can always be specified formally in some way, but
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will not need any details. When an observer is testing or verifying a property P,
all we assume is that P can be ‘evaluated’ in some way by the observer when it
is called for, based on the information it has and observes. Robot properties (as
well as interaction properties) may well be biased towards an own interpretation
of the observer.

Example 3. The case P = ethical fits this scenario perfectly. One may view any (robot)
ethics as a system of rules for assigning to any situation in an allowed set of situations, those
decisions or actions that we are likely to accept as correct. The system will consist of a mix
of general and socially constructed rules that may vary with the context in which a robot
operates, which should be a sufficiently formalized domain. Its rules of inference, presumably
those of formal or informal reasoning in some algorithmic form, are key to determining the
preferred mode or behaviour in any concrete situation.

The ‘ethical module’ of a robot will consist of an ‘innate’ (pre-programmed) part and, if
we would allow for it, a learned part. If, in a situation Z, the behaviour of the robot towards
another robot or towards a human, corresponds to an ethical scenario that is specified, we
say that it acts ‘ethically’. Note that ethicality is not a static program property but, most
likely, a property that manifests itself as the robot operates in practice, in situations in which
it decides to act in some way or another (as prescribed by its program) and, moreover, as it
is seen and interpreted by an observer.

The question we consider now becomes the question, whether an observer can tell (rec-
ognize, decide) by some effective procedure, whether a given robot will always act or interact
ethically. The question makes sense only if a representative fragment or formal domain of ‘ma-
chine ethics’ is delineated and the question can be finitely specified, i.e. as a ‘decision problem’.
We will see in Section 3.2 that ethicality is an example of a ‘non-trivial’ robot property, i.e.
there exist situations in which both ethical and non-ethical actions are possible (in the view
of an observer). To verify that a robot will always act ethically, an observer must apparently
be able to decide whether the robot will always chose the moral options.

Consider any ensemble M of autonomous robots, and assume that every
valid robot program runs on at least one robot in M. We also assume that
every observer, and thus any tool that it uses, ‘knows’ the program of every
robot it watches, e.g. by tapping the robot’s data store or by inferring the code
from a ‘source book’ using the robot’s unique identity.

3.2 On verifying robot properties

Assume that some, or all, of the robots are programmed such that their actions
presumably guarantee a desirable property P like being ethical or legal, or any
other quality of interest. The question we now consider is whether an observer
could have any chance of (effectively) determining whether the actions of a
given robot ‘always’ satisfy property P or not.

Consider any robot property P. When P is ‘trivial’ (whatever this means),
an observer will easily be able to tell whether the actions of a given robot
(program) always satisfy P. When P is not, we assume for now that the observer
will want to call on an algorithmic procedure to answer the question, possibly
based on some definite period of observation of the robot. The question is
whether such an algorithmic procedure exists at all.

The problem we consider is very similar to the one in recursion theory, of
deciding whether a given computer program ‘always’ satisfies a certain property.
By Rice’s theorem [33], we know that this problem is undecidable for all semantic
properties that are ‘non-trivial’ (i.e. that are satisfied by some programs but
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not by all). We now show that, in the case we consider, a very similar result
holds for observers that want to ‘decide’ robot properties P.

In the argument, we have to keep sight of the assumptions in our program-
ming model. We need the following auxiliary concept.

Definition 2. A robot program p is said to be structured if the following two
conditions are satisfied:

— every command block B in the hyper-command of its plan-part consists of
an optional preparatory (computational) section, followed by an action sec-
tion f, that specifies the (instructions for the) action(s) to be performed
by the robot, whenever the command block is scheduled for execution by the
supervisory control of the hyper-command, and

— its act-part faithfully implements the execution of every ‘action specification’
Ba that it receives in its queue at runtime from the plan-part of p, i.e. without
altering the semantics or properties of the specified actions.

Note that command blocks of type I already have the format required in the
first condition as they are, in any robot program. One may well want all valid
robot programs to be structured, but we will not require it.

Definition 3. A robot property P is called non-trivial if there are a robot A, a
structured program p, an alternative By to every action segment B, in p, and a
corresponding modification of its act-part act, into act, such that

— when p is implemented on A, then the actions of A always satisfy P,

— when p would be modified, during its operation and at the beginning of a
next iteration of its operational cycle, by replacing every action segment [,
by the corresponding action segment 3, and its act, by act, (inheriting the
settings of act, at the time of replacement), then

e it remains a valid program and it continues to execute on A without
interruption, but

e its actions no longer all satisfy P in all situations, where the situations
i which P is not satisfied occur with non-zero probability.

The definition expresses precisely (but informally) what it means to modify
the actions of p, without modifying the ‘cognitive abilities’ of the robot. It
is certainly allowed that some segments (3, are not altered, i.e., are identical
to their alternative (.. Likewise for the act-part of p. Both P = legal and
P = ethical are easily seen to be non-trivial robot properties.

For the remainder of this section, we assume that robots can make use of
potentially unbounded memory over time. We show that under this assumption,
for any robot property P that is non-trivial as defined above, no algorithm
exists that can tell the observer for any arbitrarily given robot A, whether P
holds for A, i.e. for all its actions over time.

The idea of the proof is to consider instances of the Halting Problem [33], to
program a robot such that its actions obey P while it tries to solve this instance,
and to let the program switch to a mode in which P is no longer guaranteed if
the instance proves solvable. Deciding whether robots always satisfy P is then
equivalent to deciding instances of the Halting Problem, which is impossible by
algorithm.
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Theorem 1. Let P be any non-trivial robot property. There does not exist an
algorithmic procedure that will enable an observer to tell, given an arbitrary
robot with potentially unbounded memory, whether the actions of the robot al-
ways satisfy P.

Proof. Let P be any non-trivial robot property. Suppose, by way of contradic-
tion, that there was an algorithm by which the observer could always tell for a
given robot, whether its actions always satisfy P.

By non-triviality of P, there exist a robot A, a structured program p and
alternatives to its action segments 3, and its act-part act, such that the condi-
tions of Definition 3 are satisfied. This means that, when A is programmed by p,
its actions always satisfy P but, if at some moment, at the beginning of a next
iteration of its operational cycle, p would suddenly be modified as stated in the
definition, then A would no longer always satisfy P, i.e. there will eventually
be circumstances in which some actions of A do not satisfy P.

Let o, 1, -+ be an acceptable numbering of the partial recursive functions
(in the sense of [33]), where every index effectively codes a Turing machine that
computes the corresponding function. Let z € N be any index, and let M, be
the Turing machine that computes ¢, (x), i.e. the z’th partial function in the
numbering at argument x.

Now consider the robot program 7, shown below, in Figure 1.

nitsr,
b := true;
des := initial configuration of machine My;
c:= 100;
init,
repeat:
senser,
sense,
plan,
plan,, but modified such that for each command block £ in it,

its action segment f, is changed into:
if b then g, else S,

actr,
if b then
acty;
des := the configuration of machine M, after ¢ more steps
of computation on des (or less, if terminating);
if des shows termination then b := false
else

act,

again

Fig. 1. Robot program 7,

Program 7, is initialized to run as program p, but at the same time it starts
a copy of M,, to compute ¢;(x) in the act, -part. The computation of M, is
paced in time (here, 100 steps at a time), to guarantee that the iterations of
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its operational cycle always complete in finite time, as required for valid robot
programs. If the computation of M, terminates, then the program switches, to
run with the alternative action segments 3, and act-part act, in stead. The
then effectively runs the 'modified program’ from that moment on.

We note that 7, satisfies the rules of our programming model. In particular,
as the modifications of p were assumed to leave the program valid, the hyper-
command in the plan-part of 7, will satisfy the format requirements again,
especially where it concerns the format and uniqueness of the command blocks
of typel in it. The configurations of M, stored in des and the repeated steps of
computation on it may require more and more memory, but this is allowed here.
By the assumptions we made on composition and re-initialization, it follows that
T, is a valid robot program. Hence, there will be a robot A’ on which its can
be implemented.

On now immediately notes the following. When 7, is implemented on A’
the actions of A’ satisfy property P at all times if and only if 7, always runs
like p and never switches to run with the alternative action segments 3, and
act-part act,, i.e. if and only if z € K, with K = {x|p,(x)]}. Both the set K
and (hence) K are well-known to be non-recursive. It follows that there cannot
exist an algorithm that can decide whether the actions of A" always satisfy P.
This contradicts the assumption at the beginning of the proof. O

The program 7, constructed in the proof above is easily seen to be a structured
program again, for every x. This leads to the following result.

Corollary 1. Let P be a non-trivial robot property. There does not exist an
algorithmic procedure that will enable an observer to tell, given any robot (with
potentially unbounded memory) that is programmed by a structured program,
whether the actions of the robot always satisfy P.

Clearly the proof depends crucially on the assumption that robots were
allowed to have ‘unbounded’ memory. (Note that des may be unbounded as the
computation of M, progresses.) In practice, this assumption will be too strong,
even though modern robots may have many terabytes of memory. In this case,
Theorem 1 shows at least what kind of fundamental limits may be approached
if an observer wants to verify a ‘non-trivial’ robot property.

From now on we will not allow the ‘unlimited’ build-up of data sets by a
robot any further. It means that the approach of Theorem 1 no longer applies.
We will show that this does not ward off all difficulties for observers. Note that
H-lists were not used so far, but they will become important now.

4 On observers and interaction properties

Assume now that our robots possibly have only bounded memory at their dis-
posal (in terms of the size of their stored program and their situational data).
With robots thus being potentially less powerful, we turn to the main ques-
tion of this note: namely whether, or how, observers may be able to determine
(or, verify) that a given property will hold during the interactions between two
arbitrarily given robots in M (at runtime):



18 J. van Leeuwen and J. Wiedermann

Can an observer always tell from inspecting and monitoring their pro-
grams whether the interactions between any two robots will always satisfy
a given property P (at runtime), such as a specified set of rules of law or
ethics, or any other [non-trivial] set of formally expressed constraints?

We will especially be interested in verifying interaction properties when one
robot is targeting another one.

In order to answer this question, we have to refine the assumptions on
how observers monitor robots, i.e., not just one robot but any two of them
simultaneously. In fact, we will allow every observer to have on-line access to
all information in the control units of the robots that are being ‘watched’, e.g.
by ‘tapping’ their data and communications. To maintain full generality, we
assume that robots of any ‘sort’ (i.e. program) can be ‘rolled in’ at any time,
thus forcing every observer to be ‘prepared’ for all possible situations, if it is to
be capable of doing the presumed verifications.

Given these assumptions, we consider the question whether observers that
comply with them can always effectively verify any desired property that is
exhibited during the interaction of two robots in the ensemble, i.e. by some
online inspection. Can we expect an observer to do this at all? As a main result
we show that, in general, we can’t, i.e. we will prove that no deterministic
means of any kind, algorithmic or otherwise, will enable an observer to do the
verifications, for any interaction property that is non-trivial. The result also
holds in case we do allow all robots to have unbounded memory.

In Section 4.1 we describe the refined model of verification. We define what
it would mean if an observer had a (deterministic) P-module at its disposal that
could always determine whether property P is satisfied whenever two observed
robots interact, in particular when one robot is targeting another robot. In
Section 4.2 we define what it means for an interaction property to be non-
trivial. The main result of this note then becomes that P-modules do not exist,
for all non-trivial interaction properties P. The proof of the result is delegated
to Section 5. The result will be discussed further in Section 6.

4.1 Checking interaction properties

Given any interaction property P of interest, we consider how an observer might
reasonably verify P during the interactions that robots can exhibit. As before
we assume that observers always know the control programs of the robots that
they test. However, in order to verify properties ‘as they happen’, an observer
should also know the current (internal) states and (external) situation data of
the robots, as these determine the concrete ‘contents’ of their interaction at a
given time. Thus, we will assume that all observers have on-line access to all
information in the control units of the robots that they watch.

In this ‘full information mode’, an observer has all information it needs to
monitor the behaviour of any two interacting robots A and B. Based on the
‘sort’ and controlling data of A and the same information of robot B that A is
interacting with, the observer should be able to tell whether their interaction
satisfies property P, whenever this counts. (For simplicity we identify a robot
with its sort if no confusion can arise.)
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Now consider an observer O that is watching two arbitrary robots A and B
as they interact. Suppose that O wants to verify that a given property P holds
for (during) one of their interactions. We assume that O reaches its conclusion
with the help of a dedicated module of some kind that, after it is fed the sorts and
control information of A and B, ‘tells’ O whether P holds for the action robot
A is or will be taking towards robot B at the time of the observed interaction.
Assume, for now, that a module as intended exists.

P-modules In stead of exploring the module in full generality, we consider its
use in the special case in which robot A is targeting robot B. In this circumstance
the command blocks of type I in its program apply, and the observer may take
advantage of the fact that these command blocks, if they occur in the program,
are uniquely determined (cf. Proposition 1). In fact, the module will either be
called when A is executing the unique command of type I-a:

when targeting robot R = B (in its sensed state ¢ = ¢p) in situation
7Z = Sp, with Z € H then send it (instruction 1)(R,q,Z),

where B is facing a situation Sp that occurs on the H-list, or when A is executing
the unique command of type I-b:

when targeting robot R = B (in state ¢ = ¢p) in situation Z = Sp
with Z ¢ H then send it (instruction 2)(A,qa,Sa, R,q,7),

when Sy does not occur on the H-list. Here R,q and Z are the relevant pa-
rameters for the data of B, the robot that A targets, and (instruction 1) and
(instruction 2) are the respective subroutines as explained in Section 2.2. Thus,
O can easily determine and retrieve the command block on which the module
must be applied, in order to determine whether property P holds for the ensuing
send-action when it ‘sees’ that A is targeting robot B.

We now restrict the module to this case, i.e. to the case in which O would
call its the module to verify P when A is targeting B, i.e. with a command of
type 1. This leads to the following definition.

Definition 4. A P-module is any (hardware or software) tool for deciding
whether P holds for the interaction that occurs when robot X (in any current
state) is targeting robot Y (in its state as sensed by X ) in situation Sy and
acts towards Y according to its program, for any robots X andY and state and
situation information of X and Y.

There can be many different P-modules, one for each observer that is qualified to
test interactions for P. The modules may or may not even agree in all situations.
Thus, conclusions will be relative to a given module, i.e. to an observer.

Example /. Consider P = ethical again. In this case, an observer O may call its P-module
to determine whether the specific (instruction), say I, that is going to be sent by robot A
when it targets robot B is ethical. For example, I might ‘inform’ B of some data, ‘instruct’
B to shut down, or tell (‘advise’) it to act in some way, all dependent on Sp and, possibly,
the relevant states. Note that it is not B’s response, but A’s action that determines whether
the interaction is ethical in this case. Of course, the question is whether the action is ethical
according to any other observers but O. We accept that P is not necessarily well-defined in
absolute terms, i.e. its truth value may depend on other elements of context, on time, and so
on. The P-module simply represents what the given observer considers ethical.
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Tracing interactions A P-module can trace an interaction easily, once the
necessary information about A and B is known to the observer, and thus to the
module. ‘Verifying P’ when A is targeting B simply means verifying whether P
holds for the (instruction) that is computed in the (unique) command block of
type I of A that applies and that will presumably be sent to B once the block
is activated and scheduled (which will happen with non-zero probability by the
assumption of situational determinism, cf. Section 2.2).

When called to verify P when a command block of type I-a is being executed,
the P-module needs access to (the program of) A, (the program of) B, ¢ and
the situation Z = Sp that B is facing. When called for a command block of type
I-b, the P-module needs access to g4 and S4 as well. The parameters enable it
to reconstruct the (instruction) that X = A plans to send to Y = B, and thus
to check whether P holds or not. Note that X and Y refer to the ‘sort’ of the
robots. Thus, it is perfectly possible that the module is called in case a robot
of sort X targets another robot of sort X.

When P must be verified for the execution of command blocks of type I-a,
it may be noted that the P-module ‘implicitly’ uses that the (instruction) that
A intends to send to B in this case depends at best on the ‘current data’ of B
only. This leads to the following simple, but useful fact.

Proposition 2. When observers call on their P-module when robot A is tar-
geting a robot B that is facing a situation Sp € H, then the P-module does
not need any information about A but its program and the information that A
knows about B.

Proof. When A targets B in case it is facing a situation from the H-list, then
the P-module will be called to verify P on execution of the command block of
type I-a in A’s program. By the input conventions in this case (see above), the
module works without access to g4 and S4. O

Proposition 2 expresses that, whenever a given robot executes its command of
type I-a, the validity of P, and thus the operation of the P-module, does not
depend on the robot’s own operational data (except its program).

Oracle or subroutine It is immaterial to us to know how a given P-module
works, as long as it always gives correct decisions (‘yes’ or ‘no’) in finite time,
at least according to the observer. A module can not give answers like ‘I don’t
know’, or fail to answer at all. We also do not consider the possibility of other,
e.g. historic, parameters than the ones mentioned.

P-modules may thus be viewed as ‘black boxes’ with the required function-
ality. We do not require that they are necessarily given as algorithmic subrou-
tines, although this may well be the case of course. With this, we will allow
that P-modules are ‘called’ as oracles rather than merely as subroutines with
the right parameters in (other) robot programs or simulations. The programs
can call the P-modules when needed and use the result for whatever purpose
they want. By assumption, the parameter values at a given time are all that is
needed to get an answer from a P-module in return.

Following the bounded memory assumption for robots, we are especially
interested in P-modules that are feasible, i.e. efficient in time and space. In this
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case they can be used effectively ‘on robot scale’, i.e. without causing robots to
exceed the reasonable limits of their memory when they call on P-modules in
their program. This will be made more precise in Section 5.2. The existence of
P-modules, feasible or otherwise, and thus of the underlying general modules,
is going to be contested in Section 5.

4.2 When are interaction properties non-trivial

Let P be any interaction property, and consider the problem of verifying P
at runtime. Suppose, for the sake of argument, that there exist modules for
verifying P and thus also, by restricting to cases in which one robot targets
another one, that P-modules exist. (As explained in Section 4.1, the P-modules
may be observer-dependent and need not be unique.) Let H be the H-list that
is used by the robot programs in the current application.

Non-triviality A property P of robot interactions may be called ‘non-trivial’
in a given circumstance if, for any two interacting robots A and B from the
given ensemble that are engaged in this circumstance, one possible action that
A might take towards B would satisfy P and another possible action A might
take towards B would not satisfy it (as seen by the observer).

Specializing this to interactions in which one robot is targeting another one,
property P may be called non-trivial if there are situations Z (notably, with
Z on the H-list) such that, for all robots A and B in the ensemble, when A is
targeting B while B is facing Z = Sp, the sending of one possible ‘instruction’
that A could send towards B would satisfies P and the ‘sending’ of another
possible ‘instruction’ that A could send towards B would not satisfy P.

Definition 5. An interaction property P is called non-trivial for situation Z
when there are meaningful instructions Iz1 and Izo (only depending on Z)
such that, for all robot sorts X and Y in the given ensemble, when robot X
(in any current state) is targeting robot Y (in any sensed state) in situation
Sy = Z, then

— when X sends instruction Iz, to'Y, this satisfies P, but

— when X sends instruction Iz to 'Y, this does not satisfy P.

When we say that Iz, and Iz2 should be ‘meaningful’, we mean that they
should be so to the observer. We do not need to define it more precisely. The
fact that Iz and Iz2 do not depend on the ‘current’ and ‘sensed’ states of X
and Y, respectively, will enable us to apply the definition in situations Z € H
in which ‘overriding actions’ should be ‘insensitive’ to the current states.

If P is non-trivial for situation Z, then, whenever robot A is targeting some
robot B which is facing Z, it depends on ‘what A decides to do’ whether its
send-action towards B will satisfy P or not, with both outcomes being possible.
It means that, when called, the P-module will have to output different answers
to the observer, depending on the action that A ‘chooses’ to take.

Definition 6. An interaction property P is called non-trivial if it is non-trivial
for at least one applicable situation Z on the H-list, i.e. with Z € H.
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Requiring that Z € H focuses the non-triviality of P to the exceptional situ-
ations, on the H-list. It will prove essential for technical reasons below. (The
fact that this makes ‘non-triviality’ dependent on the actual H-list in use, is not
important for our present purposes.)

Ezample 5. Let P = ethical again. We claim that P is a non-trivial for some situations,
which we assume to be on the H-list in use. To argue it, we apply Definition 6. Thus, consider
the actions that can possibly be taken in case ‘any robot X (in whatever state) is targeting
any other robot Y (in any sensed state) that is facing a situation Sy = Z’, for suitable
situations Z on the H-list. Assume that the H-list contains situations Z corresponding to
the Trolley Problem [40], or a similar ethical dilemma for autonomous robots [3,15]. Without
going into detail, one may characterize these situations as having two options for the robots
Y that face them: going left and going right. Each option may be assumed to have different
moral implications, which can be potentially far-reaching in either case. Assume without loss
of generality that, to the present observer, ‘going left’ is the ethical choice and ‘going right’ is
not. (Note that the observer is not allowed to say ‘I don’t know’ or consider both options as
being equal.) By extension, assume that, to the observer, already the act of X suggesting (or
‘telling’) robot Y to ‘go left’ is considered ethical, and suggesting it to ‘go right’ is not. Taking
Iz1 = go left and Iz 2 = go right satisfies the requirements of Definition 5. This proves that
P is non-trivial, for any Z we considered.

Example 6. Let P = legal. Consider an environment in which this property is relevant, i.e.
in which robots can take actions with legal connotations. We argue that P is non-trivial, by
checking the conditions of Definition 6 again. Let the H-list consist of those situations in which
the robots have the concrete option to take, or engage in, an illegal action. We may assume
that every robot X that is targeting a robot Y which is facing a situation Z on the H-list, now
has the option to ‘incite’ Y into an illegal action or not. As incitement to commit an illegal
act is (usually) considered to be illegal, this easily leads to two generic messages Iz 1 and
Iz that X might send to Y and of which one would satisfy P and the other wouldn’t. This
shows that P = legal is a non-trivial property. The argument applies e.g. to all environments
in which robots have the option to divulge false, fake, or otherwise inappropriate information
that violates legal constraints to third parties.

The examples did not specifically depend on the presence of ethical or legal
dilemmas, but rather on the existence of different options to a robot which are
judged in opposite ways by the P-module of the observer. Thus, if P is non-
trivial, then, when robot A is targeting another robot, it could ‘potentially’
choose between send-actions that do or do not satisfy P, with both options
being possible. It means that a P-module must ‘figure out’ which option A
actually chooses, in order to determine whether P holds for the interaction that
follows. We will argue below that, whenever P is non-trivial, circumstances may
arise in which this is impossible.

5 Verifying non-trivial interaction properties - impossibility

With the understanding of what an observer can now do, and how modules are
assumed to assist an observer in verifying properties of interacting robots, we
now show that for all interaction properties P that are non-trivial, P-modules
can not exist. More precisely, we will show that, if P-modules exist at all in this
case, then they will not be practically feasible ‘at robot-scale’.

The result implies that there can be no (feasible) general modules for ver-
ifying non-trivial interaction properties, in our programming model and with
our definition of non-triviality. Or, stated differently, the task of verifying a
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property P can not always be delegated to a dedicated, deterministic module
of whatever kind, algorithmic or otherwise, that always works. It follows that,
in the practical setting we described, many interaction properties are not effec-
tively verifiable at runtime. It may be seen as an analogue of Rice’s theorem
again, now for the case of robot interactions (cf. Section 3.2).

In Section 5.1 we define what it means for P-modules to be feasible and
outline the idea of the proof. In 5.2 we prove that (feasible) P-modules, and thus
their underlying general modules, cannot exist under the current assumptions,
whenever P is non-trivial. In Section 5.3 we describe some consequences of the
result. Among the properties to which the result applies, will be P = ethical.
The philosophical implications of the result and some further aspects will be
discussed in Section 6.

5.1 Preparations

Let P be a non-trivial interaction property for the robots in the given ensemble,
and let O be an observer. Assume, by way of contradiction, that there exists a
P-module such that O can test for property P whenever one robot is targeting
another one using the module and that the module always answers correctly in
this case (according to the observer).

From a practical viewpoint, we do not want the P-module to be so complex
that, when it is called, it cannot generate answers within reasonable resource
bounds. In this section we first consider when a P-module may be termed fea-
sible and how feasible P-modules may be exploited by robots ‘within bounded
memory’. We then outline the approach that will lead to the main result.

Feasible modules Although we treat P-modules as ‘black bores’, one can
imagine various reasons why they may be ‘complex’. First of all, when a P-
module is called when robot A is targeting a robot B, the module must be
supplied with the necessary input data, to enable it to trace the command
block of type I-a that A plans to execute.

Next, even though we make no assumptions on how a P-module works, it
is at least conceivable that the module must somehow reconstruct A’s compu-
tation of the (instruction) in the block and determine whether P holds or not
when it is sent. Altogether, a P-module should always be doable and complete
within reasonable turn-around times (for the observer).

This suggests the following definition.

Definition 7. A P-module is said to be feasible if (in some realization of it) all
calls to the module are guaranteed to complete within bounded time and memory
usage at ‘robot-scale’, i.e. bounded in terms of the size of its inputs.

P-modules that are feasible are not only viable as tools for the observer,
but also as ‘practical’ oracles or subroutines in robot programs themselves, espe-
cially when these programs are implemented on robots that only have bounded
memory space at their disposal (cf. Section 4.1). This feature will be employed
in the argument below.

Approach Assume that a P-module for O exists that is indeed feasible. We
will argue that a robot (program) A exists for which circumstances can arise
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where A targets another robot (that is facing some situation on the H-list), but
the P-module fails to answer whether P holds for the ensuing interaction. This
will contradict the assumption in the beginning of this section.

For an idea of the proof, note first that, when P is non-trivial, there must
be situations Z on the H-list such that, if any robot X is targeting any other
robot Y that is facing Z , then X can ‘potentially’ choose between a send-action
that does and a send-action that does not satisfy P (cf. Definition 6). Suppose
that robot X was programmed such that it would indeed choose to send one of
them when targeting Y. We may not know how X makes its choice but, clearly,
by assumption, the P-module will be able to tell the observer, when called in
this case, whether P holds for the ensuing action or not.

Now consider the following ‘converse’ of this argument. By knowing whether
P holds or not, the observer can presumably tell which of the optional actions
was chosen so P got satisfied - or not! If we now let X call the P-module, in
stead of the observer, with the data corresponding to the situation in which it
is targeting Y (which it knows), then X could find out itself which option the
module ‘thinks’ it will choose at the moment it was targeting Y. Because the
P-module is assumed to be feasible at robot-scale, it can certainly be used as
a subroutine in X’s program for this purpose. However, then X can fool the
module, by choosing a send-option that will satisfy just the opposite from what
the module said: ‘not P’ in stead of P, or the other way around.

5.2 Main result

We now argue in more detail. In the proof all assumptions we made will be used,
from the universality of robot programs to the fact that robots should only use
bounded memory space (in terms of the size of their program and situational
data). The key observation is the following.

Lemma 1. Let P be non-trivial for situation 2, with Z on the H-list. There is
no feasible P-module that can always correctly decide at runtime, for all robots
X and Y, whether the (unique) action that is implied when X targets Y in
situation Sy = Z satisfies P or not.

Proof. Let P be non-trivial for situation 2, with Z € H. Let 12,1 and IZ,Z
be the two instructions that are implied by Definition 5. Assume by way of
contradiction that a feasible P-module existed that could decide at runtime,
for all robots X and Y, whether P holds when X is targeting an (other) robot
Y (in its current state) in situation Sy = Z.

In order to construct a specific robot program, consider the program of any
existing robot, which presumably works within ‘bounded memory’. Now modify
this program, to obtain the program A shown in Figure 2.

The program shows the Sense-Plan-Act cycle of the given robot program,
in which the command block of type I-a is changed (or added, if it didn’t exist)
as indicated. The P-module is assumed to be given as an (external) oracle, or,
if given as a program, as a subroutine. The program sizes are counted in bits
(not including the oracle). We now make the following observation.
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A oinita
situation: Z (given)
instructions: I |, I, (given)

oracle: P-module Mod(X,Y, qy, Sy) for type I-a commands (given)

repeat:

sensep

B := (the program of the) robot being targeted:
qB := the current state of B;
Sp := the current situation B faces;

plan a

— when targeting robot B (in its state gg) in situation Z = Sp
with Z € H then send it the instruction instra,p determined
as follows:

if Z(= Sp) = Z & size (program B) < size (program A) then
e step 1: retrieve the (concrete) program of B;

e step 2: call Mod(B, B, qg, Z), i.e. consult the P-module to
decide whether P holds for the interaction (nil allowed) that
occurs towards B when a robot of sort B would target the
present robot B (in state ¢gg) in situation 2;
e step 3: if P holds, then set instra g = 12’2;
e step 4: otherwise set instra,g = I3 ;;
e step 5: continue to acta ’

else
e let instruction instra,p be whatever the type I-a command
of the original program computes it to be in this case

— in any circumstance different from the above, the command blocks
remain as in the original program.

acta

— when applicable, send instra,g to B
again

Fig. 2. Robot program (for a robot of sort) A

Claim. Program A is a valid robot program. Moreover, program A is feasible,
i.e. implementable on robot hardware within bounded memory (i.e. bounded in
terms of the size of A and the situational data).

Proof of claim. Consider the various parts of A in turn. We check that A satisfies
the requirements of our programming model and that it can operate within
bounded memory.

- Init 4: Here, situation Z and instructions I 7, and I, are declared as ‘con-
stants’ for use in the program. The P-module is declared for verifying property
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P for type I-a commands. (In case the P-module is an oracle, we assume it is
called by exchanging the appropriate parameter values.)

- Sensea: By assumption, any robot that implements A has (‘senses’) the
relevant data of any robot B that it interacts with, notably its sort (or program),
its ¢gg and Sp. It is actually sufficient to assume that B’s program can be
accessed ‘remotely’. If B’s program is needed in store, it will only be in case
its retrieval can be assumed to be ‘feasible’ (in terms of the size of A). The
information can thus be used, to compute the subsequent action(s). (We assume
that the H-list is implicitly given and uniform for all programs we consider.)

- Plans: We only consider the one command block in the hyper-command
that was changed. This is the ‘when targeting..” block, i.e. the (unique) com-
mand block of type I-a in the program, which was ‘re-programmed’ as shown.
The uniqueness of the (new) command of type I-a is preserved as required. Note
that the remaining command blocks in this part have not changed.

As the sense-part has supplied actual ‘values’ to B, ¢g, Sg and 7 , it follows
that the conditions of the command block are well-defined and checkable at
runtime. Now consider the steps for computing instrs g. These remain the
same as in the original program, except when the condition in the if-statement
is satisfied. Thus, we only need to consider the case when ”Z (= Sg) = 7 &
size(program B) < size(program A)”. Note that both parts of the condition are
checkable at runtime.

o step 1: Here it is made sure that the program of B is copied in store,
as it may be needed in the call of the P-module in the next step. As
‘size(program B) < size(program A), we may assume that this is a fea-
sible step (in terms of the size of A).

o step 2: By assumption, the P-module can indeed be called to determine
whether P holds for the (inter)action that occurs when a robot of type
B (in any state) is targeting another robot of type B (with ¢p as ‘sensed
state’) that is facing situation Sp = Z. The parameters for the P-module
are all ‘bounded’ in terms of the size of A and the situational data which
apply at runtime, and thus the call to the P-module is effective and
feasible ‘at robot-scale’ at runtime.

o step 3: If, in step 2, P was found to hold, then instry g is here set to
1 7o As this ‘constant’ is known to the program, this step is effective
and feasible.

o step 4: If, in step 2, P was found not to hold, then instr, p is here set
to constant I 71 Hence, this step is effective and feasible as well.

o step 5: This step simply transfers control to the act o-part of the program
to effectuate the sending of instr4 p to B, when the command block is
indeed selected for execution in the hyper-command.

- Acty: Here, instruction instry p is placed into the circuitry of the robot
(as a cyber-physical system) and sent to B. This happens only if the type I-a
command block that generated it, is actually scheduled for execution in the
priorities of the plan-part as a hyper-command.

Together with the assumed compositionality of robot programs, it follows
that program A is a valid robot program. From the analysis of the ‘steps’ in the
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if-statement, it also follows that modified command block of type I-a preserves
the feasibility of the program at runtime. This proves the claim. O

As A is valid and feasible, there will be a robot in M on which it can be
implemented. This robot then becomes of sort A. By the feasibility of the pro-
gram, any robot of sort A can be assumed to operate within ‘bounded memory’,
i.e. bounded in terms of the size of its program A and of its situation data.

Now consider the interaction which results when a robot of sort A targets
another robot of sort A in its vicinity which is facing situation Z. By situational
determinacy (cf. Section 2.2) this event will occur with non-zero probability, as
does the execution of the corresponding type I-a command. Consider a concrete
instance of the interaction between the two robots. Without risk of confusion,
the robots, both being of sort A, will both be called A.

Assume that the first robot A senses the second robot A, with this second
A being in state g4 and facing situation S4 = Z. Let the observer call on the
P-module, to decide whether P holds for the interaction that occurs towards
(the second) robot A, when the first robot A is targeting the second robot A
(in its sensed state g4) in situation Sq = Z. Recall that Z € H, and thus (the
first) A will be executing its (unique) command of type I-a for it.

If the P-module works correctly, it will respond to the observer with one
of the two possible outcomes, ‘yes’ or ‘no’. Now consider each one of these two
possibilities, in turn.

a. The P-module responds with ‘yes’, i.e. when robot A is targeting the other
robot A (in its state g4) in situation S4 = Z, the interaction that occurs
satisfies property P.

Consider what is actually dictated by the first A’s program, especially in
its plan s-part. The command block in A’s program that applies must be of
type I-a, and thus, by uniqueness, it will be the command block of type I-a
shown in program A in Figure 1. Note that the condition of the if-statement
is trivially satisfied! Then, in step 2 of the then-part, the consultation of
the P-module (called with B being the ‘second’ A) must deliver the answer
‘yes’, as assumed in this case. As a result, instry p is set to 1272 in step
3. However, by Definition 5, instruction I, was chosen such that, when
robot A (in any state) is targeting another robot A (in sensed state g4) in
situation Sy = 2, then A’s sending of the instruction I = IZ,Q to the second
robot does not satisfy P. This contradicts the outcome of the P-module.

b. The P-module responds with ‘no’, i.e. when robot A is targeting the other
robot A (in its state g4) in situation S4 = Z, the interaction that occurs
does not satisfy property P.

Consider what is dictated by the first A’s program again. By the same
reasoning as above, the unique command of type I-a of A is followed again,
and proceeds to the then-part of the if-statement. Note that in step 2 of
the then-part, the consultation of the P-module now delivers the answer
‘no’. As a result, the instruction instr g is set to 12’1 in step 4. However,
by Definition 5, 1 7, Was chosen such that, when a robot of sort A (in any
state) is targeting another robot of sort A (in sensed state g4) in situation
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Sa= 2 then A’s sending of the instruction I = I, to the second robot A
does satisfy P. This contradicts the outcome of the P—module again.

Thus, in both cases a contradiction arises. It follows that, when P is non-trivial,
no feasible P-module with the assumed characteristic can exist. a

The main result of this report can now be formulated as follows, with the
assumptions we made for the programming model and for robots that can only
operate with ‘bounded memory’.

Theorem 2. Let P be any non-trivial interaction property (for interacting
robots). Then there is no feasible P-module that always answers correctly, i.e.
there is no feasible module, algorithmic or otherwise, that can always decide
correctly at runtime, for all robots X and Y, internal states q, and situations
Z, whether the action taken by X towards Y when X (in any state) is inter-
acting with Y while Y, being in internal state q (as sensed by X ) while facing
sttuation Z, satisfies property P or not.

Proof. Let P be non-trivial. By Definition 5, P must be non-trivial for at least
one situation Z, with Z € H. Suppose that a (feasible) module as claimed
existed. If the module is specialized to cases in which one robot is targeting
another one that is facing situation Z, then a (feasible) P-module would result
that supposedly always answers correctly. Thus, when called when a robot X
(in any state) is targeting another robot Y while Y is in state ¢ (as sensed by
X) and facing situation Sy = Z , the module would decide correctly whether
P is satisfied for the resulting interaction or not (cf. Section 4.2). However, by
Lemma 1, no feasible P-module of this quality can exist. Contradiction. O

The impossibility of feasible P-modules as asserted in Theorem 2, is closely
tied to the assumption in this section that robots only have bounded memory at
their disposal (in terms of the size of their stored program and situational data).
After all, if a feasible P-module existed, it could be called by or embedded into
feasible robot programs and operate ‘at robot scale’ as part of it, but leading
to incorrect or even no answers to the observer when verifying interactions of
some robots in some circumstances, whenever P is non-trivial.

If we relax the memory constraint for robots and allow them to have either
‘limited’ or ‘unlimited’ memory, then the proof of Theorem 2 remains valid, i.e.
even if P-modules are just assumed to be ‘realizable’ (cf. Definition 7). This
leads to the following result.

Corollary 2. Let P be any non-trivial interaction property (for interacting
robots). Suppose robots have no memory constraint. Then there is no P-module
that always answers correctly, i.e. there is no P-module, algorithmic or other-
wise, that can always correctly decide at runtime, for all robots X and Y and
situations Z, whether the action taken by X towards Y when X (in any state)
interacts with Y (in its sensed state) while Y is facing situation Z, satisfies
property P or not.

The result resembles that of Theorem 1, which was specifically proved for
robot properties in this case. The difference is that Theorem 1 was proved for
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properties of robot programs, and Corollary 2 for properties of robot interactions
and that is what we need here. Note that the proof of Theorem 1 relied on
the undecidability of the Halting Problem, whereas the proof of Theorem 2
and Corollary 2 did not. As a consequence, Corollary 2 enabled us to make a
stronger claim than Theorem 1, giving us a general impossibility result for the
case of interaction properties.

5.3 Some consequences

Theorem 2 has immediate implications for observers that want to make use
of (feasible, algorithmic) modules for verifying properties of robot interaction.
Considering the question from the beginning of Section 4:

Can an observer always tell from inspecting and monitoring their pro-
grams whether the interactions between any two robots will always satisfy
a given property P (at runtime), such as a specified set of rules of law or
ethics, or any other [non-trivial] set of formally expressed constraints?

we can now conclude that, for properties P that are non-trivial to the observer,
the answer is always ‘no’: any feasible (deterministic) module for verifying P,
even if it is not assumed to be algorithmic, will necessary fail on some robots,
in some conceivable circumstances.

This also answers the quest for verification tools, algorithmic or otherwise,
in the many cases of interest that we encountered. For example, we can easily
conclude now that, in general, observers cannot rely on an ethical governor, i.e.
an effective (algorithmic) means to verify that the interactions of given robots
are always sure to be ethical.

Corollary 3. There is no (feasible) deterministic module, algorithmic or oth-
erwise, that always correctly decides, for all robots X and Y , whether the action
taken when robot X interacts with robot Y in a given situation is ethical or not.

Proof. 1t follows from Example 5 that P = ethical is a non-trivial interaction
property (in general). Now apply Theorem 2. O

A similar corollary may be obtained for P = legal, another property of robot
interaction that is non-trivial to observers ‘in general’ (cf. Example 6).

Finally, we remark that Theorem 2 is not an ‘if and only if’ result, i.e. the
‘non-triviality’ of a property P for some class of circumstances is a sufficient,
but not a necessary condition for the impossibility of P-testing modules. It is
likely that (many) other classes of detectable circumstances can be characterised
for which all presumed (feasible, possibly algorithmic) P-testing modules must
eventually fail.

Note that the notion of ‘non-triviality’ as defined in Section 4.2, is intrin-
sically observer-dependent. Thus, Theorem 2 may also be interpreted as saying
that an observer can only have an (algorithmic) module to verify a given prop-
erty P ‘at runtime’ when P is trivial to this observer in some circumstances,
i.e. when, for all situations Z on the H-list, there are at least some robots X
and Y such that, when X targeting Y while Y is facing Z, the meaningful
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‘instructions’ which X could possibly send to Y in this case either all satisfy P,
or they do not satisfy it.

Example 7. Let P = ethical. Assume that, in some application, the observer has an (e.g.
algorithmic) module that enables it to verify ‘at runtime’ whether the interactions between
one robot and another one are ethical or not. Then Theorem 2 implies that, to this observer,
‘ethicality must be trivial in some circumstances’ in this application, i.e. for all situations
Z € H, there must be some robots X and Y such that, when X is targeting Y and Y is facing
situation Z, all meaningful ‘instructions’ X could possibly send to Y in this case are either all
ethical or all non-ethical. Similar considerations apply when P = legal.

6 Verifying non-trivial interaction properties - discussion

There are various ways to look at the result we obtained. One might say, for
example, that it suggests that ‘testing whether (human) interactive behaviour
will be ethical in all circumstances is inherently impossible’, which one could
have suspected to begin with! However, we are not talking about (human) ethics
in general, but about machine ethics.

In machine ethics one considers the behaviour of artefacts like autonomous
robots, as we do in this report. If their behaviour is to follow a code of ethics, we
may assume that this code is somehow implemented in their governing control
unit. With the increasing use of autonomous robots in daily life, it is important
that it should be verifiable that their programs satisfy the properties that their
makers promised, in all situations.

Our main result shows that, in general, this requirement of verifiability
cannot be fulfilled, for any non-trivial property of robot interaction, if we want
to achieve it in a way that can be automated. More precisely, no computer
program (not even any oracle for that matter) exists that can do this kind of
testing at runtime without ultimately running into cases where it will fail. The
result is proved as a theoretical impossibility statement.

a) Modelling The question whether properties of interaction can always be
verified (algorithmically or otherwise), needs various steps of analysis. In order
to approach the question in sufficiently formal terms, it is necessary to define a
‘programming framework’ in which it is meaningful to consider the possibility
or impossibility of certain algorithms.

To begin with, various assumptions must be made on how robots can ‘sense’
and process the situations around them, on how they can interact with each
other, and on how this can be captured in terms of programs. In the program-
ming framework we defined, we left many details ‘implicit’ and focussed mostly
on one kind of interactions (targeting) and the corresponding instructions for
it, for the sake of argument.

This led to a generic programming system for autonomous robots, of suffi-
cient generality. With this framework in place, questions about the existence or
non-existence of certain verifying modules make sense. The result is certainly
dependent on the formalism but its generality is important.

b) Verification The next ingredient is a sufficiently formal view of ‘properties’
(of interaction) and of what one actually wants to verify. Given a desirable
property P like ethicality, the required testability of our robot software suggests
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that the following predicate Mp on 4-tuples (X, Y, gy, Sy) should be considered
for testing:

Mp(X,Y,qy,Sy) = does the interaction which occurs when a robot of
sort X (in any state) is targeting a robot of sort’Y (in state qy as sensed
by X ), which is facing situation Z = Sy with Z on the list of recognized
‘exceptional’ situations, satisfy property P?

It is tacitly assumed that the predicate makes sense, i.e. that the parameters
are all effectively given and ‘known’ at runtime (to robot X, to the observer,
and to the P-module), and that P is defined in terms that are ‘understood’ as
well (as for all codified properties). If an observer can test robots interactions
for property P, then it is reasonable to assume that the observer should be able
to answer queries like Mp for any given instance of (X,Y, gy, Sy).

In this report we focused on the reasonable assumption that an observer
would want to delegate the answering of these queries to a computer algorithm
or even an oracle, a P-module, that is tuned to its interpretation of P in all
circumstances. The crucial question then becomes: do P-modules always exist,
for all properties P of interest? This, as we have shown, turns out not to be the
case in our model.

¢) Hard properties An interaction property P may be ‘hard’ to verify when
any interacting robot, when confronted with a suitable circumstance, can act
(potentially) in several meaningful ways, of which some satisfy P and some do
not. Properties that allow for these kind of options were called ‘non-trivial’.

In the case of ‘non-trivial’ properties, a P- module would have to be able
to ‘re-construct’ the ‘inner argument’ of a robot X when it decides its action
towards a robot Y, taking any further information into account that it has, in
order to decide P for the action X decides to take. If a P-module could do this,
then nothing prevents a robot from utilizing the very module in its decisioning
and possibly, decide against what the P-module had thought. We have shown
that it is possible to ‘program’ this, implying that P-modules for all non-trivial
properties must occasionally be wrong or default.

d) Result The result shows that, whenever P is non-trivial, no P-module,
algorithmic or otherwise, exists that always answers M p-queries correctly. In
other words, as a predicate, Mp queries cannot be decided by any means when-
ever P is non-trivial. In this way it may be compared to Rice’s Theorem in
computability theory that proves undecidability for all non-trivial semantic
properties of classical ‘programs’, now in the different programmatic context
of robot interactions and with an even stronger conclusion.

The case of P = ethical is a special instance of the result. Simply stated it
can be interpreted as saying that, in general, there is no module (algorithmic
or otherwise) for deciding ‘at runtime’ whether interacting autonomous robots
always satisfy their code of ethics while interacting, i.e. in all circumstances. It
is as close as we get to proving that a ‘general observer’ O that could judge
whether the behaviour of any robot A towards another robot is always ethical,
under the assumptions as we made them, cannot exist.

Non-triviality thus appears as an important notion in the analysis. On the
one hand, it is the crucial source of the impossibility result. On the other hand,
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it shows what must be avoided when designing artefacts whose behavioural
properties have to be verifiable at runtime. For example, in the case of ethical
laws, it gives a compelling reason why such laws must not allow for the existence
of meaningful alternative opinions. (This is an immediate consequence of the
definition of non-triviality, cf. Definition 5.)

Ezxample 8. An example is the solution of the Trolley Problem [40] in which preference

should always be given to the passengers’ survival. Other examples of well-designed rules are
the rules for chess, checkers, sport games, etcetera.

e) Interaction In the conceptual elaboration of the problem, several ingredi-
ents were left intentionally ‘unspecified’, for the sake of generality. For example,
we have left it open what (other) interactions can concretely occur when a robot
is interacting with another robot, notably when it is facing some particularly
relevant or challenging external situations. Theoretically, the result we prove is
related to the well-known result for ‘classical’ programs that, in general, there
is no algorithmic procedure for deciding which instructions of a program are
actually executed and which are not.

For robot programs in our framework, it turns out that ‘non-trivial’ program
properties are just as undecidable as in the case of classical programs. However,
this does not quite cover properties of the ‘interaction’ between them, like eth-
icality. This warranted a general look at what may happen ‘between’ robots.
Indeed, all that matters here is that it can somehow be tested whether any kind
of interaction that takes place, satisfies the property P under consideration.

f) On assumptions The result we obtained depends on several assumptions
and idealizations. For example, in the proof of Lemma 1 it was assumed that
the robot programming framework is ‘closed’ under the simple form of program
composition that was needed there. If this is not allowed, then we would not
have a sufficiently universal programming framework and systematic verification
of program properties would be difficult in any case.

We also assumed that the programming framework has constructs that let
robots deal with the input from their sensory and motor units and, conversely
to pass instructions to them. The precise way in which this data is passed in
structured variables (‘situations’) and how a robot acts with it, does not really
matter. The way we allowed a robot to ‘sense’ the data from a robot it is
observing, is designed for the purpose of exposition but is not unrealistic. It
is well-supported by the recent conceptions of cyber-physical systems as being
minimally machine conscious [37].

Finally, we note that our result does not rely on unrealistic assumptions
about the robot hardware. In particular, in the crucial argumentation we merely
needed to assume that robots have a bounded working memory available, i.e.
bounded in terms of the size of their program and situational input data.

7 Conclusion

Advanced industrial robots, e-vehicles of all kinds, and other autonomous robots
are increasingly being used in our working and living environments. It has
led to an increased interest in the verifiability of the programs that control
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these robots and in ways of preventing the robots from causing harm. As a
protection against this, it has been widely suggested that autonomous robots
should be programmed to obey suitable ethical and legal constraints (cf. [24]).
This consideration has led us to the following key question:

Can an observer always tell from inspecting and monitoring a robot’s
program whether the robot will always obey the given rules of law or
ethics, or any other set of formally expressed constraints, in any inter-
action with other robots (or humans)?

In this report, we have sketched an idealized model of programmed robot
interaction that allowed us to formalize the problem. In particular, it enabled us
to formulate decision problems about the testability of properties like ethicality
in ensembles of robots that interact. We specialized the problem to the testa-
bility of predicates Mp, with Mp being satisfied for a 4-tuple (X,Y, qy, Sy) if
and only if the interaction that is triggered when a robot of type X (in any
state) is targeting a robot of type Y (in the state ¢y sensed by X) that is facing
a recognized exceptional situation Sy, satisfies P.

We proved that, for all non-trivial interaction properties P, there can be no
feasible modules, algorithmic or otherwise, that can always ‘decide’ predicate
Mp, i.e. for all robots X and Y and in all circumstances. The result gives
theoretical evidence that the formal verification of these properties will be hard,
if not impossible, in general. It also confirms, at least partially, the claim of
Charisi et al. [8] that ‘full formal verification is likely to be unrealistic [... ] both
because of mon-symbolic components and because of practical complexity’.

The result applies in particular to the verification of ethical and legal deci-
sioning. It means that, if ethical or legal properties of robot software are to be
verified in practice, one should either eliminate the need of knowing non-trivial
properties or limit the extent of the programs that are allowed, as for ordi-
nary programs. It is conceivable that many other questions about the general
verification of properties for robots can be cast in the same framework.
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