
Validating Non-trivial Semantic
Properties of Autonomous Robots

Jiř́ı Wiedermann

Jan van Leeuwen

Technical Report UU-PCS-2022-01

March 2022

Center for Philosophy of Computer Science

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

Series: UU-PCS

Department of Information and Computing Sciences

Utrecht University

Princetonplein 5

3584 CC Utrecht

The Netherlands

Validating Non-trivial Semantic Properties of
Autonomous Robots?

Jǐŕı Wiedermann1 Jan van Leeuwen2

1 Institute of Computer Science, Academy of Sciences of the Czech Republic,
Pod Vodárenskou věž́ı 2, 182 07 Prague 8, Czech Republic

jiri.wiedermann@cs.cas.cz
2 Dept. of Information and Computing Sciences, Utrecht University,

Princetonplein 5, 3584 CC Utrecht, the Netherlands
J.vanLeeuwen1@uu.nl

Abstract. A semantic property of autonomous robots is called non-trivial if
some robots satisfy it and some do not, like adherence to rules of ethics or
compliance with legal regulations. In order to study the validation problem for
these properties, we model robots as cyber-physical systems with programmable
control. Their behaviour is modelled by the infinite streams of interactions that
they generate. We show that, under mild conditions, there can be no algorithmic
method for deciding from a robot’s program whether it satisfies a given non-
trivial semantic property or not. The result provides a compelling analogue to
Rice’s theorem from classical computability theory, now for autonomous robots.
We also show that no interactive verifiers of any kind whatsoever can exist for
the problem. The results are fundamental to understanding the difficulty of
validations in artificial intelligence.

“If we use, to achieve our purposes, a mechanical agency
with whose operation we cannot efficiently interfere . . . we
had better be quite sure that the purpose put into the ma-
chine is the purpose which we really desire . . . ”

N. Wiener (1960)

Keywords: autonomous robots, cyber-physical systems, ethics of AI, semantic
properties, Rice’s theorem, robot modelling, Turing machines, verification.

1 Introduction

Autonomous robots pose increasingly complex challenges. To deal with it, their
purpose and intended properties must permeate every step of their design [4].
However, can one be sure that robots ultimately possess the specified qualities?
For example, will they always act ethically, or in accordance with international
law as expected? Can one determine effectively whether they do, by inspecting
their program or interactive behaviour?

? Version dated: March 30, 2022. This paper was presented at the 4th Conference on “Phi-
losophy and Theory of Artificial Intelligence”, Gothenburg, 27-28 September 2021, and is
to appear in revised form in: V.C. Müller (ed.), Proceedings PT-AI 2021, SAPERE Series,
Springer, 2022. This work was partially supported by ICS CAS fund RVO 67985807, CAS
Programme Strategy 21, and the Karel Čapek Center for Values in Science and Technology
(Prague, Czech Republic).

2 J. Wiedermann and J. van Leeuwen

To study the validation problem, we model robots as cyber-physical systems
with programmable control units [12]. We model their behaviour by the infinite
streams of interactions that they generate. Semantic properties can then be
identified with the sets of generated streams that satisfy them. The properties
usually cannot be detected or measured by any kind of sensors, and often one
can say little more than that they are non-trivial, i.e. that some robots have
a given property and some do not. However, already this can be significant to
know, as we will show.

The semantic properties we study are not to be confused with the semantic
properties of system abstractions that have been studied extensively for cyber-
physical systems in the last decades. These studies have usually concentrated on
the semantics of the events and sensory data that originate from the physical
world, and that relate to the understanding of the system (cf. [5]). We will
do not deal with this kind of matters here, but focus entirely on the semantic
properties of robot behaviour.

Results In order to reason about autonomous robots and their programs, we
model the salient features of their interactive operation in formal terms. The
model enables us to define semantic properties of robots as properties of their
behaviour over time. The model is simple, yet powerful enough to obtain strong
and meaningful results.

We will argue that, for any non-trivial semantic property P , and under
mild assumptions, there is no algorithmic method that can always decide from
a robot’s program whether the robot always satisfies P . The result is a com-
pelling analogue to Rice’s theorem on the undecidability of non-trivial semantic
properties of computer programs [9], now proved for robots.

Extending the scenario, one might ask whether there are any verifiers that
can successfully decide P after observing a robot for finite time during a course
chosen by the verifier, where the robot can keep track of the verifier’s findings
in return. We will argue that, under mild conditions, no interactive verifiers of
this kind can exist again, algorithmic or otherwise.

Discussion Our results generalize initial observations in [12]. The analogue
to Rice’s theorem does not follow from its classical counterpart, despite its
appearance. Robot programs differ from the programs usually considered in
computability theory: they are interactive, potentially never terminate, always
respond to situational inputs in finite – or even bounded – time, and usually
are not composable. Nevertheless, an analogue to ‘Rice’ can still be obtained,
in our model.

Semantic properties of robotic behavior are often considered mostly from
the viewpoint of various soft sciences, with a non-technical background (cf. [6]).
Nowadays it is recognized that insights from disciplines like robotics, artificial
intelligence, and computer science are needed as well. Verifying properties of
AI systems is considered to be a formidable challenge [2, 3, 17].

Our results contribute a theoretical note to the ideas in AI on developing
robots with a verifiable ethical or legal behavior (cf. [6–8, 10, 16]). The results
apply to any class of autonomous machines that fit our model. We refer to [12]
for an appraisal of the results for e.g. machine ethics.

Validating Non-trivial Semantic Properties 3

Outline The paper is organized as follows. In Section 2 we describe the key
ingredients of our model of autonomous robots and their behaviour. In Section
3 we define the concept of (semantic) robot properties and what it means for
these properties to be regular and non-trivial, respectively.

In Section 4 we prove an analogue of Rice’s theorem for verifying non-
trivial robot properties, in our model. Subsequently, in Section 5 we prove an
impossibility theorem for verifying robot properties interactively. Finally, in
Section 6, we reflect on the results and give some conclusions for the design of
provable AI systems in general.

2 Robot modelling

In the remainder some acquaintance with Turing machines, computability the-
ory, and the theory of automata on infinite words is assumed [9, 11].

We view robots as cyber-physical systems [14], i.e. constructs of physical
components controlled by general processors and operating in actively manipu-
lated environments. To function, robots are equipped with sensors and effectors
that communicate via ports with the relevant processors using a finite assort-
ment of digital signals. We assume that a central control program supervises
their operation. Their processors can range in power from finite-state machines
to, here, random-access machines or Turing machines.

Notions Let R be any robot,M its controlling program or ‘automaton’. We will
identify them if no confusion can arise. We distinguish the following concepts
concerning robots and their programs.

- Let Σ be the finite set of signals that can be read on the input ports, and
Γ the finite set of signals that can be written to the output ports, together with
the special output signal nil. Assuming k input and ` output ports, any pair
(s, b) consisting of an input situation s ∈ Σk and a corresponding behaviour
b ∈ Γ ` as output is called an interaction of R. Let b ≡ nil denote that R
responds by ‘idling’.

- R acts by iterating a single operational cycle of functional parts [14], work-
ing like a transducer that reads (‘senses’) a next input situation s, and com-
putes and generates (‘acts’) a next output b on its ports in every iteration. R
thus produces unbounded sequences (or, streams) of consecutive interactions
(s0, b0)(s1, b1) . . . over time. Any such sequence is called an interactive run,
generated by R in response to the input sequence s0, s1, Every next si
depends on R’s surrounding and prior interactions in the current stream. We
require that the iterations of the operational cycle all take at most constantly
bounded ‘cost’, uniformly, where cost is defined as the number of instructions
executed during an iteration. This ensures that interactions during a run are
always generated within bounded time, one after another, as the robot’s oper-
ational cycle repeats.

- Let LR denote the set of all interactive runs generated by R, for all un-
bounded sequences of situations that R can encounter. LR is called the robotic
language generated by R. Any interactive run τ ∈ LR is called an eligible run
for R. LR represents the behaviour of the robot. Two robots are called (obser-
vationally) equivalent if and only if they have the same behaviour.

4 J. Wiedermann and J. van Leeuwen

- We assume that there are robots that can only be idle, i.e. behave by always
outputting nil. Thus, all idle robots are observationally equivalent. However, idle
robots can still run own internal processes and use these to detect temporal
conditions [13]. A condition is fulfilled when the internal process linked to it
satisfies it. We require that detectable conditions are defined such that, once
they turn false, they remain false. Detection processes are assumed to be paced
automatically so at most constantly many instructions of them are executed
per iteration of the operational cycle, to obey the bounded cost constraint of
the iterations. For all practical purposes, idle robots can just be given as virtual
machines. Their existence can be assumed without loss of generality.

- We assume that robots, viz. their operational controls, are programmable
in some common language framework, with the natural constraint that only
straight-line (i.e. non-looping) code occurs inside their operational cycle. (It
guarantees that iterations take only constantly bounded cost, as required.) If
execution of a program halts or leads to a jam, which is detected at runtime
when an iteration of the operational cycle does not complete normally within
the bounded cost set for it, then we assume that the program generates nil
by default and continues with the next iteration. Thus, syntactically correct
programs can always be interpreted as valid robot programs (and vice versa).
As we may assume that syntactic correctness is decidable, it follows that the
valid robot programs form a recursive set.

- We make no assumptions on how robots can actually be programmed, nor
about their composability. Indeed, the latter need not even make sense, e.g.
for robots of different designs or brands. However, we posit that idle robots
can be composed in series or parallel with any other robot, as their embodied
robot presence is not needed to simulate them. In this case, the compositions
can easily be realized by combining and composing the respective operational
cycles within the constraints of the programming model.

Compositions The two types of composition we allow are described in the
following definitions. LetM be any robot (program), IDM an idle robot that we
intend to compose withM, C = C(t) a detectable condition, and Θ a detecting
process linked to C. Let IDM[Θ, C] denote the instance of IDM that ‘internally’
runs process Θ to detect condition C. We assume that programs exist for the
following composed robots.

Definition 1 (Composition).
(i) IDM[Θ, C]�M: the robot that starts by simulating an instance of IDM[Θ, C]
(thus, outputting nil’s) until C turns false for it and then, if and when it does,
continues as (freshly started) robot M from then onward.
(ii) M� IDM[Θ, C]: the robot that starts as M and proceeds as M while also
simulating an instance of IDM[Θ, C] ‘in parallel’ (suppressing its outputs in
favour of those of M) unless and until C turns false, in which case M stops
(if it hasn’t stopped already) and the robot turns idle, i.e. continues as (freshly
started copy of) IDM from then onward.

The compositions correspond to modifying an existing robot (M) such that
its ‘activated behaviour’ is either ‘postponed’ until, or ‘pre-empted’ after, a de-
tectable condition is satisfied by an ‘otherwise idle’ subsystem. In both cases,

Validating Non-trivial Semantic Properties 5

the instance of IDM can be integrated seamlessly. M only needs to accommo-
date the detecting process and the idling when called for. Idle moves may not
have been programmed for M initially.

In the sequel we consider any ‘family’ of robots of interest that fit our
model, that operate in the same environment and that allow for the types of
composition we defined. We assume, as we may, that these compositions can be
obtained by effective constructions. We contend that this includes all familiar
classes of autonomous robots.

3 Semantic properties of robots

We are interested in checking semantic properties of robots, i.e. properties of
the robotic languages they generate. Let LP be the set of all interactive runs
(over the common alphabets of the robots) that satisfy P .

Definition 2 (Robot property). Robot R is said to satisfy property P if
LR ⊆ LP . Given a property P , let RP consist of all (programs of) robots R that
satisfy P . If R ∈ RP , we say that R satisfies P, otherwise we say that R does
not satisfy P.

By definition, deciding whether a given robot R satisfies a given property
P is a matter of deciding whether LR is contained in LP . The general language
containment problem is decidable, for example, when the languages involved,
here LR and LP , are definable by finite-state automata on infinite streams [11].
However, robot languages can be much more powerful than this, and we make
no prior assumptions about the property languages LP either. This calls for a
further exploration of the languages and properties we deal with here.

There is little in the definition of robot properties that links them to actual
robots. It makes sense to ‘postulate’ that semantic properties should at least
be ‘regular’ under the compositions with idle robots that we permitted. This
leads to the following definition.

Definition 3 (Regularity). A robot property P is called regular if the follow-
ing two conditions hold, for all streams:

(i) if a stream (s0, b0)(s1, b1) · · · does not satisfy P , then preceding it by any
finite period of idling interactions does not change this, and

(ii) if a stream (r0, nil)(r1, nil) · · · does not satisfy P , then preceding it by any
finite period of ‘arbitrary’ interactive activity does not change this.

A robot property P may be called non-trivial when some robots (i.e., their
robotic languages) satisfy P and some do not. The concept is inspired by Rice’s
theorem in computability theory for the case of classical programs and finite
non-interactive computations [9].

Definition 4 (Non-triviality). A robot property P is called non-trivial if and
only if there are robots M and N such that M satisfies P but N does not.

For instance, always adhering to accepted rules of ethics, is an example of a
non-trivial robot property [12]. For robot-driven cars, the property of always
‘driving in accordance with the traffic rules’ is non-trivial. A robot property is
called trivial if and when it is not non-trivial.

6 J. Wiedermann and J. van Leeuwen

4 Verifying semantic properties of robots

We now consider the following question: given a robot property P , is there an
algorithmic procedure that can always decide whether a given robot R satisfies
P in all its eligible interactive runs? We show that, under mild assumptions,
the answer to this question is always no, whenever P is non-trivial.

4.1 Preliminaries

In later constructions we want to know whether and how the ‘switch-to-false’
of a detectable condition C during a run of a robot like IDM[Θ, C] �M or
M� IDM[Θ, C] can make the difference between the robot satisfying property
P or not. The following observations can be made.

Lemma 1. Let P be a regular property, M a robot (program), IDM any idle
robot that we want to compose with M, C a detectable condition, and Θ a
detection process linked to it.

(i) Suppose that IDM has property P , but that M does not have property
P . Then C turns false during some eligible run of IDM[Θ, C] �M if and only
if IDM[Θ, C] �M does not have property P .

(ii) Suppose that IDM does not have property P , but that M does have
property P . Then C turns false during some eligible run of M � IDM[Θ, C] if
and only if M� IDM[Θ, C] does not have property P .

Proof. To prove (i), suppose that IDM has property P , but that M does not.
First, consider any eligible run τ of IDM[Θ, C]�M. Suppose that C turns false
in finite time during τ . Then τ will be of the form (r0, nil) · · · (rk−1, nil)(s0, b0) · · · ,
for some k ≥ 0 and (s0, b0) · · · any eligible run ofM. BecauseM does not have
property P , there will be a τ in which M chooses to follow an interactive run
that does not satisfy P . However, by the fact that P is regular it then follows
that the resulting run (r0, nil) · · · (rk−1, nil)(s0, b0) · · · of IDM[Θ, C] �M does
not satisfy P either. Hence, IDM[Θ, C] �M does not satisfy P .

To prove the converse, assume that IDM[Θ, C] �M does not have prop-
erty P . Suppose that C does not switch to false during any eligible run of
IDM[Θ, C] �M. It follows that all eligible runs τ of IDM[Θ, C] �M must be
of the form (r0, nil) · · · , where (r0, nil) · · · is any eligible run of IDM. Because
IDM has property P , it follows that all these runs are in LP and, thus, that
IDM[Θ, C] �M has property P also. Contradiction. Hence, C must turn false
during at least one eligible run of IDM[Θ, C] �M.

To prove (ii), assume thatM has property P , but that IDM does not. The
proof proceed as for case (i). First, consider any eligible run τ ofM�IDM[Θ, C].
Suppose that C turns false in finite time during τ . Then τ will be of the form
(s0, b0) · · · (sk−1, bk−1) · S · (r0, nil) · · · for some k ≥ 0, with S a finite sequence
of interactions generated whileM comes to a stop (if any) and (r0, nil) · · · any
eligible run of IDM. Because IDM does not have property P , there will be a
τ in which IDM chooses to follow an interactive run that does not satisfy P .
However, by the fact that P is regular it then follows that the complete run

Validating Non-trivial Semantic Properties 7

(s0, b0) · · · (sk−1, bk−1) · S · (r0, nil) · · · of M � IDM[Θ, C] does not satisfy P
either. Hence, M� IDM[Θ, C] does not satisfy P .

To prove the converse, assume thatM� IDM[Θ, C] does not have property
P . Suppose that C does not switch to false during any eligible run of M �

IDM[Θ, C]. It follows that all eligible runs τ of M � IDM[Θ, C] must be of
the form (s0, b0) · · · , where (s0, b0) · · · is any eligible run of M. Because M
has property P , it follows that all these runs are in LP and, thus, that M �

IDM[Θ, C] has property P also. Contradiction. Thus, C must turn false during
at least one eligible run of M� IDM[Θ, C]. ut

Lemma 1 leads to the following, useful result.

Lemma 2. Let P be a robot property that is regular and non-trivial, C a de-
tectable condition, and Θ a detection process linked to it. Then there is robot
M =M(Θ, C) depending on Θ and C only such that C turns false during some
eligible interactive run of M (as the result of its detection by Θ) if and only if
M does not satisfy P .

Proof. As P is non-trivial, there are robots M and N , such that M satisfies
P but N does not. Let IDM, IDN be two idle robots, both designated to run
process Θ for detecting condition C. Clearly, the two robots are observationally
equivalent. Now distinguish the following two cases.

- Case (a): IDM satisfies P . Then, by equivalence, IDN must satisfy P also.
By Lemma 1(i) it follows that robot M(Θ, C) = IDN [Θ, C] � N satisfies the
required property.

- Case (b): IDM does not satisfy P . It follows from Lemma 1(ii) that now
robot M(Θ, C) =M� IDM[Θ, C] satisfies the theorem. ut

Lemma 2 shows that, at least for some robots, a variation in the occurrence
of an ‘internal’ event (namely, whether a condition C ever turns false during a
run or not) is reflected in an ‘external’ property that can be observed (namely,
whether M satisfies P or not). There need not be any link between C and the
semantic property P that is traced.

4.2 Undecidability result - analogy to Rice’s theorem

We now exploit this observation for detectable conditions that are determined
by ‘closed processes’, i.e. processes that do not depend on the robot that happens
to simulate them nor on any of the situational inputs that this robot receives.
A useful feature of these conditions is that, if they ever turn false during the
execution of their supporting process, then they will turn false during any run
of every idle robot on which their detection is activated, and vice versa.

The observations lead to the following analogue of Rice’s theorem, now for
autonomous robots. Assume that all robots in the ‘family of robots’ we consider
either have universal processors themselves (i.e. are equivalent to Turing ma-
chines) or can off-load closed processes to outside agents (in ‘the cloud’) that
inform them of detected conditions during their computation.

8 J. Wiedermann and J. van Leeuwen

Theorem 1. For all regular robot properties P , P is trivial if and only if RP

is recursive.

Proof. Let P be trivial. Then RP is either ‘empty’ or equal to the set of all
robot programs. Thus, in either case, RP is recursive.

Conversely, let RP be recursive. Suppose that P was non-trivial. We now
unravel the proof of Lemma 2, using the following choice of detectable conditions
C. First, let K = {e ∈ N | the Turing machine with Gödel number e halts on
input e} be the Halting Set [9]. Next, let e ∈ N be arbitrary, and let Ce = Ce(t)
be the temporal condition defined by:

Ce(t) = ”Turing machine e on input e has not halted within time t,
(or, within t steps)”

Let Θe be a computational process that simulates Turing machine e on input
e, programmed so as to execute only constantly (non-zero) many instructions
in every iteration of the operational cycle of a robot as long as e does not halt,
thus maintaining the bounded cost requirement for the iterations.

Clearly, for every e, Ce is detectable using process Θe, where indeed, if Ce(t)
turns false, it remains false forever after. Note that Θe is a closed process that
can be implemented on every robot in our family of robots or, alternatively,
be off-loaded to an external agent with universal computing power that reports
back when Ce(t) ‘switches’ during the simulation.

As property P is regular and non-trivial, it follows from Lemma 2 that for
every e, there is a robot (program) M(e) =M(Θe, Ce) such that Ce turns false
during some eligible interactive run of M(e) (as the result of its detection by
Θe) if and only if M(e) does not satisfy P . However, as Θe is a closed process,
this means that:

Ce turns false within finite time if and only if M(e) does not satisfy P .

Note that, by the assumed effectiveness of the allowed compositions, it follows
from the proof of Lemma 2 that program M(e) can be effectively determined,
for every e.

It follows, then, that e ∈ K if and only if M(e) does not have property P
or, alternatively, that e ∈ K if and only ifM(e) ∈ RP . As RP is assumed to be
recursive, this would mean that K is recursive as well. This is a contradiction,
as K̄ is not recursive [9]. Hence P cannot be non-trivial. ut

Theorem 1 is perhaps better recognized as an analogue of Rice’s theorem if
it is stated in the following form.

Corollary 1. For all regular robot properties P , P is non-trivial if and only if
RP is non-recursive.

Interestingly, if P is non-trivial, then the proof of Theorem 1 can be extended
to show that RP is not even recursively enumerable.

Theorem 1 is not only an analogue of Rice’s theorem, but it can also be
applied with the same ease. For example, as being ethical or legal are easily
seen to be regular and non-trivial properties, it follows immediately that these
properties are not generally decidable for autonomous robots in our model.

Validating Non-trivial Semantic Properties 9

5 Interactive verification

We now consider the, potentially, more powerful approach to the verification
problem in which robots are tested interactively. In this case, a robot’s program
is no longer the only source of information like it was before, but its behaviour
is observed as well, for some time. Any automated tool for this task will be
called a P -verifier, if it is used for verifying property P . By the results from
Section 4, we may not expect P -verifiers to be fully algorithmic. However, can
they exist at all, by some means? We show that even this answer is no.

To prove this, we assume by way of contradiction that P -verifiers exist.
We will argue that, under mild conditions, the presumed interaction between a
robot R and a P -verifier enable the robot to ‘fool’ the verifier and invalidate its
verdict. To this end, we first consider how a P -verifier is assumed to proceed,
and then show that its decision need not always be correct, no matter what
(deterministic) capability it has.

P -verifiers To begin with, a P -verifier has access to the complete program of
a robot, M, once it is connected to it. It is anticipated that the verifier will be
able to conclude that P holds for all eligible runs of M, if it can do a (finite)
experiment with one (or, some) of them. We assume that the verifier can select
any initial segment of any eligible run of M for its testing.

Once connected to M, the verifier operates in rounds. In every round it
interacts with M to let the robot make a next ‘move’ that is eligible, i.e. ‘pos-
sible’ in its environment, by presenting it with a next situational input of its
choice. In return, M has access to the verifier’s progress. Finally, we assume
that, as it inspects the interactive run that unfolds round after round, the veri-
fier eventually stops within finite time, and gives a definite yes/no-verdict after
it stops.

For consistency we require that, if a P -verifier answers ’no’, then it must
answer ‘no’ regardless of the initial segment it choose for its testing process. It
means that, when there is evidence that P is not satisfied, then a P -verifier is
assumed to be able to pick this up during any testing session of its choice. It
follows that the same holds in case the verifier answers ‘yes’.

We now argue that, under mild conditions, no P -verifier of this kind can
exist, whenever P is (regular and) non-trivial.

5.1 Preliminaries

A bit of reflection indicates why interactive verification may not always work.
Suppose there is a robot whose programM is designed to let it satisfy P , unless
some detectable condition C ‘switches’ that causesM to respond in a way that
does not satisfy P . If a P -verifier V must decide after some time whether M
satisfies P , and C hasn’t occurred yet, the validity of V ′s verdict – whatever it
is – can depend on whether C will still happen later or not. It seems that V
cannot always know this.

However, can we always exclude that V doesn’t have some hidden knowledge
of the detectable condition that is used?

10 J. Wiedermann and J. van Leeuwen

In the testing process, a P -verifier can ‘push’ robot R on a selected course,
to trace it during an initial segment of an eligible interactive run of its choice.
After the verifier stops, it must give its verdict. The following lemma shows what
information a verifier might infer from this, in some cases. We first distinguish
the following useful concept.

Definition 5. A condition is called primed if it is of the form: Z(C) ≡ {‘no
verifier is (was) connected or a verifier is connected but has not stopped’ ∨ ‘C’ },
where C is any detectable condition.

In interactive testing, primed conditions are interactively detectable ‘by default’.
Note that primed conditions are well-determined, and once they turn from true
to false, they remain false forever. In fact, assuming a verifier is ever connected,
Z(C) turns false if and only C does. The detection process of Z(C) combines
the detection of the verifier’s progress and the detection process for C.

It is natural to assume that all machines are prepared for being subjected to
interactive verification and, thus, for P -verifiers to be ‘imposed’ on their normal
operation. We assume, for the sake of argument, that at most one verifier is ever
connected to a machine during a run.

Lemma 3. Let P be a robot property that is regular and non-trivial, and Z =
Z(C) a primed condition with C detectable. Let Θ be a supporting detection
process for Z. Then there is a robot M =M(Θ,Z) such that, if a P -verifier V
is connected to M, then:

- if the finite initial interactive segment that V chooses for its testing process
can be extended to an eligible interactive run τ such that C turns false during
τ , then M does not satisfy P .

- if M does not satisfy P , then there is initial segment that can be chosen
by V for its testing process, and an eligible continuation of it (i.e. after V has
stopped) such that C turns false sometime during the resulting run.

Proof. By Lemma 2 there is a robot M =M(Θ,Z) such that Z turns false in
finite time during some eligible interactive run ofM if and only ifM does not
satisfy P . Consider robot M, and connect a P -verifier to it.

Suppose that the finite interactive segment that V chooses to trace can be
extended to an eligible run τ such that condition C switches sometime during
τ (before or after the verifier stops). As V is guaranteed to stop in finite time,
it follows from its definition that Z turns false during τ as well. By Lemma 2,
it follows that M does not satisfy P .

Conversely, suppose thatM does not satisfy Z. By Lemma 2 there must be
an eligible interactive run τ during which Z turns false. It is certainly feasible
that V sets course on τ for its testing process, as no eligible segments are
excluded from testing. Suppose that the first clause of Z, the one which traces
the end of the activity of V, turns false at the time that the t-th interaction
in the run is generated. Then the segment that the verifier is choosing for its
testing process is τ [t], the initial segment of τ of length t. Now note that, because
Z switches in finite time during τ , so must C. ut

Validating Non-trivial Semantic Properties 11

5.2 Impossibility result

In interactive testing, a robot may reveal its true nature only after a verifier
has stopped and announced its verdict. However, couldn’t a verifier tell from a
robot’s program that it intends to fool it?

We now show the following impossibility result for interactive verification,
for all robot properties that are regular and non-trivial.

Theorem 2. Let P be a robot property that is regular and non-trivial. Then
there is no P -verifier of whatever kind that always correctly decides for any
given robot R whether it satisfies P or not.

Proof. Suppose there exists a P -verifier V. Let Z = Z(C) be the primed condi-
tion with C ≡ ‘a verifier is (or was) connected and stopped, and decided no’. Let
Θ be the supporting detection process of Z. Consider the robotM =M(Θ,Z)
as implied by Lemma 3, and connect verifier V to it. Clearly V will carve out
an initial segment of some eligible run τ during which it does its testing. After
finite time, at the end of the segment, V stops. Now two cases can arise.

- V answers ‘yes’. This means that C, and thus Z, will turn false after
the verifier stops. By Lemma 3 it then follows that M does not satisfy P , a
contradiction with the verifier’s finding.

- V answers ‘no’. Then, by assumption, the verifier will answer ‘no’ after all
its testing sessions. However, if indeed M would not satisfy P , then Lemma 3
implies that there must be an initial segment that can be chosen by V for its
testing process and a continuation such that C, and thus Z, turns false during
that run. But this can only happen if, after the testing ended, V did not answer
‘no’. This is, again, a contradiction.

As all cases lead to a contradiction, we conclude that our initial assumption
that a P -verifiers V existed cannot hold. ut

Note that Theorem 2 did not require that robots are necessarily universal.
The implicit consistency requirement for P -verifiers is, of course, quite strong
but it is the only one to make if P -verifiers are to be reliable. In general, the
theorem shows the fallibility of interactive testing.

6 Conclusion

Our model of autonomous robots enabled us to study the validation problem for
semantic properties of robots. We proved both an undecidability and an impos-
sibility result for it. Theorems 1 and 2 point to the intrinsic non-transparency
of robot programs: inspecting and testing them does not offer any advantage
for deciding their non-trivial semantic properties, as we showed these to be
non-recursive and even impossible to verify interactively.

The results exclude the feasibility of general, off-line or interactive, verifica-
tion of ethical or legal behaviours of robots, in our model. For example, it rules
out the existence of so-called ethical governors, which should keep autonomous
robots from acting unethically, in an on-line manner (cf. [1, 12, 16]).

12 J. Wiedermann and J. van Leeuwen

The results also formally identify the ”hard problem” of designing AI sys-
tems, namely, to endow such systems with a set of verifiable non-trivial semantic
properties that guarantee a desirable behavior under all circumstances which
these systems can face. It underscores the need for ‘correctness-by-construction’
methods in the design of all modern AI systems [17].

References

1. R.C. Arkin, P.D. Ulam, B. Duncan, An ethical governor for constraining lethal action
in an autonomous system, CSE Technical report GIT-GVU-09-02, Mobile Robot Lab,
Georgia Institute of Technology, Atlanta, 2009

2. P. Bremner, L.A. Dennis, M. Fisher, A.F. Winfield, On proactive, transparent and veri-
fiable ethical reasoning for robots, Proc. IEEE 107:3 (2019) 541-561

3. V. Charisi,L. Dennis, M. Fisher, R. Lieck, A. Matthias, M. Slavkovic, J. Sombetzki, A.F.T.
Winfield, R. Yampolski, Towards Moral Autonomous Systems, arXiv:1703.04741[cs.AI],
2017

4. V. Dignum et al., Ethics by Design: Necessity or Curse?, in: Proc. 2018 AAAI/ACM
Conference on AI, Ethics, and Society (AIES’18), 2018, pp. 60-66

5. T. Dillon, E. Chang, J. Singh, O. Hussain, Semantics of cyber-physical systems, in: Z.
Shi, D. Leake, S. Vadera (Eds), Intelligent Information Processing VI, 7th IFIP TC 12
International Conference, IIP 2012, IFIP Advances in Information and Communication
Technology, vol 385, Springer, 2012, pp. 3-12

6. P. Kopacek, Robo-ethics: a survey of developments in the field and their implications for
social effects, in: TECIS 2019, Special issue, IFAC-PapersOnLine 52:25 (2019) 131-135,
Elsevier. https://doi.org/10.1016/j.ifacol.2019.12.460

7. P. Lin, K. Abney, G. Bekey, Robot ethics: Mapping the issues for a mechanized world,
Artificial Intelligence 175: 5-6 (2011) 942-949

8. M. Luckcuck, M. Farrell, L.A. Dennis, C. Dixon, M. Fisher, Formal specification and
verification of autonomous robotic systems: a survey, ACM Computing Surveys 52:5 (2019)
1-41

9. H. Rogers Jr., Theory of recursive functions and effective computability, McGraw-Hill,
New York, 1967

10. A. Sharkey, Can we program or train robots to be good?, Ethics Inf. Technol. 22, 283-175
(2020). https://doi.org/10.1007/s10676-017-9425-5

11. W. Thomas, Automata on infinite objects, in: J. van Leeuwen (Ed), Handbook of Theo-
retical Computer Science, vol. B: Formal Models and Semantics, Elsevier Science Publ.,
Amsterdam, 1990, pp. 133-192

12. J. van Leeuwen, J. Wiedermann, Impossibility results for the online verification of ethical
and legal behaviour of robots, Technical report UU-PCS-2021-02, Center for Philosophy
of Computer Science, Dept. of Information and Computing Science, Utrecht University,
Utrecht, 2021

13. M. Vardi, An automata-theoretic approach to linear temporal logic, in: F. Moller, G.
Birtwistle (Eds), Logics for Concurrency - Structure versus Automata (8th Banff Higher
Order Workshop, 1994), Lecture Notes in Computer Science, Vol. 1043, Springer, 1996,
pp. 238-266.

14. J. Wiedermann, J. van Leeuwen, Towards minimally conscious finite-state controlled
cyber-physical systems: a manifesto. In: T. Bureš et al. (Eds.), SOFSEM 2021: The-
ory and Practice of Computer Science, Proc. 47th Int. Conference on Current Trends in
Theory and Practice of Computer Science, Lecture Notes in Computer Science, Vol 12607,
Springer, 2021, pp. 43-55

15. N. Wiener, Some moral and technical consequences of automation, Science 131 (1960)
1355-1358

16. A.F. Winfield, K. Michael, J. Pitt, V. Evers, Machine ethics: The design and governance
of ethical AI and autonomous systems, Proc. IEEE 107:3 (2019) 509-517

17. J.M. Wing, Trustworthy AI, Comm. ACM 64:10 (2021) 64-71

