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2 PEDRO FREJLICH

1. Lecture One. Propaganda. Poincaré conjecture in dimensions > 5.

1.1. Singularities of smooth maps. Let M,M ′ be smooth manifolds1, and f :
M −→M ′ a smooth map. We define

Crit(f) := {x ∈M : rankdxf < min(dimM,dimM ′)}

the set of critical points of f , and fCrit(f) ⊂ M ′ the set of critical values of
f . M�Crit(f) and R�fCrit(f) are then said to consist of regular points and
regular values, respectively.

Note that Crit(f) ⊂M is closed.

1.1.1. Abundance of regular values : Sard’s theorem. Recall that a subspace X ⊂
Rm is said to have measure zero if, for all ε > 0 there is a sequence of balls
(Bn)n>0, with ∑

n

vol(Bn) < ε,
⋃
n

Bn ⊃ X. vol(Bn) :=

∫
Bn

dx

One immediately checks that :

• (Xn)n>0 have measure zero =⇒
⋃
nXn has measure zero;

• g : Rm → Rm smooth, X ⊂ Rm of measure zero =⇒ g(X) ⊂ Rm has
measure zero.

Hence the following notion is well-defined : a subspace X ⊂ M is said to have
measure zero if there exists a smooth atlas A = {(Ui, ϕi)} of M , with each

ϕi(X ∩ Ui) ⊂ Rm

of measure zero.
Recall now :

Theorem 1 (Sard). If f : M −→M ′ is smooth, fCrit(f) ⊂M ′ has measure zero.

Proof. See [9] or [29]. �

Hence ’almost all’ values are regular.
When dimM � dimM ′, there is a ’lot of space’ to deform f inside M ′, and

we can always remove the singularities of f – i.e., perturb it slightly to a f ′ with
Crit(f ′) = ∅.

Theorem 2 (Whitney). Every f : M →M ′ is C∞-close to a injective immersion
if dimM ′ > 2 dimM , and every Mm embeds in R2m.

In the other extreme, if M is compact, without boundary, Crit(f) 6= ∅.
So we cannot get rid of singularities of functions.

1.1.2. Singularities of Functions. We consider the assignement M 7→ C∞(M).

Meta-principle 1 : Min-Max: ”The more complicated the topology of M ,
the greater the number of critical points of functions on it.”

Example 1. If f : Tn → R, then |Crit(f)| > n+ 1.

For more, see Min-Max theory ~.

Meta-principle 2 : Morse-Smale: ”The dynamics of a nice enough f ∈
C∞(M) reconstructs M smoothly.”

Example 2. Suppose Mm is compact without boundary, and f : M → R has
exactly two critical points. Then Mm is homeomorphic to Sm.

1Throughout these notes, by a manifold, we mean a Hausdorff, second-countable topological
space, equipped with a maximal smooth atlas.
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[DRAWING ~]

àààààààààààààààààààààààààààààààà

Aside : Poincaré Conjecture & Homotopy Spheres

Remark 1. It is not claimed that Mm is diffeomorphic to Sm, with its standard
smooth structure. In fact, in [14], Milnor constructs smooth S3-bundles p : M → S4,
for which there cannot exist B8 with

∂B = M, H4(B;Z) = 0,

and carries a smooth f ∈ C∞(M) with exactly two non-degenerate critical points.
This implies that M7 is homeomorphic to S7, but not diffeomorphic to it; such
manifolds are called exotic spheres.

Definition 1. A homotopy sphere is a smooth, oriented manifold Mm, homotopy-
equivalent to Sm.

Note that if Mm is a homotopy sphere, then π1(M) = {1}, and H•(M ;Z) '
H•(Sm;Z). Conversely, if Mm is simply connected and H•(M ;Z) ' H•(Sm;Z),
then Mm is a homotopy sphere; indeed, in that case π•(M) ' π•(Sm) by Hurewicz’
theorem. Now, a generator [α] ∈ πm(Sm), α : Sm → M , gives rise to a homotopy

equivalence Sm ∼−→M .
Homotopy spheres are the object of the famous

Theorem 3 (Poincaré Conjecture). A homotopy sphere Mm is homeomorphic to
Sm.

Observe that the smooth version of the theorem, claiming that homotopy spheres
are diffeomorphic to Sm, is decidedly false in light of the existence of exotic spheres.

àààààààààààààààààààààààààààààààà

Example 3. Milnor’s stand-up torus... ~. How does one make a drawing ?

• Present (T2, f) and its 4 critical points;
• ’Non-degenerate’ allows normal forms around the points; describe them;
• Show how the topology of f−1(−∞, t] changes as t varies. (’reconstruction’).

Note that :

(1) If [a, b] contains no critical values of f , then the diffeomorphism type of
f−1(−∞, t] is independent of t ∈ [a, b];

(2) When t crosses a critical value t = c, we have

f−1(−∞, c+ ε] = f−1(−∞, c− ε] ∪Hλ,

where Hλ denotes a ”handle” Hλ ∼ Dλ × Dm−λ.

In view of Sard’s theorem, (1) suggests that we subdivide our task of understanding
the topology of M .

Definition 2. A cobordism C = (W ;M0, f0,M1, f1) from Mm
0 to Mm

1 is a
smooth manifold Wm+1, together with a decomposition of its boundary as ∂W =
∂0W

∐
∂1W , together with diffeomorphisms fi : ∂iW

∼−→Mi.

If Mi are oriented (as will usually be the case), we assume further that W is
oriented, and that f0 be orientation-preserving, while f1 is orientation-reversing ;
we refer to C as an oriented cobordism between M0 and M1. We will also refer
to ∂0W as the incoming boundary of W , and to ∂1W as the outgoing boundary
of W .
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We regard a cobordism C as a ’morphism’ M0  M1 of sorts. The maps will be
suppressed from the notation when no confusion can arise.

Definition 3. Two cobordisms C = (W,M0, f0,M1, f1) and C = (W ′,M ′0, f
′
0,M

′
1, f
′
1)

are said to be equivalent over M0 if there exists an oriented diffeomorphism

F : W ∼−→W ′, f ′0 ◦ F = f0.

A cobordism C = (W,M0, f0,M1, f1) is called :

• trivial if it is equivalent over M0 to (M0 × [0, 1];M0,M1);
• an h-cobordism if ∂iW ↪→W are homotopy equivalences.2

One of the goals of this course is to prove the following fundamental

Theorem 4 (Smale’s h-cobordism theorem). If π1M0 = {1} and dimM > 5, any
h-cobordism over M0 is trivial.

Corollary 1 (Characterization of disks). If Mm is a contractible, smooth, compact
manifold, and π1(∂M) = {1}, then M ' Dm if m > 6.

Proof. Choose an embedding j : Dm ↪→Mm, and let

M̂ := M�j(
◦
D m).

Then j : ∂Dm ↪→ M̂ induces a long exact sequence

· · · → Hk+1(M̂, j(∂Dm);Z)→ Hk(j(∂Dm);Z)→ Hk(M̂ ;Z)→ Hk(M̂, j(∂Dm);Z)→ · · ·

But note that M ∼ M̂/j(∂Dm), so

H•(M̂, j(∂Dm);Z) = H•(M̂/j(∂Dm;Z) = H•(M ;Z).

By hypothesis, H•(M ;Z) = 0, so we conclude that H•(j∂) : H•(j(∂Dm);Z) →
H•(M̂ ;Z) is an isomorphism. Hence by Whitehead’s theorem, and the fact that

π1(M̂) = {1}, we see that j∂ : ∂Dm ↪→ M̂ is a homotopy equivalence. Thus

(M̂ ; ∂Dm, ∂M) is an h-cobordism.
By Smale’s theorem, there is an equivalence

F : M̂ ∼−→ ∂Dm × [0, 1]; ∂Dm × {0}, ∂Dm × {1}).
But M is clearly recovered as

∂Dm
j∂ //� _

��

M̂

��
Dm // M

so M ' (Sm−1 × [0, 1]) ∪Sm−1 Dm ' Dm. �

Corollary 2 (Poincaré conjecture in high dimensions). Mm homotopy sphere,
m > 6 =⇒M is homeomorphic to Sm.

Proof. As before, start with an embedding j : Dm ↪→Mm, and let M̂ := M�j(
◦
D m),

so that Hk(M̂, j(Dm);Z) = Hk(M ;Z) still holds. The long exact sequence of the

pair (M̂, j(∂Dm)) implies that

Hk(j(Dm);Z) = Hk(M̂ ;Z), k 6 n− 2,

since Hk(M ;Z) = Hk(Sm;Z) = 0 for k 6= 0,m. For the case k = m− 1 we have

0→ Hm(M);Z)→ Hm−1(j(Dm);Z)→ Hm−1(M̂ ;Z)→ 0;

2Note that this is the homotopy-theoretic version of (1) above.
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but note that maps the fundamental class of M to that of j(∂Dm):

Hm(M);Z) 3 [M ] 7→ [j(Dm)] ∈ Hm−1(j(Dm);Z),

and thus Hm−1(M̂ ;Z) = 0.

Hence π1(∂M̂) = {1}, H•(M̂ ;Z) = 0, so by Corollary 1, there is a diffeomor-

phism i : Dm ∼−→ M̂ .
Consider the diffeomorphism f := j ◦ i−1 : i(∂Dm) ∼−→ j(∂Dm). In general, it is

not possible to extend f to a diffeomorphism

f̃ : i(Dm) ∼−→ j(Dm);

however, we can extend f to a homeomorphism f̃ : i(Dm)
∼−→ j(Dm) by the so-

called ’Alexander trick’ :

f̃ : i(x) 7→ |x|f
(
x

|x|

)
.

We can now define a homeomorphism F : Sm →Mm by

Dm−
� � //

f̂◦i !!

Sm

F ∼
��

Dm+?
_oo

j}}
M

�

1.2. Exercises.

(1) Recall the definition of the weak and strong topologies in the function spaces
Ck(M,M ′), and that CrW (M,M ′) has a complete metric.

(2) Show that Prop(M,M ′) ⊂ C0
S(M,M ′) is a connected component.

(3) Let U ⊂ M be open. The restriction map Cr(M,M ′) → Cr(U,M ′), 0 6
r 6 ∞, is continuous for the weak topology, but not always the strong.
However, it is an open map for the strong topologies, and not always for
the weak topology.

(4) A submanifold X ⊂ W of a manifold with boundary is called neat if
∂X = X ∩ ∂W , and X is not tangent to ∂W at any point x ∈ ∂X. Show
that if y ∈M is a regular value for f : W →M and f |∂W : ∂W →M , then
f−1(y) ⊂W is a neat submanifold.

(5) If f : M −→M ′ is smooth, and X ⊂M ′ is a submanifold, we say that f is
transverse to X, written f >∩X, if

im dxf + Tf(x)X = Tf(x)M
′, x ∈ f−1(X).

Suppose now that W is a manifold with boundary, and f : W → M ′ is
smooth. If f, f |∂W >∩ X, then f−1X ⊂ W is a neat submanifold, and
codim(f−1X ⊂W ) = codim(X ⊂M ′).

(6) Every closed subpace X ⊂ M can be described as X = f−1(0), where
f : M → R is a smooth function.

(7) Can you find a smooth f : T2 → R with exactly three critical points ?
(8) Show that if W if a compact manifold with boundary, there can be no

continuous map r : W → ∂W extending id∂W .
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2. Lecture Two. Normal Forms of smooth maps. Morse functions.

A general goal of this course is to understand how to extract information about
the topology of M by means ’good’ functions f : M → R.

We will be mostly concerned with compact manifolds without boundary, but
many natural constructions lead us away from this more manageable case. When
M is non-compact, we will typically demand that f : M → R be proper.

ãããããããããããããããããããããããããããããããã
Aside : proper maps
Recall that a map f : M →M ′ is said to be proper if f−1 takes compact sets to

compact sets. The subspace Propk(M,M ′) ⊂ Ck(M,M ′) of proper maps is open
in the strong Ck-topology, for every k > 0.

Exercise : if f is proper, then fCrit(f) ⊂M ′ is closed.
One very strong reason to deal exclusively with proper maps is that non-proper

maps may not reflect any of the topology of M . As an illustration, let us convene
that an open manifold is a manifold, none of whose connected components is
compact without boundary. Then we have

Theorem 5 (Gromov). On every open manifold M , there is f ∈ C∞(M) with
Crit(f) = ∅.

The catch is that such f cannot be proper.
ãããããããããããããããããããããããããããããããã

Let us go back to our f : M → R (proper if M is non-compact). We inaugurate
the notation

Mt := f−1(−∞, t] ⊂M.

Exercise : this is a smooth manifold with boundary ∂Mt = f−1(t) when t is a
regular value for f .

Assume now that [a, b] ⊂ R consists only of regular values for f . Our first goal
in this lecture is to prove the

Theorem 6 (Structure Theorem I). Mb is diffeomorphic to Ma, and the inclusion
Ma ↪→Mb is a strong deformation retraction.

Before we give the proof, a short reminder comes in handy.

éééééééééééééééééééééééééééééééééééééééé
Aside : Vector fields and their flows

Recall that, by the Fundamental Theorem of ODEs, a vector field w ∈ X(M)
defines a local flow. That is, there is

φ : M × R ⊃ dom(φ) −→M,

where dom(φ) is an open containing M × {0}, with the property that, for each
x ∈M , c(t) := φt(x) is the maximal trajectory of w with initial condition c(0) = x.
Being a trajectory of w means that dc

dt = w ◦ c; by ’maximal trajectory’ we mean
that

c : dom(φ) ∩ {x} × R =: (ax, bx)→M

cannot be extended any further.
Note that φs(φx(x)) = φt+s(x) whenever either side of the equation is defined.
When dom(φ) = M×R, we say that φ is the flow of w; in this case, φ determines

a group homomorphism φ : (R,+) → (Diff(M), ◦), and we will say that w is
complete. Exercise : w is complete if it is compactly supported.

However,
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Example 4. Neither ∂/∂t ∈ X(R�0) nor (1 + t2)∂/∂t ∈ X(R) are complete3.

There is a classical condition to be imposed on w to ensure that it give rise to a
flow.

Definition 4. A Riemannian metric g on a manifold M is called complete if the
geodesics of its Levi-Civita connection are defined at all times.

Complete Riemannian metrics exist on all manifolds of finite dimension.

Definition 5. A vector field w ∈ X(M) is said to have bounded velocity if there
exists a complete Riemannian metric g on M , for which ‖w‖ is bounded by some
real number K :

sup
x∈M
‖wx‖ 6 K < +∞.

Lemma 1. Let (M, g) be complete.

(1) (a, b) ⊂ R a bounded interval, and c : (a, b)→M a curve of finite length :∫ b

a

‖c′(t)‖dt <∞.

Then im c ⊂M is precompact.
(2) Suppose c(t) is a maximal trajectory of w ∈ X(M), c : J → M , where

J ⊂ R is an interval containing 0. Then :

• [0,+∞) * J =⇒
∫ b
0
‖c′(t)‖dt =∞;

• (−∞, 0] * J =⇒
∫ 0

a
‖c′(t)‖dt =∞;

Proof. (1) : It suffices4 to show that, for every ε > 0, there exist x0, ..., xN ∈ Cl im c
such that the ε-balls around xi cover it : ∪N1 Bε(xi) ⊃ Cl im c. But∫ b

a

‖c′(t)‖dt <∞ =⇒ ∃a = t0 < t1 < · · · < tN = b,

∫ ti+1

ti

‖c′(t)‖dt < ε,

so

Cl(im c) ⊂
N⋃
0

Bε(c(ti)).

(2) : If c is maximal, and [0,∞) * J , then c(t) has no limit point as t → b,
b := sup{t : t ∈ J} < ∞. It then follows from the first part of the lemma that∫ b
0
‖c′(t)‖dt =∞. The other case is completely analogous. �

Definition 6. An isotopy ψ of a smooth manifold M is a smooth map

ψ : M × J →M,

where J ⊂ R is an interval containing 0, each ψt := ψ(·, t) : M → M is a diffeo-
morphism, and ψ0 = idM .

3For the second example, note that a solution curve c(t) to (1 + t2)∂/∂t with initial condition

c(0) = 0 is c(t) = tan t, which cannot be extended beyond (−π/2,+π/2).
4A metric space (X, d) is called totally bounded if, for every ε > 0, X can be covered by

finitely many ε-balls. A complete metric space is compact iff it is totally bounded. Indeed, it is
clear that any compact space is totally bounded. On the other hand, if a space is totally bounded,
to show that it is compact it is enough to show that every sequence (xn)n>0 has a Cauchy

subsequence (xnk )k>0. Cover X with finitely many balls B1, ..., BN of radius 1; then one of the
balls, say B1, must contain infinitely many terms of (xn). This defines a subsequence s1 ⊂ (xn),

and the distance between any two points in s1 is no greater than 1. Now cover B1 by finitely
many balls of radius 1/2; again, we can select a subsequence s2 ⊂ s1 of points lying in one single
1/2-ball. Inductively, we define then a sequence of subsequences (xn) ⊃ · · · ⊃ sk ⊃ sk+1 ⊃ · · · ,
with each sk lying in a ball of radius 1/k; hence a sequence xnk ∈ sk�sk1

must be Cauchy.
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The flow of a complete vector field is an example of an isotopy.
An isotopy ψ gives rise to a time-dependent vector field, i.e., a one-parameter

family t 7→ wt of vector fields on M , defined by

dψt
dt

= wt ◦ ψt, t ∈ J.

Remark 2. A time-dependent vector field wt can of course be regarded as an au-
tonomous vector field w̃ on M ×J , to which the above discussion applies to produce
a local flow

φ̃ : (M × J)× R ⊃ dom(φ̃)→M × J.
Note however that φ̃ gives rise to an isotopy of M × J , not of M alone. This can
be remedied as follows : consider the autonomous

ŵ := wt + ∂/∂t ∈ X(M × J)

Let us assume for simplicity that ŵ is complete, and let us denote its flow by φ̂ :

(M × J)× R→M × J . Then φ̂ satisfies

φ̂s(x, t) ∈M × {t+ s},

so φ̂r+s(x, t) = φ̂r ◦ φ̂s(x, t) wherever this makes sense; in particular, s 7→ prM ◦φ̂s
gives rise to an isotopy of M .

We conclude that :

Lemma 2. Time-dependent vector fields of bounded velocity give rise to isotopies.

Proof. �

We conclude this aside by recalling a very useful formula from Calculus. Suppose
ψ is an isotopy of M with corresponding time-dependent vector field wt ∈ X(M).
Suppose t 7→ ηt is a time-dependent section of some tensor bundle E := (

∧p
TM)⊗

(
∧q

T ∗M).

Lemma 3. d
dt (ψ

∗
t ηt) = ψ∗t

(
L(wt)ηt + dηt

dt

)
.

Exercise : Prove the Lemma.
éééééééééééééééééééééééééééééééééééééééé

Proof of Structure Theorem I. Suppose

fCrit(f) ∩ [a, b] = ∅.

Then fCrit(f) ∩ [a− ε, b+ ε] = ∅ for small enough ε > 0. Choose

% : [a− ε, b+ ε]→ [0, 1]

such that

%(t) =

{
1 if t ∈ [a− ε/3, b+ ε/3];

0 if t /∈ [a− 2ε/3, b+ 2ε/3].

Let

w :=
−(% ◦ f)

‖∇f‖2
∇f ∈ X(M),

where ‖ · ‖ refers to some auxiliary (complete) Riemannian metric g on M and ∇f
denotes the vector field defined by g(∇f, v) = df(v).

Observe that

(L(w)f)(x) =

{
−1 if f(x) ∈ [a− ε/3, b+ ε/3];

0 if f(x) /∈ [a− 2ε/3, b+ 2ε/3].
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f being proper, w is compactly supported, and so gives rise to a flow

φ : Mb × R −→Mb, φt(Mb) ⊂Mb−t.

In particular, we have a diffeomorphism

φb−a : Mb
∼−→Ma,

and

φ|Mb×[0,b−a] : Mb × [0, b− a] −→Mb

is a strong deformation retraction of Mb onto Ma. �

This idea that ’in the absence of critical points we can push down Mt’ can be
turned around to detect critical points of a f ∈ C∞(M).

ææææææææææææææææææææææææææææææææææææææææææææææææ

Aside : Palais-Smale Condition C
Fix a complete Riemannian manifold (M, g), and let f : M → R be given.

Definition 7. We say that f satisfies Condition C if, whenever a sequence
(xn)n>0 in M is such that

• (|f(xn)|)n>0 ⊂ R is bounded, and
• ‖∇f(xn)‖ → 0 as n→∞,

then there is a subsequence (xnk)k≥0) converging in M .

Observe that any proper f satisfies Condition C automatically.

ææææææææææææææææææææææææææææææææææææææææææææææææ

Lemma 4. Suppose f is bounded below, and f sastisfies Condition C. Then the
flow φt of −∇f is defined for all positive times, and for every x ∈ M , lim

t→+∞
φt(x)

exists and is a critical point of f .

Proof. Let B := inf
x∈M

f(x) > −∞, and consider the maximal trajectory

c(t) := φt(x), c : J →M ;

we wish to show that [0,+∞) ⊂ J .
First define F : (a, b)→ R by F (t) := f(c(t)). Then

B 6 F (t) = F (0) +

∫ t

0

F ′(s)ds = F (0)−
∫ t

0

‖∇f(c(s))‖2ds

=⇒
∫ t

0

‖∇f(c(s))‖2ds 6 F (0)−B.

Since the RHS is independent of t, we conclude that∫ b

0

‖∇f(c(s))‖2ds 6 F (0)−B.

Let us argue by contradiction, and assume that b were finite. By Schwarz’s inequal-
ity, ∫ b

0

‖∇f(c(s))‖ds 6

√∫ b

0

ds

√∫ b

0

‖∇f(c(s))‖2ds 6
√
b(F (0)−B).

This implies that
∫ b
0
‖∇f(c(s))‖ds < +∞. But by Lemma 1, b < +∞ implies that∫ b

0
‖∇f(c(s))‖ds is infinite; the contradiction shows that b = +∞.
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But then∫ ∞
0

‖∇f(c(s))‖2ds 6 F (0)−B =⇒ ‖∇fc(t)‖2 → 0, as t→∞,

so ‖∇fc(t)‖ → 0. By Condition C, we can find (tn)n>0 with c(tn) → x ∈ M ; by
continuity of df , we have

x ∈ Crit(f).

�

We will return to this sort of argument in more detail when we deal with Min-
Max theory.

2.1. Normal Forms. Having dealt with the regular case, we wish to understand
the behavior of f around its singular points x ∈ Crit(f). Ideally, we should be able
to provide a model for f around each critical point, depending only on the value of
a (a priori known) finite number of derivatives of f at x.

For too badly behaved f , this is way too ambitious.

Example 5. The maps f0, f1 : R→ R, f0(t) = 0, and

f1(t) =

{
e−1/t if t > 0,

0 if t 6 0.

both have 0 as a critical point, and their derivatives at 0 vanish to infinite order,
and they behave quite differently at zero.

To weed out such behavior, and still hope to model the singularities of f , we
should impose some non-degeneracy condition on the critical points x ∈ Crit(f).

ááááááááááááááááááááááááááááááááááááááááááááá

Aside : Germs

Recall that if M,M ′ are smooth manifolds, and X ⊂ M is any subspace, we
denote by

C∞(M,M ′)X = {[U, f ] : X ⊂ U ⊂M open, f ∈ C∞(U,M ′)} ,

where [U, f ] denotes the germ of f along X :

[U, f ] = [U ′, f ′] ⇐⇒ ∃U ′′ ⊂ U ∩ U ′, f |U ′′ = f ′|U ′′ .

Two germs [U, f ], [U ′, f ′] ∈ C∞(M,M ′)X will be called equivalent if there exist
U ′′ ⊂ U ∩U ′, V ⊃ f(X) opens, and embeddings j : U ′′ ↪→ U and i : V ↪→M ′, with

if |U ′′ = f ′|U ′′j.

An equivalence class of germs around X formalizes the notion of ’behavior’
around X : two maps f, f ′ ∈ C∞(M,M ′) have the same behavior around X ⊂M
iff their germs along X are equivalent.

We will typically be lazy, and write [f ] (or just f) instead of [U, f ].
We will mostly be concerned with E := C∞(Rm,R)0, the set of germs of real

functions around zero. Note that this is a ring, with the operations

[f ] + [f ′] := [f + f ′], [f ] · [f ′] := [ff ′],

with additive and multiplicative units [0] and [1] respectively. Observe that E comes
equipped with a natural surjective ring homomorphism

ev : E → R, [f ] 7→ f(0).
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Since E/R is a field, m := ker(ev) is a maximal ideal in E ; observe that [f ] /∈ m
implies that [f ]−1 = [f−1] ∈ E , so m C E is the unique maximal ideal – that is, E
is a local ring.

Observe that [f ] ∈ m iff

f(x) =

∫ 1

0

d

dt
(f(tx))dt =

m∑
1

(∫ 1

0

∂f

∂xi
(tx)

)
· xi,

so m =
∑m

1 E ·xi; in particular, m2 =
∑m

1 E ·xixj and thus [f ] ∈ m2 iff 0 ∈ Crit(f).
This implies that

m/m2 ∼−→ T ∗0Rm, [f ] + m2 7→ d0f,

is an isomorphism of E-modules.
This observation can be expanded by observing that ev extends to a ring homo-

morphism

Tayl : E → R[[x1, ..., xm]], [f ] 7→ Tayl(f) :=
∑
α

1

α!

∂|α|f

∂xα
xα,

where for a multi-index α = (α1, ..., αm), αi > 0, we set

|α| :=
∑

αi, α! :=

m∏
1

αi!, xα =

m∏
1

xαii ,
∂|α|

∂xα
:=

m∏
1

∂αi

∂xαii
.

The homogeneous part of degree k of Tayl(f), denoted by Taylk(f), can be described
in a slightly less coordinate-dependent fashion. Indeed, if f : Rm → R is a smooth
map, then df can be regarded as a smooth map df : Rm → Hom(Rm,R) ' Rm,
and as such we can take d(df) := d2f : Rm → Hom(Rm,Hom(Rm,R)). But recall
from Calculus that d2f lands inside Hom2(Rm,R), i.e., d2f(v, w) is symmetric in
its arguments v, w ∈ T0Rm. More generally, we denote by dkf the map d(dk−1f) :

Rm → Homk(Rm,R); in this notation,

Taylk(f) =
1

k!
dkf.

Lemma 5. Let [f ] ∈ m2. Then

d20f(v, w) = [ṽ, [w̃, f ]](0) = [w̃, [ṽ, f ]](0),

where ṽ, w̃ are any two germs of vector fields around zero extending v, w ∈ T0Rm,
respectively.

Proof. Note that

[ṽ, [w̃, f ]]− [w̃, [ṽ, f ]] = [[ṽ, w̃], f ](0) = d0f([ṽ, w̃]) = 0

since 0 ∈ Crit(f). Hence [ṽ, [w̃, f ]](0) = [w̃, [ṽ, f ]](0). But the LHS can be expressed
as

[ṽ, [w̃, f ]](0) = d([w̃, f ])(v),

which shows that it is independent of the choice of extension ṽ, whereas

[w̃, [ṽ, f ]](0) = d([ṽ, f ])(w)

shows that it is independent of the extension w̃. Now express f in coordinates and
conclude that the quantity above equals d20f(v, w) (exercise). �

Now recall if B : Rm×Rm → R is a symmetric bilinear form, there exist integers
0 6 λ, ν 6 m and a linear basis (ei)

m
1 of Rm with

B(ei, ej) =


−1 if i = j and i 6 λ,

+1 if i = j and λ < i 6 m− ν,
0 if i 6= j or i > m− ν.
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The integer ν is called the nullity of B; the form is called non-degenerate if
ν = 0. The integer λ, on the other hand, is called the index of B. Observe that
ν, λ, (m − λ − ν) are the dimensions of the maximal subspaces W ⊂ Rm where B
restricts to zero, a negative-definite form, and a positive-definite form, respectively.

Lemma 6. Let [f ] ∈ m2, and let Jac(f) C E denote the ideal spanned by the partial

derivatives ∂f
∂xi

. Then d20f is non-degenerate only if Jac(f) = m.

Proof. Of course, [f ] ∈ m2 implies that Jac(f) ⊂ m, so one inclusion always holds.
Suppose d20f were non-singular. Then d0(df) = d20f : Rm → Hom(Rm,R) is a

linear isomorphism; hence by the Inverse Function Theorem, we can express the
coordinates xi as

xi = xi(∂f/∂x1, ..., ∂f/∂xm) =⇒ xi =
∑
j

aij ·
∂f

∂xj
,

for some aij ∈ E . Since the xi’s span m, we have Jac(f) = m. �

ááááááááááááááááááááááááááááááááááááááááááááá

Having described the local picture, we can transfer our definitions to the manifold
setting :

Definition 8. The Hessian Hessx(f) is the bilinear form

TxM × TxM → R, Hessx(f)(v, w) := d2xf(v, w),

corresponding to the critical point x ∈ Crit(f). A critical point x ∈ Crit(f) is called
non-degenerate if Hessx(f) is non-singular. If x is a non-degenerate critical
point, its index λ = λ(f, x) is

λ(f, x) := max{dimW : Hessx(f)|W is negative-definite.}

A function f ∈ C∞(M) will be called Morse if all of its critical points are non-
degenerate.

We will write Morse(M) ⊂ C∞(M) for the subspace of Morse functions.

Lemma 7. (1) Morse(M) is open in the strong C2-topology, Morse(M) ⊂ C2
S(M).

(2) λ(f, x) + λ(−f, x) = dimM .

Proof. Immediate. �

We wish to prove now :

Theorem 7 (Morse Lemma). If f ∈ m2�m3, there exists an embedding

ψ : 0 ∈ U ↪→ Rm, ψ∗f =
1

2
Hessx(f) ∈ E ,

where we regard Hessx(f) as a smooth function Hessx(f) : TxM → R by the rule
v 7→ Hessx(v, v).

We need a technical lemma first.

Lemma 8 (Auxiliary Lemma). If f ∈ m2�m3, and δ ∈ m2, there exists a time-
dependent vector field wt around zero, t ∈ [0, 1], for which [wt, f + tδ] = −δ and
wt(0) = 0 for all t.
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Proof. Note that δ ∈ m3 implies that ∇δ ∈ m2, so

∇δ = B(x)x, B(0) = 0.

On the other hand, Jac(f) = m, so x = A(x)∇f . Hence{
x = A(x) (∇(f + tδ))− tA(x)∇δ
∇δ = B(x)x

=⇒ (id +tA(x)B(x))x = A(x)∇(f+ tδ).

Now, B(0) = 0 ensures that

x = Ct(x)∇(f + tδ), Ct(x) := (id +tA(x)B(x))
−1
A(x),

which means that each of germs of the coordinate functions xi can be written as

xi = [vit, f + tδ]

for some germ of time-dependent vector field vit.
Now write δ =

∑
aijxixj and let

wt :=
∑
i,j

aijxjv
i
t;

then [wt, f + tδ] = −δ as promised, and wt(0) = 0 for all t. �

Proof of Theorem 7. First observe that

ft := (1− t)f +
t

2
Hess(f) = f + tδ, δ :=

1

2
Hess(f)− f, t ∈ [0, 1],

defines a smooth family ft ∈ m2�m3. Note that δ ∈ m3.
We seek a germ of isotopy ψt around 0, such that ψt(0) = 0 and

ψ∗t ft = f, t ∈ [0, 1]

The latter condition is equivalent to

0 =
d

dt
(ψ∗t ft) ⇐⇒ L(wt)ft + δ = 0,

and the former to wt(0) = 0, where wt denotes the germ of time-dependent vector
field corresponding to ψt.

But by the Auxiliary Lemma 8, such wt exists. �

Definition 9. If f ∈ C∞(M) and p ∈ Crit(f) is non-degenerate, a Morse chart
around p is an embedding ψ : U ↪→ M of an open around 0 ∈ Rm putting f in
normal form :

ψ∗f = Qλ(f,p),

where Qλ(f,p) stands for the standard quadratic form of index λ = λ(f, p), Qλ(f,p) =

−
∑λ

1 x
2
i +

∑m
λ+1 x

2
i .

2.2. Exercises.

(1) If f ∈ Morse(M) and f ′ ∈ Morse(M ′) i = 0, 1, then F := pr∗M f + pr∗M ′ f
′ ∈

Morse(M ×M ′). Determine the critical points of F and their indices in
terms of those of f, f ′.

(2) Give an example of isolated and non-isolated degenerate critical points.
(3) Show that if [f ] ∈ m�m2, then f has the same behavior as dxf .
(4) Show that if f ∈ Morse(Mm) and |Crit(f)| = 2, then M is homeomorphic

to Sm.
(5) Show that every symmetric bilinear form B : Rn×Rn → R is equivalent to

(exactly) one of the form −
∑λ

1 x
2
i +

∑n
λ+1 x

2
i , 0 6 λ 6 n.
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3. Lecture Three. Abundance of Morse functions.

3.1. Thom Transversality Theorem. Recall that if M,M ′ are smooth mani-
folds, we say that f, f ′ ∈ C∞(M,M ′) have the same k-jet at x ∈ M iff all the
partial derivatives of f and f ′ at x agree up to order k, in which case we write
jkf(x) = jkf

′(x).
The collection

Jk(M,M ′) := {jkf(x) : f ∈ C∞(U,M ′), x ∈ U}

of all k-jets of (partially defined) maps M →M ′ has a natural structure of smooth
manifold. It comes equipped with source- and target maps,

s : Jk(M,M ′)→M, jkf(x) 7→ x

t : Jk(M,M ′)→M ′, jkf(x) 7→ f(x);

which are fibre bundles, and bundle maps

pkk−1 : Jk(M,M ′)→ Jk−1(M,M ′), jkf(x) 7→ jk−1f(x)

so that we have commuting diagrams

Jk(M,M ′)

s

yy

t

%%
pkk−1

��

M M ′

Jk−1(M,M ′)

s

ee

t

99

There is also an assignment

jk : C∞(M,M ′)→ C∞(M,Jk(M,M ′)), f 7→ [x 7→ jkf(x)] ,

which we refer to as the k-jet map.
Recall that a subspace A of a topological space X is called residual if it is the

countable intersection of open, dense subspaces :

A =
⋂
n>0

Un, Un ⊂ X open and ClUn = X, ∀n.

A topological space X is called Baire if every residual subspace is dense.

Theorem 8. A residual subspace of a complete metric space is dense. Every weakly
closed subspace of CrS(M,M ′) is a Baire space.

Proof. See [9]. �

We can now remind the reader of :

Theorem 9 (Thom Transversality Theorem, v. 1). If X ⊂ Jk(M,M ′) is a sub-
manifold, then the space of f ∈ Cr(M,M ′) with jkf >∩X is residual in CrS(M,M ′)
for r > k, and is open if X is closed.

äääääääääääääääääääääääääääääääääääääää

Aside : Multijet bundles
We will make good use of an extension of Thom Transversality, whose setting

we describe.
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Fix an integer l > 0 and consider

J
(l)
k (M,M ′) ⊂

l∏
1

Jk(M,M ′), J
(l)
k (M,M ′) := (

k∏
1

s)−1M (l),

where
M l ⊃M (l) := {(x1, ..., xl) : i 6= j =⇒ xi 6= xj}.

Then clearly J
(l)
k (M,M ′) is a bundle over M (l), with projection

s(l) : (jkf1(x1), ..., jkfl(xl)) 7→ (x1, ..., xl),

and there is an induced multijet map

j
(l)
k : Ck(M,M ′)→ C0(M (l), J

(l)
k (M,M ′))

j
(l)
k f : M (l) 3 (x1, ..., xl) 7→ (jkf(x1), ..., jkf(xl)) ∈ J (l)

k (M,M ′).

äääääääääääääääääääääääääääääääääääääää

Theorem 10 (Thom Transversality Theorem, v. 2). If X ⊂ J (l)
k (M,M ′) is a sub-

manifold, then the space of f ∈ Cr(M,M ′) with j
(l)
k f >∩X is residual in CrS(M,M ′)

for r > k, and is open if X is closed.

Proof. See [7]. �

Now we put these ideas to use.

Definition 10. The singularity set S1 ⊂ J1(M,R) is the subspace defined by

S1 = {j1f(x) : dxf = 0}.
Lemma 9. S1 is a closed submanifold, of codimension codim(S1 ⊂ J1(M,R)) =
dimM .
x ∈ Crit(f) iff j1f(x) ∈ S1. Moreover, x is non-degenerate iff j1f >∩ S1 at x.

Corollary 3. Morse(M) ⊂ C2
S(M,R) is open and dense. If f ∈ Morse(M), Crit(f)

is discrete.

Proof. Combine Lemma 9 with Theorem 9 for the first statement. For the sec-
ond, observe that codim(Crit(f) ⊂ M) = dimM , so Crit(f) is a zero-dimensional
submanifold. �

Definition 11. A Morse function f ∈ Morse(M) is called resonant if there exist
distinct critical points x, y ∈ Crit(f) at the same critical value : f(x) = f(y).
Otherwise it is called non-resonant, and the space of all such will be written
Morse 6=(M).

Lemma 10. Morse 6=(M) ⊂ C2
S(M,R) is open and dense.

Proof. First observe that Morse 6=(M) ⊂ C2
S(M,R) is clearly open, so we need only

show that it contains a dense subspace.

Consider the multijet bundle J
(2)
1 (M,R)→M (2) = M ×M�∆M , and let S6= ⊂

J
(2)
1 (M,R) be the subspace defined by

S6= := (S1 × S1) ∩ (t× t)−1(∆R).

One readily sees that S6= is a submanifold of codimension 2 dimM + 1, and hence

j
(2)
1 f >∩ S6= at (x1, x2) means j

(2)
1 f(x1, x2) /∈ S6=.

By Theorem 10, the subspace U ⊂ C2
S(M,R) of those f with j

(2)
1 f >∩ S6= is open

and dense; thus Morse(M)∩U is open and dense. But j
(2)
1 f maps (x1, x2) into S6=

iff dx1
f = 0 = dx2

f and f(x1) = f(x2), so Morse 6=(M) ⊃ Morse(M) ∩ U . �
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3.2. Concatenating and Factorizing Cobordisms.
In view of Lemma 10, any f ∈ C∞(M) can be perturbed ever so slightly to a

non-resonant Morse function.
Suppose M is compact, so that Crit(f) is finite. Order the critical values

{c1 < c2 < · < cN} = fCrit(f),

and let −∞ = a0 < a1 < · · · aN−1 < aN = +∞, with ci ∈ (ai−1, ai) for every
1 6 i 6 N .

Then
Ci :=

(
Wi, f

−1(ai−1), f−1(ai)
)
, Wi := f−1[ai−1, ai].

are cobordisms, and M = ∪iWi. Note that f >∩ ai for every 0 < i < N , and
fi := f |Wi

contains a single critical point. We give this situation a special name :

Definition 12. A cobordism C = (W ;M0,M1) is called elementary if there exists
a smooth function f : W → [a, b], with f >∩ ∂[a, b], f−1(a) = ∂0W , f−1(b) = ∂1W ,
and Crit(f) = {p}, with a < f(p) < b.

Definition 13. Let W be a manifold with boundary ∂W ↪→ W . By a distin-
guished submanifold X ⊂ W we will refer to either a connected component of
the boundary X ⊂ ∂W , or to a cooriented interior submanifold X ⊂ (W�∂W ).

A collar of a distinguished submanifold X is an embedding c : X×I(X, ε) ↪→W
with c|X = idX , and c∗(∂/∂t) pointing inwards if X ⊂ ∂W , and in the posi-
tive coorientation if X ⊂ (W�∂W ); here I(X, ε) = (−ε, ε) if X is interior and
I(X, ε) = [0, ε) if X lies in the boundary.

Lemma 11 (Collars).

(1) Collars exist.
(2) If c, c′ : X × I(X, ε) ↪→ W are collars, there is 0 < δ 6 ε and a homotopy

of collars C : X × I(X, δ)× [0, 1]→W joining c|X×I(X,δ) to c′|X×I(X,δ).
(3) If C : X × I(X, δ) × [0, 1] → W is a homotopy of collars, there is a collar

c : X × I(X, δ) ↪→W with

c|X×I(X,δ/3) = C1|X×I(X,δ/3)
c|X×(I(X,δ)�I(X,2δ/3)) = C0|X×(I(X,δ)�I(X,2δ/3))

Proof. (1) Using a partition of unity, one constructs on an open U ⊂ W con-
taining X a vector field w ∈ X(U) with w pointing inwards if X ⊂ ∂W ,
and w in the positive coorientation if X is interior.

Let φ : U × R ⊃ dom(φ) → U denote the local flow of w, and choose
any embedding ψ : X × I(X, ε) ↪→ dom(φ) with ψ|X×{0} the inclusion
X ↪→ dom(φ). Then c := φ ◦ ψ is a collar.

(2) Let v := c∗(∂/∂t), v
′ := c′∗(∂/∂t) be defined in a common open X ⊂ U .

Define vs := (1− s)v + sv′ ∈ X(U), for s ∈ [0, 1], and let

φvs : U × R ⊃ dom(φvs) −→ U

denote the local flow of vs. Choose a homotopy of embeddings ψs : X ×
I(X, ε) ↪→ dom(φvs), 0 6 s 6 1, with ψs|X the inclusion, and set Cs :=
φvs ◦ ψs : X × I(X, ε) ↪→W .

(3) Let s 7→ ws denote the time-dependent vector field dCs
ds ∈ X(imCs), and

note that ws(x) = 0 for all x ∈ X and s ∈ [0, 1]; hence ws has bounded
velocity on some U ′s ⊃ X. Choose then a smooth function % : X×I(X, ε)×
[0, 1] → R, with %s = 1 on a smaller open U ′′s ⊂ U ′s around X, and set
ws := %sws ∈ X(W ). Then w has bounded velocity, and thus generates
an isotopy φs of W with dxφs = id for all x ∈ X and s ∈ [0, 1], and φ1C0

agrees with C0 away from X, and with C1 around it.
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�

Corollary 4. Suppose W,W ′ are smooth manifolds with boundary, that X ⊂ ∂W
be a sum of outgoing connected, and that h : X ↪→ ∂W ′ embeds X as a sum
of incoming connected compopnents of ∂W ′. Then the topological space W ∪h W ′
carries a canonical structure of smooth manifold with boundary, and

∂(W ∪hW ′) = (∂W�X)
∐

(∂W ′�h(X))

Proof. Suppose for simplicity that X is connected; the general case is argued
component-by-component.

We need first introduce a smooth structure on W ∪hW ′. Choose collars

c : X × (−ε, 0] ↪→W, c′ : h(X)× [0, ε) ↪→W ′

and define the space W ∪h,cW ′ according to the diagram

X × ((−ε, ε)�0)

��

H // (W�X)
∐

(W ′�h(X))

��
X × (−ε, ε) // W ∪h,cW ′

where

H(x, t) =

{
c(x, t) if t < 0;

c′(h(x), t) if t > 0.

This exhibits W ∪h,cW ′ as a smooth manifold with the boundary as in the state-
ment.

We need now show that the recipe above is independent of the choices of collars
c, c′ up to a diffeomorphism.

So suppose γ, γ′ are two different choices of collars, and let W ∪h,γW ′ denote the
manifold arising from those choices. Then note that the identity maps idW , idW ′ ,
glue to a homeomorphism

G : W ∪h,cW ′ −→W ∪h,γ W ′.

On the X × (−ε,+ε) part of those manifolds, G reads

G =

{
γc−1 on im c;

γ′c′−1 on im c′.

According to Lemma 11, c, c′ can be modified to a collars c, c′, with

c =

{
c on X × (−ε/3, 0];

γ on X × (−ε,−2ε/3).
, c′ =

{
c′ on h(X)× [0, ε/3);

γ′ on h(X)× (2ε/3, ε).

We then modify G to a diffeomorphism G : W ∪h,cW ′ ∼−→W ∪h,γ W ′,

G :=


G outside X × (−ε, ε);
γc−1 on im c;

γ′c′
−1

on im c′.

.

�

Definition 14. We refer to W ∪hW ′ as the concatenation of W,W ′ along h.

Example 6. Let W be any manifold with boundary, and define 2W := W ∪id∂WW ,
the double of W . Note that ∂(2W ) = ∅.
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Note that, by its very construction, concatenation is ’distributive’, in the sense
that if we are given a further manifold with boundary W ′′, Y ⊂ ∂W ′ is outgoing,
and h′ : Y ↪→ ∂W ′′ is an incoming embedding, then there is a natural identification

(W ∪hW ′) ∪h′ W ′′ 'W ∪h (W ′ ∪h′ W ′′) .
Definition 15. A factorization of a manifold with boundary W is a presentation
as a concatenation of manifolds with boundary :

W = W0 ∪h1
W1 ∪h2

· · · ∪hk Wk.

Lemma 12. Every cobordism C can be factorized into elementary cobordisms.

Proof. Let C = (W ;M0,M1) be a cobordism. Double W to the manifold (without
boundary) 2W , and note that ∂W embeds as a compact submanifold of 2W .

Choose any f ′ : 2W → [−1,+1] with f ′>∩ ∂D1 and f ′−1∂D1 = ∂W . Use Lemma
10 to perturb f ′ to f ′′ ∈ Morse 6=(2W ); choose f ′′ so C1-close to f ′ so that ∂D1 are
regular values for f ′t := (1 − t)f ′ + tf ′′, 0 6 t 6 1. Then there is a homotopy of
embeddings ψ : ∂W × [0, 1]→ 2W tracking f ′−1t ∂D1 :

f ′tψt(∂iW ) = i, i = 0, 1.

By the Isotopy Extension Lemma 13 below, ψ can be extended to an isotopy ϕ :
2W × [0, 1]→ 2W ; then

f := f ′′ ◦ ϕ1|2W�(W�W ) ∈ C
∞(W )

is transverse to ∂D1 and pulls it back to ∂W , and is a non-resonant Morse function
in the interior of W . Now choose ai ∈ R�fCrit(f) such that every c ∈ fCrit(f) lies
in exactly one interval (ai, ai+1); then the concatenation of the cobordisms

Ci :=
(
Wi, f

−1(ai−1), f−1(ai)
)

is diffeomorphic to W . �

Lemma 13 (Isotopy Extension Lemma). Let W be a manifold with boundary, and
X ⊂W a closed submanifold, with either X ⊂ (W�∂W ) or X ⊂ ∂W . Then every

homotopy of embeddings ψ : X × [0, 1] → W , ψt : X ↪→ W , whose velocity dψt
dt is

bounded, extends to an isotopy ϕ : W × [0, 1]→W .

Proof. Case 1 : X ⊂ (W�∂W ).
Consider

ψ̂ : X × [0, 1] −→W × [0, 1], ψ̂(x, t) = (ψt(x), t).

The hypotheses ensure that ψ̂ is a closed embedding, and that

ŵ :=
dψt
dt

+ ∂/∂t

is defined along its image and has bounded velocity.
Choose :

• a tubular neighborhood

(W�∂W )× I ⊃ E p−→ ψ̂(X × [0, 1]);

• a smooth function % ∈ C∞(E), with % = 1 around ψ̂(X× [0, 1]), and whose
support meets every fibre of p in a compact set;

• an Ehresmann connection hor : X(ψ̂(X × [0, 1])) −→ X(E).

Then set w := %hor(ŵ) ∈ X(W × [0, 1]) and observe that w = wt + f∂/∂t, where

wt ∈ X(W ) is supported in the interior of W , and extends dψt
dt . Hence wt gives rise

to an isotopy of W extending ψ.
Case 2 : X ⊂ ∂W .
Apply Case 1 twice, first to X ⊂ ∂W , and then to ∂W ⊂W . �



MORSE THEORY 19

3.3. Exercises.

(1) Show that Jk(M,M ′) is indeed a smooth manifold, and compute its dimen-
sion.

(2) Show that jk : Ck(M,M ′)→ C0(M,Jk(M,M ′)) is continuous in both the
weak and the strong topologies, and has closed image in the weak topology.

(3) Let M ⊂ RN be a submanifold. For each y ∈ RN , let fy : M → R denote
x 7→ ‖y − x‖2. Show that for y generic, fy ∈ Morse(M).(Meaning that the
set of points for which the stated property holds is residual).

(4) Compute πn(Sm) for all m > n > 0.
(5) Two compact manifolds Mm

0 ,M
m
1 are called (oriented) cobordant if

there exists a (oriented) cobordism C = (W ;M0,M1). Show that :
(a) Being (oriented) cobordant to is an equivalence relation.
(b) The sets Nm, Ωm of equivalence classes under cobordism and ori-

ented cobordism relations, respectively, are abelian groups under dis-
joint union

∐
.

(c) If f, f ′ : M →M ′ are homotopic, and transverse to a closed submani-
fold X ⊂ M ′, then f−1X and f ′−1X are cobordant. If M,M ′ and X
are orientable, f−1X and f ′−1X are oriented cobordant.

(d) Compute Ni and Ωi, for i = 0, 1.
(6) Let M,M ′ be compact smooth manifolds, and let G := Diff(M ′)×Diff(M)

act on C∞(M,M ′) by

(ψ,ϕ) : f 7→ ψ ◦ f ◦ ϕ−1,
where G is endowed with the C∞ topology. A map f is called stable if
every f ′ close enough to f lies in the same orbit as f .

Show that f ∈ C∞(M,R) is stable only if f ∈ Morse 6=(M).5

5We will see later that Morse 6=(M) is precisely the space of stable functions on M .
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4. Lecture Four. Passing a critical level set

4.1. Surgery. For every 1 6 λ < m, consider the ”standard” diffeomorphisms

stdλ : Sλ−1 × (
◦
D m−λ+1�0) ∼−→ (

◦
D λ�0)× Sm−λ

stdλ : (u, θv) 7→ (θu, v), (u, v) ∈ Sλ−1 × Sm−λ, θ ∈ (0, 1).

Fix an embedding

ϕ : Sλ−1 ×
◦
D m−λ+1 ↪→Mm,

and consider the smooth manifold Surg(M,ϕ) defined by the pushout diagram

Sλ−1 × (
◦
D m−λ+1�0)

stdλ
��

ϕ // M�ϕ(Sλ−1)

��◦
D λ × Sm−λ // Surg(M,ϕ).

Observe that Surg(M,ϕ) comes equipped with a canonical embedding Surg(ϕ) :
◦
D λ × Sm−λ ↪→ Surg(M,ϕ). Producing Surg(M,ϕ) out of M has the effect of
removing a (λ−1)-sphere, embedded with trivial normal bundle in M , and replacing
it by a (m− λ)-sphere, also embedded with trivial normal bundle.

Definition 16. We say that Surg(M,ϕ) is obtained from M by a surgery of type
λ.

Lemma 14. If ϕt : Sλ−1 ×
◦
D m−λ+1 ↪→ M is a homotopy of embeddings, then

Surg(M,ϕ0) ' Surg(M,ϕ1).

Proof. Extend dϕt
dt ∈ X(imϕt) to a globally defined (time-dependent) vector field

wt ∈ X(M). We can further demand that the support of wt be a small neighborhood
of imϕt. Denote by φt the isotopy it generates, and observe that

φt(ϕt(u, θv)) = ϕt(u, θv).

Then

φ1
∐

id : (M�ϕ0(Sλ−1)
∐ ◦
D λ × Sm−λ ∼−→ (M�ϕ1(Sλ−1)

∐ ◦
D λ × Sm−λ

descends to a diffeomorphism Surg(M,ϕ0) ∼−→ Surg(M,ϕ1). �

4.2. A closer look at model singularities. Let Lλ ⊂ Rλ × Rm−λ+1 be the
subspace defined by

Lλ := {(x, y) : −1 6 Qλ(x, y) 6 +1, |x||y| < sinh 1 cosh 1} ,

where as usual Qλ denotes Qλ(x, y) = −|x|2 + |y|2.
Note that Lλ is a smooth manifold with boundary ∂Lλ = ∂leftLλ

∐
∂rightLλ,

where

∂leftLλ := {(x, y) ∈ Lλ : Qλ(x, y) = −1}
∂rightLλ := {(x, y) ∈ Lλ : Qλ(x, y) = +1}.

We let R× denote

R× := (Rλ�0)× (Rm−λ+1�0) ⊂ Rλ × Rm−λ+1.
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Lemma 15. There exist diffeomorphisms

ϕleft : Sλ−1 ×
◦
D m−λ+1 ∼−→ ∂leftLλ

ϕright :
◦
D λ × Sm−λ ∼−→ ∂rightLλ

stdλ : ∂leftLλ ∩ R× ∼−→ ∂rightLλ ∩ R×,

such that

∂leftLλ ∩ R×

stdλ

��

ϕϕ−1
left // M�ϕ(Sλ−1)

��
∂rightLλ // Surg(M,ϕ)

∂rightLλ ∩ R×

stdλ

��

Surg(ϕ)ϕ−1
right // Surg(M,ϕ)�Surg(ϕ)(Sm−λ)

��
∂leftLλ // M

Proof. Define stdλ : R× ∼−→ R× by the formula

stdλ : (x, y) 7→
(
|x|
|y|
x,
|y|
|x|
y

)
,

and observe that stdλ is an involution, stdλ = (stdλ)−1. Moreover, it induces a
diffeomorphism

∂leftLλ ∩ R× ∼−→ ∂rightLλ ∩ R×,

which we still denote by stdλ.
Now define the diffeomorphisms

ϕleft : Sλ−1 ×
◦
D m−λ+1 ∼−→ ∂leftLλ, ϕleft(u, θv) = (u cosh θ, v sinh θ)

ϕright :
◦
D λ × Sm−λ ∼−→ ∂rightLλ, ϕright(θu, v) = (u sinh θ, v cosh θ).

Then

Sλ−1 × (
◦
D m−λ+1�0)

stdλ '
��

ϕleft

'
// ∂leftLλ ∩ R×

stdλ'

��
(
◦
D λ�0)× Sm−λ

ϕright

' // ∂rightLλ ∩ R×

commutes. Hence

∂leftLλ ∩ R×

stdλ

��

ϕϕ−1
left // M�ϕ(Sλ−1)

��
∂rightLλ // Surg(M,ϕ).
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is also a pushout diagram. On the other hand, the pushout of the outer diagram in

Sλ−1 × (
◦
D m−λ+1�0)

stdλ
��

ϕleft // ∂leftLλ ∩ R×

stdλ

��

ϕϕ−1
left // M�ϕ(Sλ−1)

��
(
◦
D λ�0)× Sm−λ

stdλ
��

ϕright // ∂rightLλ ∩ R×
Surg(ϕ)ϕ−1

right //

stdλ

��

Surg(M,ϕ)�Surg(ϕ)(Sm−λ)

Sλ−1 × (
◦
D m−λ+1�0)

ϕright

// ∂leftLλ ∩ R×

is clearly M�ϕ(Sλ−1), as the top horizontal arrow equals ϕ and the left vertical
one is identical. Hence

∂rightLλ ∩ R×
Surg(ϕ)ϕ−1

right //

stdλ

��

Surg(M,ϕ)�Surg(ϕ)(Sm−λ)

��
∂leftLλ // M

�

Theorem 11. There is an elementary cobordism (C, f) of index λ between M and
Surg(M,ϕ).

Proof. For every (x, y) ∈ Lλ, the curve

t 7→ (tx, t−1y), t > 0,

is orthogonal to the level sets Qλ = c, c 6= 0.
Observe that

t = t(x, y) :=

√
1 +

√
1 + 4|x|2|y|2
2|x|2

=⇒ Qλ(tx, t−1y) = −1;

hence we obtain a diffeomorphism

ψ : Lλ ∩ R× ∼−→ (∂leftLλ ∩ R×)× [−1,+1],

ψ : (x, y) 7→
(
(t(x, y)x, t(x, y)−1y), Qλ(x, y)

)
.

We can thus form the smooth manifold W by

Lλ ∩ R×

��

(ϕϕ−1
left×id)ψ // (M�ϕ(Sλ−1)× [−1,+1]

��
Lλ // W

and note that

∂W = ∂0W
∐

∂1W,

where

∂leftLλ ∩ R×

��

// (M�ϕ(Sλ−1)

��
∂leftLλ // ∂0W
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and

∂rightLλ ∩ R×

��

// (M�ϕ(Sλ−1)

��
∂rightLλ // ∂1W

so ∂0W 'M and ∂1W ' Surg(M,ϕ).
Hence W is a cobordism between M and Surg(M,ϕ); to finish we must indicate

the pertinent elementary Morse function f ∈ Morse(W ). But observe that under
the above identifications, the smooth map

f̃ : (M�ϕ(Sλ−1)× [−1,+1]
∐

Lλ −→ R

f̃ |(M�ϕ(Sλ−1)×[−1,+1] = pr2, f̃ |Lλ = Qλ

descends to a smooth f ∈ C∞(W ) with the required properties.
�

On the other hand, suppose (C, f) is an elementary cobordism, where f : W →
D1 is an elementary Morse function with a unique critical point p of index λ at the
level set 0.

We wish to define an embedding

ϕ : Sλ−1 ×
◦
D m−λ+1 ↪→ ∂0W

Fix a Morse chart e : Bm+1
2ε ↪→Wm+1 centred at p,

e(0) = p ∈ Crit(f), e∗f = Qλ.

Then

ϕ′ : Sλ−1 ×
◦
D m−λ+1 ↪→ f−1(−ε),

(u, θv) 7→ e(
√
εu cosh θ,

√
εu sinh θ)

embeds Sλ−1 ×
◦
D m−λ+1 in the regular level set f = −ε. The (local) flow φt of

the vector field w := − ∇f
‖∇f‖2 ∈ X(M�p), φ : (M�p) × R ⊃ dom(φ) −→ M�p,

determines a homotopy of embeddings

ϕ′t : Sλ−1 ×
◦
D m−λ+1 ↪→W,

Sλ−1 ×
◦
D m−λ+1 × [0, 1−

√
ε]→W, ((u, θv), t) 7→ φ−t(ϕ′(u, θv)),

and we set

ϕ := ϕ′1−
√
ε : Sλ−1 ×

◦
D m−λ+1 ↪→ ∂0W

Observe that the choice of ε > 0 is immaterial, since the embeddings determined
by any two choices according to the recipe above must coincide.

By the same token, we can drag the embedding

Φ′ : Sλ−1 ×
◦
D m−λ+1 ↪→ f−1(ε), (u, θv) 7→ e(

√
εu sinh θ,

√
εu cosh θ)

along the flow of w from time t = 0 to t = 1−
√
ε to obtain an embedding

Φ : Sλ−1 ×
◦
D m−λ+1 ↪→ ∂1W.

Definition 17. We call the embeddings ϕ,Φ characteristic- and cocharacter-
istic embeddings of (C, f).

Remark 3. Note that the (co-)characteristic embedding depends on the choice of
Morse chart, and also on the vector field ∇f which we used to drag objects around.
Such choices will be implicit whenever we speak of such embeddings.
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Theorem 12. If (C, f) is elementary of index λ, then ∂1W ' Surg(∂0W,ϕ), for

some characteristic embedding ϕ : Sλ−1 ×
◦
D m−λ+1 ↪→ ∂0W .

Proof. In terms of the notation above, one argues as in Theorem 11 to deduce
that f−1(ε) ' Surg(f−1(−ε), ϕ′), and ∂0W ' f−1(−ε), ∂1W ' f−1(ε) under

φ±(
√
e−1). �

Let (C, f) be an elementary cobordism of index λ, with characteristic and cochar-
acteristic embeddings ϕ,Φ, respectively.

Definition 18. The core disk Coreλ(p) of the critical point p is the union of
trajectories of ∇f beginning in ϕ(Sλ−1) ⊂ ∂0W and ending at p.

Its cocore disk Cocorem−λ(p) is the union of trajectories of ∇f beginning in p
and ending in Φ(Sm−λ) ⊂ ∂1W .

Note that it follows from the above discussion that these are smoothly embedded
disks, meeting transversally at p, and determining the decomposition

TpW = TpCoreλ(p)⊕ TpCocorem−λ(p)

into negative-definite and positive-definite subpaces for Hessp(f).

Corollary 5. If (C, f) be an elementary cobordism of index λ,

(∂0W ∪ Coreλ(p)) ↪→ ∂1W

is a deformation retraction. In particular

H•(W,∂0W ;Z) =

{
Z if k = λ;

0 otherwise.
.

and so the index of an elementary cobordism C is independent of the choice of
elementary Morse function.

4.2.1. Exercises.

(1) A gradient-like vector field for f ∈ Morse(M) is a w ∈ X(M) such that :
• wf > 0 on M�Crit(f);
• For every p ∈ Crit(f), there is a Morse chart e : B2ε ↪→ M centred at
p, pulling w back to

e∗w = −2

λ∑
1

xi
∂

∂xi
+ 2

n∑
λ+1

yi
∂

∂yi
.

(a) Convince yourself that, except for Lemma 4, all arguments involving
the gradient ∇f with respect to some Riemannian metric remain true
if ∇f is replaced by a gradient-like vector field w.

(b) Let w be a gradient-like vector field for f Morse on the compact man-
ifold M , and let ϕ : M × R → M denote its flow. For any x ∈ M ,
let ω(x) be the collection of those points of M which are limit points
sequences of the form (φtn(x))n>0, where tn → +∞. Show that ω(x)
is contained in a level set of f . Similarly, the limit points α(x) to
sequences of the form (φtn(x))n>0, tn → −∞, lie in a single level set
of f .

(c) Show that α(x) and ω(x) are invariant under the flow of w.
(d) Show that α(x) ⊂ Crit(f) ⊃ ω(x).
(e) Show that α(x) = {p} and ω(x) = {q}. Conclude that, for every

x ∈M , lim
t→±∞

φt(x) exists and is a critical point.

(2) Prove Corollary 5.
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