# Cluster Algebras and Compatible Poisson Structures 

Poisson 2012, Utrecht

July, 2012

## Reference:

- Cluster algebras and Poisson Geometry, M.Gekhtman, M.Shapiro, A.Vainshtein, AMS Surveys and Monographs, 2010 and references therein
- http://www.math.lsa.umich.edu/~fomin/cluster.html


# Totally Positive Matrices 

An $n \times n$ matrix $A$ is totally positive if all its minors are positive.

## Totally Positive Matrices

An $n \times n$ matrix $A$ is totally positive if all its minors are positive.
Note that the number of all minors grows exponentially with size. However, one can select (not uniquely) a family $F$ of just $n^{2}$ minors of $A$ such that $A$ is totally positive iff every minor in the family is positive. (Berenshtein-Fomin-Zelevinsky)

## $n=3$

For $n=3$ (total \# of minors is 20),

$$
\begin{aligned}
& F_{1}=\left\{\Delta_{3}^{3}, \underline{\Delta_{23}^{23}}, \Delta_{23}^{13}, \Delta_{13}^{23} ; \Delta_{1}^{3}, \Delta_{3}^{1}, \Delta_{12}^{23}, \Delta_{23}^{12}, \Delta_{123}^{123}\right\} \\
& F_{2}=\left\{\Delta_{3}^{3}, \Delta_{23}^{13}, \Delta_{13}^{23}, \Delta_{13}^{13} ; \Delta_{1}^{3}, \Delta_{3}^{1}, \Delta_{12}^{23}, \Delta_{23}^{12}, \Delta_{123}^{123}\right\}
\end{aligned}
$$

Families $F_{1}$ and $F_{2}$

## $n=3$

For $n=3$ (total \# of minors is 20),

$$
\begin{aligned}
& F_{1}=\left\{\Delta_{3}^{3}, \underline{\Delta_{23}^{23}}, \Delta_{23}^{13}, \Delta_{13}^{23} ; \Delta_{1}^{3}, \Delta_{3}^{1}, \Delta_{12}^{23}, \Delta_{23}^{12}, \Delta_{123}^{123}\right\} \\
& F_{2}=\left\{\Delta_{3}^{3}, \Delta_{23}^{13}, \Delta_{13}^{23}, \Delta_{13}^{13} ; \Delta_{1}^{3}, \Delta_{3}^{1}, \Delta_{12}^{23}, \Delta_{23}^{12}, \Delta_{123}^{123}\right\}
\end{aligned}
$$

Families $F_{1}$ and $F_{2}$

- differ in only one element


## $n=3$

For $n=3$ (total \# of minors is 20),

$$
\begin{aligned}
& F_{1}=\left\{\Delta_{3}^{3}, \underline{\Delta_{23}^{23}}, \Delta_{23}^{13}, \Delta_{13}^{23} ; \Delta_{1}^{3}, \Delta_{3}^{1}, \Delta_{12}^{23}, \Delta_{23}^{12}, \Delta_{123}^{123}\right\} \\
& F_{2}=\left\{\Delta_{3}^{3}, \Delta_{23}^{13}, \Delta_{13}^{23}, \Delta_{13}^{13} ; \Delta_{1}^{3}, \Delta_{3}^{1}, \Delta_{12}^{23}, \Delta_{23}^{12}, \Delta_{123}^{123}\right\}
\end{aligned}
$$

Families $F_{1}$ and $F_{2}$

- differ in only one element
- are connected by

$$
\Delta_{13}^{13} \Delta_{23}^{23}=\Delta_{13}^{23} \Delta_{23}^{13}+\Delta_{3}^{3} \Delta_{123}^{123}
$$

## Properties

## Every other "test family" of 9 minors

## Properties

Every other "test family" of 9 minors

- contains $\Delta_{1}^{3}, \Delta_{3}^{1}, \Delta_{12}^{23}, \Delta_{23}^{12}, \Delta_{123}^{123}$


## Properties

Every other "test family" of 9 minors

- contains $\Delta_{1}^{3}, \Delta_{3}^{1}, \Delta_{12}^{23}, \Delta_{23}^{12}, \Delta_{123}^{123}$
- can be obtained from $F_{1}$ (or $F_{2}$ ) via a sequence of similar transformations


## Properties

Every other "test family" of 9 minors

- contains $\Delta_{1}^{3}, \Delta_{3}^{1}, \Delta_{12}^{23}, \Delta_{23}^{12}, \Delta_{123}^{123}$
- can be obtained from $F_{1}$ (or $F_{2}$ ) via a sequence of similar transformations
- defines coordinate system on $G L(3)$ bi-rationally related to natural coordinates $A=\left(a_{i j}\right)_{i, j=1}^{3}$.


## Properties

Every other "test family" of 9 minors

- contains $\Delta_{1}^{3}, \Delta_{3}^{1}, \Delta_{12}^{23}, \Delta_{23}^{12}, \Delta_{123}^{123}$
- can be obtained from $F_{1}$ (or $F_{2}$ ) via a sequence of similar transformations
- defines coordinate system on $G L(3)$ bi-rationally related to natural coordinates $A=\left(a_{i j}\right)_{i, j=1}^{3}$.
- The intersection of opposite big Bruhat cells

$$
B_{+} w_{0} B_{+} \cap B_{-} w_{0} B_{-} \subset G L(3)
$$

coincides with

$$
\left\{A \in G L(3) \mid \Delta_{1}^{3} \Delta_{3}^{1} \Delta_{12}^{23} \Delta_{23}^{12} \Delta_{123}^{123} \neq 0\right\}
$$

The number of connected components of this intersection can be computed using families $F_{i}$.

## Properties

Every other "test family" of 9 minors

- contains $\Delta_{1}^{3}, \Delta_{3}^{1}, \Delta_{12}^{23}, \Delta_{23}^{12}, \Delta_{123}^{123}$
- can be obtained from $F_{1}$ (or $F_{2}$ ) via a sequence of similar transformations
- defines coordinate system on $G L(3)$ bi-rationally related to natural coordinates $A=\left(a_{i j}\right)_{i, j=1}^{3}$.
- The intersection of opposite big Bruhat cells

$$
B_{+} w_{0} B_{+} \cap B_{-} w_{0} B_{-} \subset G L(3)
$$

coincides with

$$
\left\{A \in G L(3) \mid \Delta_{1}^{3} \Delta_{3}^{1} \Delta_{12}^{23} \Delta_{23}^{12} \Delta_{123}^{123} \neq 0\right\}
$$

The number of connected components of this intersection can be computed using families $F_{i}$.

## Homogeneous coordinate ring $\mathbb{C}\left[\mathrm{Gr}_{2, n+3}\right]$

$\operatorname{Gr}_{2, n+3}=\left\{V \subset \mathbb{C}^{n+3}: \operatorname{dim}(V)=2\right\}$. The ring $\mathcal{A}=\mathbb{C}\left[\mathrm{Gr}_{2, n+3}\right]$ is generated by the Plücker coordinates $x_{i j}$, for $1 \leq i<j \leq n+3$.
Relations: $x_{i k} x_{j l}=x_{i j} x_{k l}+x_{i l} x_{j k}$, for $i<j<k<l$.

sides: scalars
diagonals:
cluster variables
relations: "flips"
clusters:
triangulations
Each cluster has exactly $n$ elements, so $\mathcal{A}$ is a cluster algebra of rank $n$. The monomials involving "non-crossing" variables form a linear basis in $\mathcal{A}$ (studied in [Kung-Rota]).

## Double Bruhat cell in SL(3)

$\mathcal{A}=\mathbb{C}\left[G^{u, v}\right]$, where $G^{u, v}=B u B \cap B_{-} v B_{-}=$

$$
=\left\{\left[\begin{array}{lll}
x & \alpha & 0 \\
\gamma & y & \beta \\
0 & \delta & z
\end{array}\right] \in S L_{3}(\mathbb{C}): \begin{array}{ll}
\alpha \neq 0 & \beta \neq 0 \\
\gamma \neq 0 & \delta \neq 0
\end{array}\right\}
$$

is a double Bruhat cell $\left(u, v \in \mathcal{S}_{3}, \ell(u)=\ell(v)=2\right)$.
Ground ring: $\mathbb{A}=\mathbb{C}\left[\alpha^{ \pm 1}, \beta^{ \pm 1}, \gamma^{ \pm 1}, \delta^{ \pm 1}\right]$.

## Double Bruhat cell in SL(3)

$\mathcal{A}=\mathbb{C}\left[G^{u, v}\right]$, where $G^{u, v}=B u B \cap B_{-} v B_{-}=$

$$
=\left\{\left[\begin{array}{lll}
x & \alpha & 0 \\
\gamma & y & \beta \\
0 & \delta & z
\end{array}\right] \in S L_{3}(\mathbb{C}): \begin{array}{ll}
\alpha \neq 0 & \beta \neq 0 \\
\gamma \neq 0 & \delta \neq 0
\end{array}\right\}
$$

is a double Bruhat cell $\left(u, v \in \mathcal{S}_{3}, \ell(u)=\ell(v)=2\right)$.
Ground ring: $\mathbb{A}=\mathbb{C}\left[\alpha^{ \pm 1}, \beta^{ \pm 1}, \gamma^{ \pm 1}, \delta^{ \pm 1}\right]$.
Five cluster variables. Exchange relations:

$$
\begin{aligned}
& x y=\left\|\begin{array}{ll}
x & \alpha \\
\gamma & y
\end{array}\right\|+\alpha \gamma \quad y z=\left\|\begin{array}{ll}
y & \beta \\
\delta & z
\end{array}\right\|+\beta \delta \\
& x\left\|\begin{array}{ll}
y & \beta \\
\delta & z
\end{array}\right\|=\alpha \gamma z+1 \quad z\left\|\begin{array}{ll}
x & \alpha \\
\gamma & y
\end{array}\right\|=\beta \delta x+1 \\
& \left\|\begin{array}{ll}
x & \alpha \\
\gamma & y
\end{array}\right\| \cdot\left\|\begin{array}{ll}
y & \beta \\
\delta & z
\end{array}\right\|=\alpha \beta \gamma \delta+y .
\end{aligned}
$$

## Definition

Exchange graph of a cluster algebra: $\begin{aligned} \text { vertices } & \simeq \text { clusters } \\ \text { edges } & \simeq \text { exchanges. }\end{aligned}$
$\mathbb{T}_{m} \quad m$-regular tree with $\{1,2, \ldots m\}$-labeled edges,
adjacent edges receive different labels

## Definition

Exchange graph of a cluster algebra: $\begin{aligned} \text { vertices } & \simeq \text { clusters } \\ \text { edges } & \simeq \text { exchanges. }\end{aligned}$
$\mathbb{T}_{m} \quad m$-regular tree with $\{1,2, \ldots m\}$-labeled edges,
adjacent edges receive different labels
$\mathbb{T}_{1}$


## Definition

Exchange graph of a cluster algebra: $\begin{gathered}\text { vertices } \simeq \text { clusters } \\ \text { edges } \simeq\end{gathered}$
$\mathbb{T}_{m} \quad m$-regular tree with $\{1,2, \ldots m\}$-labeled edges,
adjacent edges receive different labels

$\mathbb{T}_{1}$



## Cluster algebras of geometric type

$$
\mathbf{y}=\left(y_{1}, \ldots, y_{n-m}\right)
$$

- frozen variables,


## Cluster algebras of geometric type

$$
\begin{aligned}
\mathbf{y} & =\left(y_{1}, \ldots, y_{n-m}\right) \\
\mathbf{x}(t) & =\left(x_{1}(t), \ldots, x_{m}(t)\right)
\end{aligned}
$$

- frozen variables,
- cluster variables,


## Cluster algebras of geometric type

$$
\begin{array}{rlr}
\mathbf{y} & =\left(y_{1}, \ldots, y_{n-m}\right) & - \text { frozen variables } \\
\mathbf{x}(t) & =\left(x_{1}(t), \ldots, x_{m}(t)\right) & - \text { cluster variables } \\
\mathbf{z}(t) & =\left(z_{1}(t), \ldots, z_{n}(t)\right)=(\mathbf{x}(t), \mathbf{y})-\text { extended cluster } \\
& \text { variables. }
\end{array}
$$

## Cluster algebras of geometric type

\[

\]

## Definition

Cluster algebra $\mathcal{A}$ is given by pair $(B(t), \mathbf{z}(t))$ for each cluster (vertex of exchange graph) $t$

## Cluster algebras of geometric type

\[

\]

## Definition

Cluster algebra $\mathcal{A}$ is given by pair $(B(t), \mathbf{z}(t))$ for each cluster (vertex of exchange graph) $t$

- $B(t)$ is an $m \times n$ integral matrix $(m \leq n)$ whose left $m \times m$ block is left-skew-symmetrizable, (we will assume it skew-symmetric for simplicity)


## Cluster algebras of geometric type

\[

\]

## Definition

Cluster algebra $\mathcal{A}$ is given by pair $(B(t), \mathbf{z}(t))$ for each cluster (vertex of exchange graph) $t$

- $B(t)$ is an $m \times n$ integral matrix $(m \leq n)$ whose left $m \times m$ block is left-skew-symmetrizable, (we will assume it skew-symmetric for simplicity)
- $\mathbf{z}(t)$ is a vector of extended cluster variables.


## Cluster algebras of geometric type

\[

\]

## Definition

Cluster algebra $\mathcal{A}$ is given by pair $(B(t), \mathbf{z}(t))$ for each cluster (vertex of exchange graph) $t$

- $B(t)$ is an $m \times n$ integral matrix $(m \leq n)$ whose left $m \times m$ block is left-skew-symmetrizable, (we will assume it skew-symmetric for simplicity)
- $\mathbf{z}(t)$ is a vector of extended cluster variables.
- variables $z_{m+1}=y_{1}, \ldots, z_{n}=y_{n-m}$ are not affected by $T_{i}$.


## Cluster algebras of geometric type

\[

\]

## Definition

Cluster algebra $\mathcal{A}$ is given by pair $(B(t), \mathbf{z}(t))$ for each cluster (vertex of exchange graph) $t$

- $B(t)$ is an $m \times n$ integral matrix $(m \leq n)$ whose left $m \times m$ block is left-skew-symmetrizable, (we will assume it skew-symmetric for simplicity)
- $\mathbf{z}(t)$ is a vector of extended cluster variables.
- variables $z_{m+1}=y_{1}, \ldots, z_{n}=y_{n-m}$ are not affected by $T_{i}$.
- both $B(t)$ and $\mathbf{z}(t)$ are subject to cluster transformations defined as follows.


## Cluster transformations

## Cluster transformations

## Cluster change

For an edge of $\mathbb{T}_{m} \quad t^{t} \quad i \quad t^{\prime} \quad i \in[1, \ldots, m]$
$T_{i}: \mathbf{z}(t) \mapsto \mathbf{z}\left(t^{\prime}\right)$ is defined as

$$
\begin{gathered}
\mathbf{x}_{i}\left(t^{\prime}\right)=\frac{1}{x_{i}(t)}\left(\prod_{b_{i_{k}}(t)>0} z_{k}(t)^{b_{k}(t)}+\prod_{b_{i k}(t)<0} z_{k}(t)^{-b_{k}(t)}\right) \\
z_{j}\left(t^{\prime}\right)=z_{j}(t) \quad j \neq i,
\end{gathered}
$$

## Cluster transformations

## Cluster change

For an edge of $\mathbb{T}_{m} \quad \stackrel{t}{\bullet} \quad i \quad t_{\bullet}^{\prime} \quad i \in[1, \ldots, m]$
$T_{i}: \mathbf{z}(t) \mapsto \mathbf{z}\left(t^{\prime}\right)$ is defined as

$$
\begin{gathered}
\mathbf{x}_{i}\left(t^{\prime}\right)=\frac{1}{\mathbf{x}_{i}(t)}\left(\prod_{b_{i k}(t)>0} z_{k}(t)^{b_{i k}(t)}+\prod_{b_{i k}(t)<0} z_{k}(t)^{-b_{i k}(t)}\right) \\
z_{j}\left(t^{\prime}\right)=z_{j}(t) \quad j \neq i,
\end{gathered}
$$

Matrix mutation $B\left(t^{\prime}\right)=T_{i}(B(t))$,

$$
b_{k l}\left(t^{\prime}\right)=\left\{\begin{array}{l}
-b_{k l}(t), \quad \text { if }(k-i)(I-i)=0 \\
b_{k l}(t)+\frac{\left|b_{k i}(t)\right| b_{i l}(t)+b_{k i}(t)\left|b_{i l}(t)\right|}{2}, \text { otherwise. }
\end{array}\right.
$$

## Definition

Given some initial cluster $t_{0}$ put $z_{i}=z_{i}\left(t_{0}\right), B=B\left(t_{0}\right)$. The cluster algebra $\mathcal{A}$ (or, $\mathcal{A}(B)$ ) is the subalgebra of the field of rational functions in cluster variables $z_{1}, \ldots, z_{n}$ generated by the union of all cluster variables $z_{i}(t)$.

## Examples of $T_{i}(B)$

A matrix $B(t)$ can be represented by a (weighted, oriented) graph.


## The Laurent phenomenon

Theorem (FZ) In a cluster algebra, any cluster variable is expressed in terms of initial cluster as a Laurent polynomial.

## Positivity Conjecture

All these Laurent polynomials have positive integer coefficients

## Examples of Cluster Transformations

## Examples of Cluster Transformations

- Short Plücker relation in $G_{k}(n)$

$$
x_{i j J} x_{k l J}=x_{i k J} x_{j l J}+x_{i l J} x_{k j J}
$$

$$
\text { for } 1 \leq i<k<j<I \leq m,|J|=k-2 .
$$

## Examples of Cluster Transformations

- Short Plücker relation in $G_{k}(n)$

$$
x_{i j J} x_{k l J}=x_{i k J} x_{j l J}+x_{i l J} x_{k j J}
$$

for $1 \leq i<k<j<I \leq m,|J|=k-2$.

- Whitehead moves and Ptolemy relations in Decorated Teichmüller space:


$$
f(p) f(q)=f(a) f(c)+f(b) f(d)
$$

## $\tau$-coordinates

Nondegenerate coordinate change:

$$
\tau_{i}(t)= \begin{cases}\prod_{j \neq i} z_{j}(t)^{b_{i j}(t)} & \text { for } i \leqslant m \\ \prod_{j \neq i} z_{j}(t)^{b_{i j}(t)} / z_{i}(t) & \text { for } m+1 \leqslant i \leqslant n\end{cases}
$$

Exchange in direction $i$ :

$$
\tau_{i} \mapsto \frac{1}{\tau_{i}} ; \quad \tau_{j} \mapsto \begin{cases}\tau_{j}\left(1+\tau_{i}\right)^{b_{i j}}, & \text { if } b_{i j}>0 \\ \tau_{j}\left(\frac{\tau_{i}}{1+\tau_{i}}\right)^{-b_{i j}}, & \text { otherwise }\end{cases}
$$

## Definition

We say that a skew-symmetrizable matrix $A$ is reducible if there exists a permutation matrix $P$ such that $P A P^{T}$ is a block-diagonal matrix, and irreducible otherwise. The reducibility $\rho(A)$ is defined as the maximal number of diagonal blocks in $P A P^{T}$. The partition into blocks defines an obvious equivalence relation $\sim$ on the rows (or columns) of $A$.

## Compatible Poisson structures

A Poisson bracket $\{\cdot, \cdot\}$ is compatible with the cluster algebra $\mathcal{A}$ if, for any extended cluster $\widetilde{\mathbf{z}}=\left(z_{1}, \ldots, z_{n}\right)$

$$
\left\{z_{i}, z_{j}\right\}=\omega_{i j} z_{i} z_{j}
$$

where $\omega_{i j} \in \mathbb{Z}$ are constants for all $i, j \in[1, n+m]$.

## Theorem

For an $B \in \mathbb{Z}_{n, n+m}$ as above of rank $n$ the set of compatible Poisson brackets has dimension $\rho(B)+\binom{m}{2}$. Moreover, the coefficient matrices $\Omega^{\tau}$ of these Poisson brackets in the basis $\tau$ are characterized by the equation $\Omega^{\tau}[m, n]=\Lambda B$ for some diagonal matrix $\Lambda=\operatorname{diagonal}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ where $\lambda_{i}=\lambda_{j}$ whenever $i \sim j$.

## Degenerate exchange matrix

## Example

Cluster algebra of rank 3 with trivial coefficients. Exchange matrix
$B=\left(\begin{array}{ccc}0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0\end{array}\right)$. Compatible Poisson bracket must satisfy
$\left\{x_{1}, x_{2}\right\}=\lambda x_{1} x_{2}, \quad\left\{x_{1}, x_{3}\right\}=\mu x_{1} x_{3}, \quad\left\{x_{2}, x_{3}\right\}=\nu x_{2} x_{3}$
Exercise: Check that these conditions imply $\lambda=\mu=\nu=0$.
Conclusion: Only trivial Poisson structure is compatible with the cluster algebra.

## What to do?

We will use the dual language of 2-forms

## Compatible 2-forms

## Definition

2-form $\omega$ is compatible with a collecion of functions $\left\{f_{i}\right\}$ if $\omega=\sum_{i, j} \omega_{i j} \frac{d f_{i}}{f_{i}} \wedge \frac{d f_{j}}{f_{j}}$

## Definition

2-form $\omega$ is compatible with a cluster algebra if it is compatible with all clusters.

## Exercise

Check that the form $\omega=\frac{d x_{1}}{x_{1}} \wedge \frac{d x_{2}}{x_{2}}-\frac{d x_{1}}{x_{1}} \wedge \frac{d x_{3}}{x_{3}}+\frac{d x_{2}}{x_{2}} \wedge \frac{d x_{3}}{x_{3}}$ is compatible with the example above.

## Compatible 2-forms

## Theorem

For an $B \in \mathbb{Z}_{n, n+m}$ the set of Poisson brackets for which all extended clusters in $\mathfrak{A}(B)$ are log-canonical has dimension $\rho(B)+\binom{m}{2}$. Moreover, the coefficient matrices $\Omega^{\mathrm{x}}$ of these 2-forms in initial cluster are characterized by the equation $\Omega^{\mathrm{x}}[m, n]=\Lambda B$, where $\Lambda=\operatorname{diagonal}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, with $\lambda_{i}=\lambda_{j} \neq 0$ whenever $i \sim j$.

## Cluster manifold

For an abstract cluster algebra of geometric type $\mathcal{A}$ of rank $m$ we construct an algebraic variety $\mathfrak{A}$ (which we call cluster manifold)

Idea: $\mathfrak{A}$ is a "good" part of $\operatorname{Spec}(\mathcal{A})$.
We will describe $\mathfrak{A}$ by means of charts and transition functions. For each cluster $t$ we define an open chart

$$
\mathfrak{A}(t)=\operatorname{Spec}\left(\mathbb{C}\left[\mathbf{x}(t), \mathbf{x}(t)^{-1}, \mathbf{y}\right]\right),
$$

where $\mathbf{x}(t)^{-1}$ means $x_{1}(t)^{-1}, \ldots, x_{m}(t)^{-1}$.
Transitions between charts are defined by exchange relations

$$
\begin{gathered}
x_{i}\left(t^{\prime}\right) x_{i}(t)=\prod_{b_{i k}(t)>0} z_{k}(t)^{b_{i k}(t)}+\prod_{b_{i k}(t)<0} z_{k}(t)^{-b_{i k}(t)} \\
z_{j}\left(t^{\prime}\right)=z_{j}(t) \quad j \neq i
\end{gathered}
$$

Finally, $\mathfrak{A}=\cup_{t} \mathfrak{A}(t)$.

## Nonsingularity of $\mathfrak{A}$

$\mathfrak{A}$ contains only such points $p \in \operatorname{Spec}(\mathcal{A})$ that there is a cluster $t$ whose cluster elements form a coordinate system in some neighborhood of $p$. Observation The cluster manifold $\mathfrak{A}$ is nonsingular and possesses a Poisson bracket that is log-canonical w.r.t. any extended cluster.
Let $\omega$ be one of these Poisson brackets.
Casimir of $\omega$ is a function that is in involution with all the other functions on $\mathfrak{A}$. All rational casimirs form a subfield $F_{C}$ in the field of rational functions $\mathbb{C}(\mathfrak{A})$. The following proposition provides a complete description of $F_{C}$.
Lemma $F_{C}=F\left(\mathbf{m}_{1}, \ldots, \mathbf{m}_{s}\right)$, where $\mathbf{m}_{j}=\prod y_{i}^{\alpha_{j i}}$ for some integral $\alpha_{j i}$, and $s=$ corank $\omega$.

## Toric action

We define a local toric action on the extended cluster $t$ as the $\mathbb{C}^{*}$-action given by the formula $z_{i}(t) \mapsto z_{i}(t) \cdot \xi^{w_{i}(t)}, \xi \in \mathbb{C}^{*}$ for some integral $w_{i}(t)$ (called weights of toric action).
Local toric actions are compatible if taken in all clusters they define a global action on $\mathcal{A}$. This toric action is said to be an extension of the above local actions.
$\mathfrak{A}^{0}$ is the regular locus for all compatible toric actions on $\mathfrak{A}$.
$\mathfrak{A}^{0}$ is given by inequalities $y_{i} \neq 0$.

## Symplectic leaves

$\mathfrak{A}$ is foliated into a disjoint union of symplectic leaves of $\omega$.
Given generators $q_{1}, \ldots, q_{s}$ of the field of rational casimirs $F_{C}$ we have a $\operatorname{map} Q: \mathfrak{A} \rightarrow \mathbb{C}^{s}, Q(x)=\left(q_{1}(x), \ldots, q_{s}(x)\right)$.
We say that a symplectic leaf $\mathcal{L}$ is generic if there exist $s$ vector fields $u_{i}$ on $\mathfrak{A}$ such that
a) at every point $x \in \mathcal{L}$, the vector $u_{i}(x)$ is transversal to the surface $Q^{-1}(Q(\mathcal{L}))$;
b) the translation along $u_{i}$ for a sufficiently small time $t$ gives a diffeomorphism between $\mathcal{L}$ and a close symplectic leaf $\mathcal{L}_{t}$.
Lemma $\mathfrak{A}^{0}$ is foliated into a disjoint union of generic symplectic leaves of the Poisson bracket $\omega$.
Remark Generally speaking, $\mathfrak{A}^{0}$ does not coincide with the union of all "generic" symplectic leaves in $\mathfrak{A}$.

## Connected components of $\mathfrak{A}^{0}$

Question: find the number $\#\left(\mathfrak{A}^{0}\right)$ of connected components of $\mathfrak{A}^{0}$. Let $\mathcal{F}_{2}^{n}$ be an $n$-dimensional vector space over $\mathcal{F}_{2}$ with a fixed basis $\left\{e_{i}\right\}$. Let $B^{\prime}$ be a $n \times n$ - matrix with $\mathbb{Z}_{2}$ entries defined by the relation $B^{\prime} \equiv B(t)(\bmod 2)$ for some cluster $t$, and let $\omega=\omega_{t}$ be a (skew-)symmetric bilinear form on $\mathcal{F}_{2}^{n}$, such that $\omega\left(e_{i}, e_{j}\right)=b_{i j}^{\prime}$. Define a linear operator $\mathfrak{t}_{i}: \mathcal{F}_{2}^{n} \rightarrow \mathcal{F}_{2}^{n}$ by the formula $\mathfrak{t}_{i}(\theta)=\xi-\omega\left(\theta, e_{i}\right) e_{i}$, and let $\Gamma=\Gamma_{t}$ be the group generated by $\mathfrak{t}_{i}, 1 \leqslant i \leqslant m$.
Theorem The number of connected components $\#\left(\mathfrak{A}^{0}\right)$ equals to the number of $\Gamma_{t}$-orbits in $\mathcal{F}_{2}^{n}$.

## Cluster $\mathfrak{A}$ - and $\mathfrak{X}$ - manifolds

Coordinate ring Manifold

| $\mathcal{A}$ - cluster algebra with cluster coordinates $x_{i}$ | $\mathfrak{A}$ - cluster variety with compatible 2-form |
| :---: | :---: |
| $\uparrow \pi^{*}$ | $\pi: \tau_{i}=\prod_{j=1}^{n+m} x_{j}^{b_{i j}} \downarrow$ |
| - algebra generated by $\tau_{i}$ | - Poisson cluster vari |

Let $\Omega$ be a 2 -form.
Ker $\Omega=\{$ vector $\xi: \Omega(\xi, \eta)=0 \forall \eta\}$ provides a fibration of the underlying vector space.
\{space of fibers of $\operatorname{Ker} \Omega\} \rightarrow \operatorname{Im} \pi$ is a local diffeomorphism.

Let $\Omega$ be a 2 -form.
$\operatorname{Ker} \Omega=\{$ vector $\xi: \Omega(\xi, \eta)=0 \forall \eta\}$ provides a fibration of the underlying vector space.
\{space of fibers of $\operatorname{Ker} \Omega\} \rightarrow \operatorname{Im} \pi$ is a local diffeomorphism.
More generally, let $\Omega$ be a compatible 2 -form on a cluster manifold $\mathfrak{A}$ of coefficient-free cluster algebra $\mathcal{A}$.

Ker $\Omega$ determines an integrable distribution in $T \mathfrak{A}$.
Generic fibers of $\operatorname{Ker} \Omega$ form a smooth manifold $\tilde{\mathfrak{X}}$ whose dimension is rank(B).
$\pi: \mathfrak{A} \rightarrow \tilde{\mathfrak{X}}$ is a natural projection.
Then, $\widetilde{\Omega}=\pi_{*}(\Omega)$ is a symplectic form on $\tilde{\mathscr{X}}$ dual to the Poisson structure.

## Application of Compatible Poisson Structures <br> If a Poisson variety $(\mathcal{M},\{\cdot, \cdot\})$ possesses a coordinate chart that consists of regular functions whose logarithms have pairwise constant Poisson brackets, then one can use this chart to define a cluster algebra $\mathcal{A}_{\mathcal{M}}$ that is closely related (and, under rather mild conditions, isomorphic) to the ring of regular functions on $\mathcal{M}$ and such that $\{\cdot, \cdot\}$ is compatible with $\mathcal{A}_{\mathcal{M}}$.

## Examples

- (Decorated) Teichmüller space has a natural structure of cluster algebra. Weyl-Petersson symplectic form is the unique symplectic form "compatible" with the structure of cluster algebra.
- There exists a cluster algebra structure on $S L_{n}$ compatible with Sklyanin Poisson bracket. $\mathfrak{A}^{0}$ is the maximal double Bruhat cell.
- There exists a cluster algebra structure on Grassmanian compatible with push-forward of Sklyanin Poisson bracket. $\mathfrak{A}^{0}$ determined by the inequalities $\{$ solid Plücker coordinate $\neq 0\}$.


## Examples

- (Decorated) Teichmüller space has a natural structure of cluster algebra. Weyl-Petersson symplectic form is the unique symplectic form "compatible" with the structure of cluster algebra.
- There exists a cluster algebra structure on $S L_{n}$ compatible with Sklyanin Poisson bracket. $\mathfrak{A}^{0}$ is the maximal double Bruhat cell.
- There exists a cluster algebra structure on Grassmanian compatible with push-forward of Sklyanin Poisson bracket. $\mathfrak{A}^{0}$ determined by the inequalities $\{$ solid Plücker coordinate $\neq 0\}$.
We will now provide a detailed discussion of the last two examples.


## Poisson-Lie Groups

Let $G$ be a Lie group.

## Poisson-Lie Groups

Let $G$ be a Lie group.

## Definition

The Poisson structure $\{$,$\} on G$ is called Poisson-Lie if the multiplication map $m: G \times G \rightarrow G$ is Poisson.

## Poisson-Lie Groups

Let $G$ be a Lie group.

## Definition

The Poisson structure $\{$,$\} on G$ is called Poisson-Lie if the multiplication map $m: G \times G \rightarrow G$ is Poisson.

## Example

$S I_{2}$. Borel subgroup $B \subset S I_{2}$ is the set $\left\{\left(\begin{array}{cc}t & x \\ 0 & t^{-1}\end{array}\right)\right\}$
Poisson structure on $B:\{t, x\}=t x$.

## Poisson-Lie Groups

Let $G$ be a Lie group.

## Definition

The Poisson structure $\{$,$\} on G$ is called Poisson-Lie if the multiplication map $m: G \times G \rightarrow G$ is Poisson.

## Example

$S I_{2}$. Borel subgroup $B \subset S I_{2}$ is the set $\left\{\left(\begin{array}{cc}t & x \\ 0 & t^{-1}\end{array}\right)\right\}$
Poisson structure on $B$ : $\{t, x\}=t x$.
Induced Poisson structure on $B \times B=\left\{\left(\begin{array}{cc}t_{1} & x_{1} \\ 0 & t_{1}^{-1}\end{array}\right),\left(\begin{array}{cc}t_{2} & x_{2} \\ 0 & t_{2}^{-1}\end{array}\right)\right\}$ : $\left\{t_{1}, x_{1}\right\}=t_{1} x_{1},\left\{t_{2}, x_{2}\right\}=t_{2} x_{2}$. All other brackets are 0 .

## Poisson-Lie Groups

Let $G$ be a Lie group.

## Definition

The Poisson structure $\{$,$\} on G$ is called Poisson-Lie if the multiplication map $m: G \times G \rightarrow G$ is Poisson.

## Example

$S I_{2}$. Borel subgroup $B \subset S I_{2}$ is the set $\left\{\left(\begin{array}{cc}t & x \\ 0 & t^{-1}\end{array}\right)\right\}$
Poisson structure on $B$ : $\{t, x\}=t x$.
Induced Poisson structure on $B \times B=\left\{\left(\begin{array}{cc}t_{1} & x_{1} \\ 0 & t_{1}^{-1}\end{array}\right),\left(\begin{array}{cc}t_{2} & x_{2} \\ 0 & t_{2}^{-1}\end{array}\right)\right\}$ : $\left\{t_{1}, x_{1}\right\}=t_{1} x_{1},\left\{t_{2}, x_{2}\right\}=t_{2} x_{2}$. All other brackets are 0 .

$$
\left(\begin{array}{cc}
t_{1} & x_{1} \\
0 & t_{1}^{-1}
\end{array}\right) \cdot\left(\begin{array}{cc}
t_{2} & x_{2} \\
0 & t_{2}^{-1}
\end{array}\right)=\left(\begin{array}{cc}
t_{1} t_{2} & t_{1} x_{2}+x_{1} t_{2}^{-1} \\
0 & t_{1}^{-1} t_{2}^{-1}
\end{array}\right)=\left(\begin{array}{cc}
u & v \\
0 & u^{-1}
\end{array}\right)
$$

## For coordinates $u, v$

For coordinates $u, v$
$\left\{m^{\star}(u), m^{*}(v)\right\}_{G \times G}=\left\{t_{1} t_{2}, t_{1} x_{2}+x_{1} t_{2}^{-1}\right\}_{G \times G}=t_{1}^{2} t_{2} x_{2}+t_{1} x_{1}$.

For coordinates $u, v$
$\left\{m^{\star}(u), m^{*}(v)\right\}_{G \times G}=\left\{t_{1} t_{2}, t_{1} x_{2}+x_{1} t_{2}^{-1}\right\}_{G \times G}=t_{1}^{2} t_{2} x_{2}+t_{1} x_{1}$. On the other hand,

$$
m^{\star}\left(\{u, v\}_{G}\right)=m^{\star}(u v)=t_{1}^{2} t_{2} x_{2}+t_{1} x_{1},
$$

For coordinates $u, v$
$\left\{m^{\star}(u), m^{*}(v)\right\}_{G \times G}=\left\{t_{1} t_{2}, t_{1} x_{2}+x_{1} t_{2}^{-1}\right\}_{G \times G}=t_{1}^{2} t_{2} x_{2}+t_{1} x_{1}$. On the other hand,

$$
m^{\star}\left(\{u, v\}_{G}\right)=m^{\star}(u v)=t_{1}^{2} t_{2} x_{2}+t_{1} x_{1},
$$

which proves Poisson-Lie property.

For coordinates $u, v$
$\left\{m^{\star}(u), m^{*}(v)\right\}_{G \times G}=\left\{t_{1} t_{2}, t_{1} x_{2}+x_{1} t_{2}^{-1}\right\}_{G \times G}=t_{1}^{2} t_{2} x_{2}+t_{1} x_{1}$. On the other hand,

$$
m^{\star}\left(\{u, v\}_{G}\right)=m^{\star}(u v)=t_{1}^{2} t_{2} x_{2}+t_{1} x_{1},
$$

which proves Poisson-Lie property. Similarly, we define Poisson-Lie bracket for $B_{-}$.

For coordinates $u, v$
$\left\{m^{\star}(u), m^{*}(v)\right\}_{G \times G}=\left\{t_{1} t_{2}, t_{1} x_{2}+x_{1} t_{2}^{-1}\right\}_{G \times G}=t_{1}^{2} t_{2} x_{2}+t_{1} x_{1}$.
On the other hand,

$$
m^{\star}\left(\{u, v\}_{G}\right)=m^{\star}(u v)=t_{1}^{2} t_{2} x_{2}+t_{1} x_{1}
$$

which proves Poisson-Lie property. Similarly, we define Poisson-Lie bracket for $B_{-}$.
Then, if we have embedded Poisson subgroups $B$ and $B_{-}$they define a Poisson-Lie structure on $S L_{2}$ they generate.

To define Poisson-Lie bracket on the whole $S L_{2}$ we use Gauss decomposition of the open dense part of $S L_{2}$ into $B_{-} B_{+}$.

To define Poisson-Lie bracket on the whole $S L_{2}$ we use Gauss decomposition of the open dense part of $S L_{2}$ into $B_{-} B_{+}$. Indeed, $\left(\begin{array}{cc}t_{1} & 0 \\ y_{1} & t_{1}^{-1}\end{array}\right)\left(\begin{array}{cc}t_{2} & x_{2} \\ 0 & t_{2}^{-1}\end{array}\right)=\left(\begin{array}{cc}t_{1} t_{2} & t_{1} x_{2} \\ y_{1} t_{2} & y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\end{array}\right)$

To define Poisson-Lie bracket on the whole $S L_{2}$ we use Gauss decomposition of the open dense part of $S L_{2}$ into $B_{-} B_{+}$. Indeed, $\left(\begin{array}{cc}t_{1} & 0 \\ y_{1} & t_{1}^{-1}\end{array}\right)\left(\begin{array}{cc}t_{2} & x_{2} \\ 0 & t_{2}^{-1}\end{array}\right)=\left(\begin{array}{cc}t_{1} t_{2} & t_{1} x_{2} \\ y_{1} t_{2} & y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\end{array}\right)$
Hence,

$$
\left\{z_{11}, z_{12}\right\}=\left\{t_{1} t_{2}, t_{1} x_{2}\right\}=t_{1}^{2} t_{2} x_{2}
$$

$$
=z_{11} z_{12},
$$

To define Poisson-Lie bracket on the whole $S L_{2}$ we use Gauss decomposition of the open dense part of $S L_{2}$ into $B_{-} B_{+}$. Indeed, $\left(\begin{array}{cc}t_{1} & 0 \\ y_{1} & t_{1}^{-1}\end{array}\right)\left(\begin{array}{cc}t_{2} & x_{2} \\ 0 & t_{2}^{-1}\end{array}\right)=\left(\begin{array}{cc}t_{1} t_{2} & t_{1} x_{2} \\ y_{1} t_{2} & y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\end{array}\right)$
Hence,

$$
\begin{aligned}
& \left\{z_{11}, z_{12}\right\}=\left\{t_{1} t_{2}, t_{1} x_{2}\right\}=t_{1}^{2} t_{2} x_{2} \\
& \left\{z_{11}, z_{21}\right\}=\left\{t_{1} t_{2}, y_{1} t_{2}\right\}=t_{2}^{2} t_{1} y_{1}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{11} z_{12}, \\
& =z_{11} z_{21},
\end{aligned}
$$

To define Poisson-Lie bracket on the whole $S L_{2}$ we use Gauss decomposition of the open dense part of $S L_{2}$ into $B_{-} B_{+}$. Indeed, $\left(\begin{array}{cc}t_{1} & 0 \\ y_{1} & t_{1}^{-1}\end{array}\right)\left(\begin{array}{cc}t_{2} & x_{2} \\ 0 & t_{2}^{-1}\end{array}\right)=\left(\begin{array}{cc}t_{1} t_{2} & t_{1} x_{2} \\ y_{1} t_{2} & y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\end{array}\right)$
Hence,

$$
\begin{array}{lr}
\left\{z_{11}, z_{12}\right\}=\left\{t_{1} t_{2}, t_{1} x_{2}\right\}=t_{1}^{2} t_{2} x_{2} & =z_{11} z_{12}, \\
\left\{z_{11}, z_{21}\right\}=\left\{t_{1} t_{2}, y_{1} t_{2}\right\}=t_{2}^{2} t_{1} y_{1} & =z_{11} z_{21}, \\
\left\{z_{11}, z_{22}\right\}=\left\{t_{1} t_{2}, y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\right\}=2 t_{1} y_{1} t_{2} x_{2} & =2 z_{12} z_{21},
\end{array}
$$

To define Poisson-Lie bracket on the whole $S L_{2}$ we use Gauss decomposition of the open dense part of $S L_{2}$ into $B_{-} B_{+}$. Indeed, $\left(\begin{array}{cc}t_{1} & 0 \\ y_{1} & t_{1}^{-1}\end{array}\right)\left(\begin{array}{cc}t_{2} & x_{2} \\ 0 & t_{2}^{-1}\end{array}\right)=\left(\begin{array}{cc}t_{1} t_{2} & t_{1} x_{2} \\ y_{1} t_{2} & y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\end{array}\right)$
Hence,

$$
\begin{array}{rrr}
\left\{z_{11}, z_{12}\right\}=\left\{t_{1} t_{2}, t_{1} x_{2}\right\}=t_{1}^{2} t_{2} x_{2} & =z_{11} z_{12}, \\
\left\{z_{11}, z_{21}\right\}=\left\{t_{1} t_{2}, y_{1} t_{2}\right\}=t_{2}^{2} t_{1} y_{1} & =z_{11} z_{21}, \\
\left\{z_{11}, z_{22}\right\}=\left\{t_{1} t_{2}, y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\right\}=2 t_{1} y_{1} t_{2} x_{2} & =2 z_{12} z_{21}, \\
\left\{z_{12}, z_{21}\right\}=\left\{t_{1} x_{2}, y_{1} t_{2}\right\} & =0,
\end{array}
$$

To define Poisson-Lie bracket on the whole $S L_{2}$ we use Gauss decomposition of the open dense part of $S L_{2}$ into $B_{-} B_{+}$. Indeed, $\left(\begin{array}{cc}t_{1} & 0 \\ y_{1} & t_{1}^{-1}\end{array}\right)\left(\begin{array}{cc}t_{2} & x_{2} \\ 0 & t_{2}^{-1}\end{array}\right)=\left(\begin{array}{cc}t_{1} t_{2} & t_{1} x_{2} \\ y_{1} t_{2} & y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\end{array}\right)$
Hence,

$$
\begin{aligned}
&\left\{z_{11}, z_{12}\right\}=\left\{t_{1} t_{2}, t_{1} x_{2}\right\}=t_{1}^{2} t_{2} x_{2}=z_{11} z_{12}, \\
&\left\{z_{11}, z_{21}\right\}=\left\{t_{1} t_{2}, y_{1} t_{2}\right\}=t_{2}^{2} t_{1} y_{1}, \\
&\left\{z_{11}, z_{22}\right\}=\left\{t_{1} t_{2}, y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\right\}=2 t_{1} y_{1} t_{2} x_{2} \\
&\left\{z_{12}, z_{21}\right\}=\left\{t_{12} z_{21}, y_{1} t_{2}\right\}=0, \\
&\left\{z_{12}, z_{22}\right\}=\left\{t_{1} x_{2}, y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\right\}=t_{1} y_{1} t_{2} x_{2}^{2}+x_{2} / t_{2}=z_{12} z_{22},
\end{aligned}
$$

To define Poisson-Lie bracket on the whole $S L_{2}$ we use Gauss decomposition of the open dense part of $S L_{2}$ into $B_{-} B_{+}$. Indeed, $\left(\begin{array}{cc}t_{1} & 0 \\ y_{1} & t_{1}^{-1}\end{array}\right)\left(\begin{array}{cc}t_{2} & x_{2} \\ 0 & t_{2}^{-1}\end{array}\right)=\left(\begin{array}{cc}t_{1} t_{2} & t_{1} x_{2} \\ y_{1} t_{2} & y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\end{array}\right)$ Hence,

$$
\begin{array}{rlr}
\left\{z_{11}, z_{12}\right\}=\left\{t_{1} t_{2}, t_{1} x_{2}\right\}=t_{1}^{2} t_{2} x_{2} & =z_{11} z_{12}, \\
\left\{z_{11}, z_{21}\right\}=\left\{t_{1} t_{2}, y_{1} t_{2}\right\}=t_{2}^{2} t_{1} y_{1} & =z_{11} z_{21}, \\
\left\{z_{11}, z_{22}\right\}=\left\{t_{1} t_{2}, y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\right\}=2 t_{1} y_{1} t_{2} x_{2} & =2 z_{12} z_{21}, \\
\left\{z_{12}, z_{21}\right\}=\left\{t_{1} x_{2}, y_{1} t_{2}\right\} & =0, \\
\left\{z_{12}, z_{22}\right\}=\left\{t_{1} x_{2}, y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\right\}=t_{1} y_{1} t_{2} x_{2}^{2}+x_{2} / t_{2}=z_{12} z_{22}, \\
\left\{z_{21}, z_{22}\right\}=\left\{y_{1} t_{2}, y_{1} x_{2}+t_{1}^{-1} t_{2}^{-1}\right\}=y_{1}^{2} t_{2} x_{2}+y_{1} / t_{1} & =z_{21} z_{22} .
\end{array}
$$

Standard embeddings $S L_{2} \subset S L_{n}$ define Poisson submanifold with respect to standard Poisson-Lie bracket.

## Poisson-Lie bracket for $S L_{n}$

Standard embeddings $S L_{2} \subset S L_{n}$ define Poisson submanifold with respect to standard Poisson-Lie bracket. Any fixed reduced decomposition of the maximal element of the Weyl group determines a Poisson map $\binom{n-1}{2}$
$\prod S L_{2} \rightarrow S L_{n}$.

## Poisson-Lie bracket for $S L_{n}$

Standard embeddings $S L_{2} \subset S L_{n}$ define Poisson submanifold with respect to standard Poisson-Lie bracket. Any fixed reduced decomposition of the maximal element of the Weyl group determines a Poisson map $\binom{n-1}{2}$
$\prod S L_{2} \rightarrow S L_{n}$. Then, for $X=\left(x_{i j}\right) \in S L_{n}$ we have
$\left\{x_{i j}, x_{k i}\right\}=x_{i j} x_{i k}$ for $j<k$,
$\left\{x_{j i}, x_{k i}\right\}=x_{j i} x_{k i}$ for $j<k$
$\left\{x_{i j}, x_{k l}\right\}=x_{i l} x_{k j}$ for $i<k, j<1, \quad\left\{x_{i j}, x_{k l}\right\}=0$ for $i<k, j>l$

## Poisson-Lie bracket for $S L_{n}$

Standard embeddings $S L_{2} \subset S L_{n}$ define Poisson submanifold with respect to standard Poisson-Lie bracket. Any fixed reduced decomposition of the maximal element of the Weyl group determines a Poisson map $\binom{n-1}{2}$
$\prod S L_{2} \rightarrow S L_{n}$. Then, for $X=\left(x_{i j}\right) \in S L_{n}$ we have
$\left\{x_{i j}, x_{k i}\right\}=x_{i j} x_{i k}$ for $j<k$,
$\left\{x_{j i}, x_{k i}\right\}=x_{j i} x_{k i}$ for $j<k$
$\left\{x_{i j}, x_{k l}\right\}=x_{i l} x_{k j}$ for $i<k, j<1, \quad\left\{x_{i j}, x_{k l}\right\}=0$ for $i<k, j>l$

## $R$-matrix

One can construct a Poisson-Lie bracket using $R$ - matrix.

## Definition

A map $R: g \rightarrow g$ is called a classical $R$ - matrix if it satisfies modified Yang-Baxter equation

$$
[R(\xi), R(\eta)]-R([R(\xi), \eta]+[\xi, R(\eta)])=-[\xi, \eta]
$$

## $R$-matrix

One can construct a Poisson-Lie bracket using $R$ - matrix.

## Definition

A map $R: g \rightarrow g$ is called a classical $R$ - matrix if it satisfies modified Yang-Baxter equation

$$
[R(\xi), R(\eta)]-R([R(\xi), \eta]+[\xi, R(\eta)])=-[\xi, \eta]
$$

## $R$-matrix Poisson bracket

$R$-matrix Poisson-Lie bracket on $S L_{n}$ :

$$
\left.\left.\left\{f_{1}, f_{2}\right\}(X)=\frac{1}{2}\left(\left\langle R\left(\nabla f_{1}(X) X\right), \nabla f_{2}(X) X\right\rangle-\left\langle R\left(X \nabla f_{1}(X)\right), X \nabla f_{2}(X)\right)\right]\right\rangle\right)
$$

where gradient $\nabla f \in s l_{n}$ defined w.r.t. trace form.

## Example

For any matrix $X$ we write its decomposition into a sum of lower triangular and strictly upper triangular matrices as

$$
X=X_{-}+X_{0}+X_{+}
$$

The standard $R$-matrix $R: M a t_{n} \rightarrow M a t_{n}$ defined by

$$
R(X)=X_{+}-X_{-}
$$

The standard $R$-matrix Poisson-Lie bracket:

$$
\left\{x_{i j}, x_{\alpha \beta}\right\}(X)=\frac{1}{2}(\operatorname{sign}(\alpha-i)+\operatorname{sign}(\beta-j)) x_{i \beta} x_{\alpha j}
$$

## Poisson Homogeneous Spaces

$X$ is a homogeneous space of an algebraic group $G$, i.e.,

$$
m: G \times X \rightarrow X
$$

$G$ is equipped with Poisson-Lie structure.

## Definition

Poisson bracket on $X$ equips $X$ with a structure of a Poisson homogeneous space if $m$ is a Poisson map.

## Grassmannian $G_{k}(n)$

Grassmannian $G_{k}(n)$ of $k$-dimensional subspaces of $n$-dimensional space. $S L_{n}$ acts freely on $G_{k}(n)$.

## Grassmannian $G_{k}(n)$

Grassmannian $G_{k}(n)$ of $k$-dimensional subspaces of $n$-dimensional space. $S L_{n}$ acts freely on $G_{k}(n)$.
Maximal Schubert cell $G_{k}^{0}(n) \subset G_{k}(n)$ contains elements of the form
(1 $Y$ ) where $Y=\left(y_{i j}\right), i \in[1, k] ; j \in[1, n-k]$.

## Grassmannian $G_{k}(n)$

Grassmannian $G_{k}(n)$ of $k$-dimensional subspaces of $n$-dimensional space. $S L_{n}$ acts freely on $G_{k}(n)$.
Maximal Schubert cell $G_{k}^{0}(n) \subset G_{k}(n)$ contains elements of the form
(1 $Y$ ) where $Y=\left(y_{i j}\right), i \in[1, k] ; j \in[1, n-k]$.
Poisson homogeneous bracket w.r.t. the standard Poisson-Lie bracket on $S L_{n}$ :

$$
\left\{y_{i j}, y_{\alpha, \beta}\right\}=\frac{1}{2}\left((\operatorname{sign}(\alpha-i)-\operatorname{sign}(\beta-j)) y_{i \beta} y_{\alpha, j}\right.
$$

## Grassmannian $G_{k}(n)$

Grassmannian $G_{k}(n)$ of $k$-dimensional subspaces of $n$-dimensional space. $S L_{n}$ acts freely on $G_{k}(n)$.
Maximal Schubert cell $G_{k}^{0}(n) \subset G_{k}(n)$ contains elements of the form
(1 $Y$ ) where $Y=\left(y_{i j}\right), i \in[1, k] ; j \in[1, n-k]$.
Poisson homogeneous bracket w.r.t. the standard Poisson-Lie bracket on $S L_{n}$ :

$$
\left\{y_{i j}, y_{\alpha, \beta}\right\}=\frac{1}{2}\left((\operatorname{sign}(\alpha-i)-\operatorname{sign}(\beta-j)) y_{i \beta} y_{\alpha, j}\right.
$$

To find a cluster structure in $G_{k}(n)$, need to find a coordinate system compatible with the bracket above.

Example: Cluster Structure on Grassmannians

## Cluster algebra structure on Grassmannians

## Cluster algebra structure on Grassmannians

- The open cell in $G_{k}(n)$ :


## Cluster algebra structure on Grassmannians

- The open cell in $G_{k}(n)$ :

$$
G_{k}^{0}(n)=\left\{X \in G_{k}(n): X=\left[\mathbf{1}_{k} Y\right]\right\}
$$

## Cluster algebra structure on Grassmannians

- The open cell in $G_{k}(n)$ :

$$
G_{k}^{0}(n)=\left\{X \in G_{k}(n): X=\left[\mathbf{1}_{k} Y\right]\right\}
$$

- Initial extended cluster :

$$
F_{i j}=(-1)^{(k-i)(l(i, j)-1)} Y_{[i-l(i, j), i]}^{[j, j+l(i, j)]}, l(i, j)=\min (i-1, n-k-j)
$$

## Cluster algebra structure on Grassmannians

- The open cell in $G_{k}(n)$ :

$$
G_{k}^{0}(n)=\left\{X \in G_{k}(n): X=\left[\mathbf{1}_{k} Y\right]\right\}
$$

- Initial extended cluster:

$$
F_{i j}=(-1)^{(k-i)(l(i, j)-1)} Y_{[i-l(i, j), i]}^{[j, j+l(i, j)]}, l(i, j)=\min (i-1, n-k-j)
$$



- Initial exchange matrix $\tilde{B}$
- Initial exchange matrix $\tilde{B}$ :
a $(0, \pm 1)$-matrix represented by a directed graph (quiver)

- Initial exchange matrix $\tilde{B}$ :
a $(0, \pm 1)$-matrix represented by a directed graph (quiver)

- Initial cluster transformations
- Initial exchange matrix $\tilde{B}$ :
a $(0, \pm 1)$-matrix represented by a directed graph (quiver)

- Initial cluster transformations are built out of short Plücker relations.


## And now for something completely different ....

## Weighted network $N$ in a disk

## Weighted network $N$ in a disk

- $G=(V, E)$ - directed planar graph drawn inside a disk with the vertex set $V$ and the edge set $E$.


## Weighted network $N$ in a disk

- $G=(V, E)$ - directed planar graph drawn inside a disk with the vertex set $V$ and the edge set $E$.
- Exactly $n$ of its vertices are located on the boundary circle of the disk. They are labelled counterclockwise $b_{1}, \ldots, b_{n}$ and called boundary vertices.


## Weighted network $N$ in a disk

- $G=(V, E)$ - directed planar graph drawn inside a disk with the vertex set $V$ and the edge set $E$.
- Exactly $n$ of its vertices are located on the boundary circle of the disk. They are labelled counterclockwise $b_{1}, \ldots, b_{n}$ and called boundary vertices.
- Each boundary vertex is labelled as a source or a sink. $I=\left\{i_{1}, \ldots, i_{k}\right\} \subset[1, n]$ is a set of sources. $J=[1, n] \backslash I$ - set of sinks.


## Weighted network $N$ in a disk

- $G=(V, E)$ - directed planar graph drawn inside a disk with the vertex set $V$ and the edge set $E$.
- Exactly $n$ of its vertices are located on the boundary circle of the disk. They are labelled counterclockwise $b_{1}, \ldots, b_{n}$ and called boundary vertices.
- Each boundary vertex is labelled as a source or a sink. $I=\left\{i_{1}, \ldots, i_{k}\right\} \subset[1, n]$ is a set of sources. $J=[1, n] \backslash I$ - set of sinks.
- All the internal vertices of $G$ have degree 3 and are of two types: either they have exactly one incoming edge, or exactly one outcoming edge. The vertices of the first type are called white, those of the second type, black.


## Weighted network $N$ in a disk

- $G=(V, E)$ - directed planar graph drawn inside a disk with the vertex set $V$ and the edge set $E$.
- Exactly $n$ of its vertices are located on the boundary circle of the disk. They are labelled counterclockwise $b_{1}, \ldots, b_{n}$ and called boundary vertices.
- Each boundary vertex is labelled as a source or a sink. $I=\left\{i_{1}, \ldots, i_{k}\right\} \subset[1, n]$ is a set of sources. $J=[1, n] \backslash I$ - set of sinks.
- All the internal vertices of $G$ have degree 3 and are of two types: either they have exactly one incoming edge, or exactly one outcoming edge. The vertices of the first type are called white, those of the second type, black.
- To each $e \in E$ we assign a weight $w_{e}$.


## Example



## Boundary Measurements

## Boundary Measurements

## Paths and cycles

A path $P$ in $N$ is an alternating sequence $\left(v_{1}, e_{1}, v_{2}, \ldots, e_{r}, v_{r+1}\right)$ of vertices and edges such that $e_{i}=\left(v_{i}, v_{i+1}\right)$ for any $i \in[1, r]$.

## Boundary Measurements

## Paths and cycles

A path $P$ in $N$ is an alternating sequence $\left(v_{1}, e_{1}, v_{2}, \ldots, e_{r}, v_{r+1}\right)$ of vertices and edges such that $e_{i}=\left(v_{i}, v_{i+1}\right)$ for any $i \in[1, r]$. A path is called a cycle if $v_{r+1}=v_{1}$

## Boundary Measurements

## Paths and cycles

A path $P$ in $N$ is an alternating sequence $\left(v_{1}, e_{1}, v_{2}, \ldots, e_{r}, v_{r+1}\right)$ of vertices and edges such that $e_{i}=\left(v_{i}, v_{i+1}\right)$ for any $i \in[1, r]$. A path is called a cycle if $v_{r+1}=v_{1}$

## Concordance number $\approx$ rotation number

## Boundary Measurements

## Paths and cycles

A path $P$ in $N$ is an alternating sequence $\left(v_{1}, e_{1}, v_{2}, \ldots, e_{r}, v_{r+1}\right)$ of vertices and edges such that $e_{i}=\left(v_{i}, v_{i+1}\right)$ for any $i \in[1, r]$. A path is called a cycle if $v_{r+1}=v_{1}$

## Concordance number $\approx$ rotation number

For a closed oriented polygonal plane curve $C$

## Boundary Measurements

## Paths and cycles

A path $P$ in $N$ is an alternating sequence $\left(v_{1}, e_{1}, v_{2}, \ldots, e_{r}, v_{r+1}\right)$ of vertices and edges such that $e_{i}=\left(v_{i}, v_{i+1}\right)$ for any $i \in[1, r]$. A path is called a cycle if $v_{r+1}=v_{1}$

## Concordance number $\approx$ rotation number

For a closed oriented polygonal plane curve $C$, let $e^{\prime}$ and $e^{\prime \prime}$ be two consequent oriented segments of $C, v$ - their common vertex.

## Boundary Measurements

## Paths and cycles

A path $P$ in $N$ is an alternating sequence $\left(v_{1}, e_{1}, v_{2}, \ldots, e_{r}, v_{r+1}\right)$ of vertices and edges such that $e_{i}=\left(v_{i}, v_{i+1}\right)$ for any $i \in[1, r]$.
A path is called a cycle if $v_{r+1}=v_{1}$

## Concordance number $\approx$ rotation number

For a closed oriented polygonal plane curve $C$, let $e^{\prime}$ and $e^{\prime \prime}$ be two consequent oriented segments of $C, v$ - their common vertex. Let $/$ be an arbitrary oriented line. Define $c_{l}\left(e^{\prime}, e^{\prime \prime}\right) \in \mathbb{Z} / 2 \mathbb{Z}$ in the following way:

## Boundary Measurements

## Paths and cycles

A path $P$ in $N$ is an alternating sequence $\left(v_{1}, e_{1}, v_{2}, \ldots, e_{r}, v_{r+1}\right)$ of vertices and edges such that $e_{i}=\left(v_{i}, v_{i+1}\right)$ for any $i \in[1, r]$.
A path is called a cycle if $v_{r+1}=v_{1}$

## Concordance number $\approx$ rotation number

For a closed oriented polygonal plane curve $C$, let $e^{\prime}$ and $e^{\prime \prime}$ be two consequent oriented segments of $C, v$ - their common vertex. Let $/$ be an arbitrary oriented line. Define $c_{l}\left(e^{\prime}, e^{\prime \prime}\right) \in \mathbb{Z} / 2 \mathbb{Z}$ in the following way: $c_{l}\left(e^{\prime}, e^{\prime \prime}\right)=1$ if the directing vector of $I$ belongs to the interior of the cone spanned by $e^{\prime}$ and $e^{\prime \prime}$

## Boundary Measurements

## Paths and cycles

A path $P$ in $N$ is an alternating sequence $\left(v_{1}, e_{1}, v_{2}, \ldots, e_{r}, v_{r+1}\right)$ of vertices and edges such that $e_{i}=\left(v_{i}, v_{i+1}\right)$ for any $i \in[1, r]$.
A path is called a cycle if $v_{r+1}=v_{1}$

## Concordance number $\approx$ rotation number

For a closed oriented polygonal plane curve $C$, let $e^{\prime}$ and $e^{\prime \prime}$ be two consequent oriented segments of $C, v$ - their common vertex. Let $/$ be an arbitrary oriented line. Define $c_{l}\left(e^{\prime}, e^{\prime \prime}\right) \in \mathbb{Z} / 2 \mathbb{Z}$ in the following way: $c_{l}\left(e^{\prime}, e^{\prime \prime}\right)=1$ if the directing vector of $I$ belongs to the interior of the cone spanned by $e^{\prime}$ and $e^{\prime \prime}, c_{l}\left(e^{\prime}, e^{\prime \prime}\right)=0$ otherwise.

## Boundary Measurements

## Paths and cycles

A path $P$ in $N$ is an alternating sequence $\left(v_{1}, e_{1}, v_{2}, \ldots, e_{r}, v_{r+1}\right)$ of vertices and edges such that $e_{i}=\left(v_{i}, v_{i+1}\right)$ for any $i \in[1, r]$.
A path is called a cycle if $v_{r+1}=v_{1}$

## Concordance number $\approx$ rotation number

For a closed oriented polygonal plane curve $C$, let $e^{\prime}$ and $e^{\prime \prime}$ be two consequent oriented segments of $C, v$ - their common vertex. Let $/$ be an arbitrary oriented line. Define $c_{l}\left(e^{\prime}, e^{\prime \prime}\right) \in \mathbb{Z} / 2 \mathbb{Z}$ in the following way: $c_{l}\left(e^{\prime}, e^{\prime \prime}\right)=1$ if the directing vector of $I$ belongs to the interior of the cone spanned by $e^{\prime}$ and $e^{\prime \prime}, c_{l}\left(e^{\prime}, e^{\prime \prime}\right)=0$ otherwise.
Define $c_{l}(C)$ as the sum of $c_{l}\left(e^{\prime}, e^{\prime \prime}\right)$ over all pairs of consequent segments in $C$.

## Boundary Measurements

## Paths and cycles

A path $P$ in $N$ is an alternating sequence $\left(v_{1}, e_{1}, v_{2}, \ldots, e_{r}, v_{r+1}\right)$ of vertices and edges such that $e_{i}=\left(v_{i}, v_{i+1}\right)$ for any $i \in[1, r]$.
A path is called a cycle if $v_{r+1}=v_{1}$

## Concordance number $\approx$ rotation number

For a closed oriented polygonal plane curve $C$, let $e^{\prime}$ and $e^{\prime \prime}$ be two consequent oriented segments of $C, v$ - their common vertex. Let $/$ be an arbitrary oriented line. Define $c_{l}\left(e^{\prime}, e^{\prime \prime}\right) \in \mathbb{Z} / 2 \mathbb{Z}$ in the following way: $c_{l}\left(e^{\prime}, e^{\prime \prime}\right)=1$ if the directing vector of $I$ belongs to the interior of the cone spanned by $e^{\prime}$ and $e^{\prime \prime}, c_{l}\left(e^{\prime}, e^{\prime \prime}\right)=0$ otherwise.
Define $c_{l}(C)$ as the sum of $c_{l}\left(e^{\prime}, e^{\prime \prime}\right)$ over all pairs of consequent segments in $C$. $c_{l}(C)$ does not depend on $I$, provided $I$ is not collinear to any of the segments in $C$.

## Boundary Measurements

## Paths and cycles

A path $P$ in $N$ is an alternating sequence $\left(v_{1}, e_{1}, v_{2}, \ldots, e_{r}, v_{r+1}\right)$ of vertices and edges such that $e_{i}=\left(v_{i}, v_{i+1}\right)$ for any $i \in[1, r]$.
A path is called a cycle if $v_{r+1}=v_{1}$

## Concordance number $\approx$ rotation number

For a closed oriented polygonal plane curve $C$, let $e^{\prime}$ and $e^{\prime \prime}$ be two consequent oriented segments of $C, v$ - their common vertex. Let $/$ be an arbitrary oriented line. Define $c_{l}\left(e^{\prime}, e^{\prime \prime}\right) \in \mathbb{Z} / 2 \mathbb{Z}$ in the following way: $c_{l}\left(e^{\prime}, e^{\prime \prime}\right)=1$ if the directing vector of $I$ belongs to the interior of the cone spanned by $e^{\prime}$ and $e^{\prime \prime}, c_{l}\left(e^{\prime}, e^{\prime \prime}\right)=0$ otherwise.
Define $c_{l}(C)$ as the sum of $c_{l}\left(e^{\prime}, e^{\prime \prime}\right)$ over all pairs of consequent segments in $C$. $c_{l}(C)$ does not depend on $I$, provided $I$ is not collinear to any of the segments in $C$. The common value of $c_{l}(C)$ for different choices of $l$ is denoted by $c(C)$ and called the concordance number of $C$.

## Example

Figure: $c_{l}\left(e_{1}, e_{2}\right)=c_{l}\left(e_{5}, e_{2}\right)=0 ; c_{l}\left(e_{2}, e_{3}\right)=1, c_{l}\left(e_{2}, e_{6}\right)=0$; $c_{l}\left(e_{6}, e_{7}\right)=1, c_{l}\left(e_{7}, e_{8}\right)=0$

## Boundary Measurements (cont'd)

## Weight of a path

A path $P$ between a source $b_{i}$ and a sink $b_{j}$

## Boundary Measurements (cont'd)

## Weight of a path

A path $P$ between a source $b_{i}$ and a sink $b_{j} \rightsquigarrow$ a closed polygonal curve $C_{P}=P \cup$ counterclockwise path btw. $b_{j}$ and $b_{i}$ along the boundary.

## Boundary Measurements (cont'd)

## Weight of a path

A path $P$ between a source $b_{i}$ and a sink $b_{j} \rightsquigarrow$ a closed polygonal curve $C_{P}=P \cup$ counterclockwise path btw. $b_{j}$ and $b_{i}$ along the boundary. The weight of $P$ :

$$
w_{P}=(-1)^{c\left(C_{P}\right)-1} \prod_{0 \subset D} w_{e} .
$$

## Boundary Measurements (cont'd)

## Weight of a path

A path $P$ between a source $b_{i}$ and a sink $b_{j} \rightsquigarrow$ a closed polygonal curve $C_{P}=P \cup$ counterclockwise path btw. $b_{j}$ and $b_{i}$ along the boundary. The weight of $P$ :

$$
w_{P}=(-1)^{c\left(C_{P}\right)-1} \prod_{e \in P} w_{e} .
$$

## Boundary Measurement

$M(i, j)=\sum$ weights of all paths starting at $b_{i}$ and ending at $b_{j}$

## Boundary Measurements (cont'd)

## Weight of a path

A path $P$ between a source $b_{i}$ and a sink $b_{j} \rightsquigarrow$ a closed polygonal curve $C_{P}=P \cup$ counterclockwise path btw. $b_{j}$ and $b_{i}$ along the boundary. The weight of $P$ :

$$
w_{P}=(-1)^{c\left(C_{P}\right)-1} \prod_{C D} w_{e} .
$$

Boundary Measurement
$M(i, j)=\sum$ weights of all paths starting at $b_{i}$ and ending at $b_{j}$
Proposition (Postnikov)

## Boundary Measurements (cont'd)

## Weight of a path

A path $P$ between a source $b_{i}$ and a sink $b_{j} \rightsquigarrow$ a closed polygonal curve $C_{P}=P \cup$ counterclockwise path btw. $b_{j}$ and $b_{i}$ along the boundary. The weight of $P$ :

$$
w_{P}=(-1)^{c\left(C_{P}\right)-1} \prod_{C D} w_{e} .
$$

## Boundary Measurement

$M(i, j)=\sum$ weights of all paths starting at $b_{i}$ and ending at $b_{j}$

## Proposition (Postnikov)

Each boundary measurement is a rational function in the weights $w_{e}$ admitting a subtraction-free rational expression.

## Boundary Measurements (cont'd)

## Weight of a path

A path $P$ between a source $b_{i}$ and a sink $b_{j} \rightsquigarrow$ a closed polygonal curve $C_{P}=P \cup$ counterclockwise path btw. $b_{j}$ and $b_{i}$ along the boundary. The weight of $P$ :

$$
w_{P}=(-1)^{c\left(C_{P}\right)-1} \prod_{\rho \in P} w_{e}
$$

## Boundary Measurement

$M(i, j)=\sum$ weights of all paths starting at $b_{i}$ and ending at $b_{j}$

## Proposition (Postnikov)

Each boundary measurement is a rational function in the weights $w_{e}$ admitting a subtraction-free rational expression.

Boundary Measurement Matrix: $M_{N}=\left(M\left(i_{p}, j_{q}\right)\right)$

## Example



## Example



## Network concatenation and the standard Poisson-Lie structure

## Network concatenation and the standard Poisson-Lie structure

The construction above is due to Postnikov

## Network concatenation and the standard Poisson-Lie structure

The construction above is due to Postnikov- extension of results by Karlin-McGregor, Lindström, Gessel-Viennot, Brenti, Berenshtein-Fomin-Zelevinsky,...

## Network concatenation and the standard Poisson-Lie structure

The construction above is due to Postnikov- extension of results by Karlin-McGregor, Lindström, Gessel-Viennot, Brenti, Berenshtein-Fomin-Zelevinsky, . . .motivated by the study of total positivity.

## Network concatenation and the standard Poisson-Lie structure

The construction above is due to Postnikov- extension of results by Karlin-McGregor, Lindström, Gessel-Viennot, Brenti, Berenshtein-Fomin-Zelevinsky, . . .motivated by the study of total positivity.

## Recall:

## Network concatenation and the standard Poisson-Lie structure

The construction above is due to Postnikov- extension of results by Karlin-McGregor, Lindström, Gessel-Viennot, Brenti, Berenshtein-Fomin-Zelevinsky, . . .motivated by the study of total positivity.

## Recall:

If sources and sinks of $N$ do not interlace:

## Network concatenation and the standard Poisson-Lie structure

The construction above is due to Postnikov- extension of results by Karlin-McGregor, Lindström, Gessel-Viennot, Brenti, Berenshtein-Fomin-Zelevinsky, . . .motivated by the study of total positivity.

## Recall:

If sources and sinks of $N$ do not interlace:

- place $N$ in a square rather than in a disk, with all sources located on the left side and sinks on the right side of the square


## Network concatenation and the standard Poisson-Lie structure

The construction above is due to Postnikov- extension of results by Karlin-McGregor, Lindström, Gessel-Viennot, Brenti, Berenshtein-Fomin-Zelevinsky, . . .motivated by the study of total positivity.

## Recall:

If sources and sinks of $N$ do not interlace:

- place $N$ in a square rather than in a disk, with all sources located on the left side and sinks on the right side of the square
- re-label sources/sinks from bottom to top


## Network concatenation and the standard Poisson-Lie structure

The construction above is due to Postnikov- extension of results by Karlin-McGregor, Lindström, Gessel-Viennot, Brenti, Berenshtein-Fomin-Zelevinsky, . . .motivated by the study of total positivity.

## Recall:

If sources and sinks of $N$ do not interlace:

- place $N$ in a square rather than in a disk, with all sources located on the left side and sinks on the right side of the square
- re-label sources/sinks from bottom to top
- $M_{N} \rightsquigarrow A_{N}=M_{N} W_{0}$


## Network concatenation and the standard Poisson-Lie structure

The construction above is due to Postnikov- extension of results by Karlin-McGregor, Lindström, Gessel-Viennot, Brenti, Berenshtein-Fomin-Zelevinsky, . . .motivated by the study of total positivity.

## Recall:

If sources and sinks of $N$ do not interlace:

- place $N$ in a square rather than in a disk, with all sources located on the left side and sinks on the right side of the square
- re-label sources/sinks from bottom to top
- $M_{N} \rightsquigarrow A_{N}=M_{N} W_{0}$
where $W_{0}=\left(\delta_{i, m+1-j}\right)_{i, j=1}^{m}$ is the matrix of the longest permutation


## Network concatenation and the standard Poisson-Lie structure

The construction above is due to Postnikov- extension of results by Karlin-McGregor, Lindström, Gessel-Viennot, Brenti, Berenshtein-Fomin-Zelevinsky, . . .motivated by the study of total positivity.

## Recall:

If sources and sinks of $N$ do not interlace:

- place $N$ in a square rather than in a disk, with all sources located on the left side and sinks on the right side of the square
- re-label sources/sinks from bottom to top
- $M_{N} \rightsquigarrow A_{N}=M_{N} W_{0}$
where $W_{0}=\left(\delta_{i, m+1-j}\right)_{i, j=1}^{m}$ is the matrix of the longest permutation
- concatenation of networks $\Longleftrightarrow$ matrix multiplication


## Building Blocks:

## Building Blocks:

Diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ and elementary bidiagonal matrices $E_{i}^{-}(\ell):=\mathbf{1}+\ell e_{i, i-1}$ and $E_{j}^{+}(u):=\mathbf{1}+u e_{j-1, j}$ correspond to:

## Building Blocks:

Diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ and elementary bidiagonal matrices $E_{i}^{-}(\ell):=\mathbf{1}+\ell e_{i, i-1}$ and $E_{j}^{+}(u):=\mathbf{1}+u e_{j-1, j}$ correspond to:

a)

b)

c)

Concatenation of several networks these types with appropriately chosen order and weights can be used to describe any element of $G L_{n}$ :

Concatenation of several networks these types with appropriately chosen order and weights can be used to describe any element of $G L_{n}$ :


Figure: Generic planar network $\Longleftrightarrow$ Generic matrix

## Standard Poisson-Lie Structure via building blocks

Restriction of $\{\cdot, \cdot\}_{R_{0}}$ to subgroups
$B_{+}^{(i)}=\left\{\mathbf{1}_{i-1} \oplus\left(\begin{array}{cc}d & c \\ 0 & d^{-1}\end{array}\right) \oplus \mathbf{1}_{n-i-1}\right\}, B(i)_{-}=\left\{\mathbf{1}_{i-1} \oplus\left(\begin{array}{lc}d & 0 \\ c & d^{-1}\end{array}\right) \oplus \mathbf{1}_{n-i-1}\right\}$
is

$$
\{d, c\}_{R_{0}}=\frac{1}{2} d c .
$$

## Standard Poisson-Lie Structure via building blocks

Restriction of $\{\cdot, \cdot\}_{R_{0}}$ to subgroups
$B_{+}^{(i)}=\left\{\mathbf{1}_{i-1} \oplus\left(\begin{array}{cc}d & c \\ 0 & d^{-1}\end{array}\right) \oplus \mathbf{1}_{n-i-1}\right\}, B(i)_{-}=\left\{\mathbf{1}_{i-1} \oplus\left(\begin{array}{lc}d & 0 \\ c & d^{-1}\end{array}\right) \oplus \mathbf{1}_{n-i-1}\right\}$
is

$$
\{d, c\}_{R_{0}}=\frac{1}{2} d c .
$$

Can be described in terms of adjacent edges in corresponding networks !

## General networks in a disc ?

## General networks in a disc ?

## Concatenation

Glue a segment of the boundary of one disc to a segment of the boundary of another disc so that each source/sink in the first segment is glued to a source/sink of the second.

## General networks in a disc ?

## Concatenation

Glue a segment of the boundary of one disc to a segment of the boundary of another disc so that each source/sink in the first segment is glued to a source/sink of the second.

## Half-edge weights

## General networks in a disc ?

## Concatenation

Glue a segment of the boundary of one disc to a segment of the boundary of another disc so that each source/sink in the first segment is glued to a source/sink of the second.

Half-edge weights

- Internal vertex $v \rightsquigarrow \mathbb{R}_{v}^{3}=\left\{x_{v}^{1}, x_{v}^{2}, x_{v}^{3}\right\}$ :



## General networks in a disc ?

## Concatenation

Glue a segment of the boundary of one disc to a segment of the boundary of another disc so that each source/sink in the first segment is glued to a source/sink of the second.

## Half-edge weights

- Internal vertex $v \rightsquigarrow \mathbb{R}_{v}^{3}=\left\{x_{v}^{1}, x_{v}^{2}, x_{v}^{3}\right\}$ :

- Equip each $\mathbb{R}_{v}^{3}$ with a Poisson bracket $\rightsquigarrow \mathbb{C}=\oplus_{v} \mathbb{R}_{v}^{3}$ inherits $\{\cdot, \cdot\}_{\mathbb{C}}=\oplus_{v}\{\cdot, \cdot\}_{v}$.


## Universal Poisson Brackets

## Universal Poisson Brackets

$\{\cdot, \cdot\}_{\mathbb{C}}$ is universal if

## Universal Poisson Brackets

$\{\cdot, \cdot\}_{\mathbb{C}}$ is universal if
(1) Each of $\{\cdot, \cdot\}_{v}$ depends only on the color of the vertex $v$.

## Universal Poisson Brackets

$\{\cdot, \cdot\}_{\mathbb{C}}$ is universal if
(1) Each of $\{\cdot, \cdot\}_{v}$ depends only on the color of the vertex $v$.
(2) The natural map $\mathbb{C} \rightarrow \mathbb{R}^{\text {Edges }}$ : edge weight $=$ product of half-edge weights induces a Poisson structure on $\mathbb{R}^{\text {Edges }}$

## Universal Poisson Brackets

$\{\cdot, \cdot\}_{\mathbb{C}}$ is universal if
(1) Each of $\{\cdot, \cdot\}_{v}$ depends only on the color of the vertex $v$.
(2) The natural map $\mathbb{C} \rightarrow \mathbb{R}^{\text {Edges }}$ : edge weight $=$ product of half-edge weights induces a Poisson structure on $\mathbb{R}^{\text {Edges }}$
This is an analog of the Poisson-Lie property

## Universal Poisson Brackets

$\{\cdot, \cdot\}_{\mathbb{C}}$ is universal if
(1) Each of $\{\cdot, \cdot\}_{v}$ depends only on the color of the vertex $v$.
(2) The natural map $\mathbb{C} \rightarrow \mathbb{R}^{\text {Edges }}$ : edge weight $=$ product of half-edge weights induces a Poisson structure on $\mathbb{R}^{\text {Edges }}$
This is an analog of the Poisson-Lie property

## Proposition

Universal Poisson brackets $\{\cdot, \cdot\}_{\mathbb{C}}$ a 6-parametric family defined by relations

$$
\left\{x_{v}^{i}, x_{v}^{j}\right\}_{v}=\alpha_{i j} x_{v}^{i} x_{v}^{j}, \quad i, j \in[1,3], i \neq j,
$$

at each white vertex $v$ and

$$
\left\{x_{v}^{i}, x_{v}^{j}\right\}_{v}=\beta_{i j} x_{v}^{i} x_{v}^{j}, \quad i, j \in[1,3], i \neq j
$$

at each black vertex $v$.

## Poisson Properties of the Boundary Measurement Map

## Poisson Properties of the Boundary Measurement Map

## Theorem

## Poisson Properties of the Boundary Measurement Map

## Theorem

(1) For any network $N$ in a square with $n$ sources and $n$ sinks and for any choice of $\alpha_{i j}, \beta_{i j}$ the map $A_{N}: \mathbb{R}^{E d g e s} \rightarrow$ Mat $_{n}$ is Poisson w. r. t. the Sklyanin bracket associated with the R-matrix

$$
R_{\alpha, \beta}=\frac{\alpha-\beta}{2}\left(\pi_{+}-\pi_{-}\right)+\frac{\alpha+\beta}{2} S \pi_{0},
$$

where $S\left(e_{j j}\right)=\sum_{i=1}^{k} \mathfrak{s}(j-i) e_{i i}, \quad j=1, \ldots, k$.

## Cluster algebra structure on boundary measurements

Cluster Algebra structure on boundary measurements

## Cluster algebra structure on boundary measurements

Transformations preserving boundary measurements

- Gauge group acts on the space of edge weights

Cluster Algebra structure on boundary measurements

## Cluster algebra structure on boundary measurements

Transformations preserving boundary measurements

- Gauge group acts on the space of edge weights
- Elementary transformations

Cluster Algebra structure on boundary measurements

## Cluster algebra structure on boundary measurements

Transformations preserving boundary measurements

- Gauge group acts on the space of edge weights
- Elementary transformations


## Edge weights modulo gauge group are Face Coordinates

Cluster Algebra structure on boundary measurements

## Cluster algebra structure on boundary measurements

## Transformations preserving boundary measurements

- Gauge group acts on the space of edge weights
- Elementary transformations


## Edge weights modulo gauge group are Face Coordinates

Face weight $y_{f}$ of a face $f$ is a Laurent monomial :

## Cluster algebra structure on boundary measurements

## Transformations preserving boundary measurements

- Gauge group acts on the space of edge weights
- Elementary transformations


## Edge weights modulo gauge group are Face Coordinates

Face weight $y_{f}$ of a face $f$ is a Laurent monomial :

$$
y_{f}=\prod_{e \in \partial f} w_{e}^{\gamma_{e}}
$$

## Cluster algebra structure on boundary measurements

## Transformations preserving boundary measurements

- Gauge group acts on the space of edge weights
- Elementary transformations


## Edge weights modulo gauge group are Face Coordinates

Face weight $y_{f}$ of a face $f$ is a Laurent monomial :

$$
y_{f}=\prod_{e \in \partial f} w_{e}^{\gamma_{e}}
$$

where $\gamma_{e}=1$ if the direction of $e$ is compatible with the orientation of the boundary $\partial f$ and $\gamma_{e}=-1$ otherwise.

## Poisson structure on face coordinates

## Poisson structure on face coordinates

$$
\left\{y_{f}, y_{f^{\prime}}\right\}=\omega_{f f^{\prime}} y_{f} y_{f^{\prime}} .
$$

## Poisson structure on face coordinates

$$
\left\{y_{f}, y_{f^{\prime}}\right\}=\omega_{f f^{\prime}} y_{f} y_{f^{\prime}} .
$$

where $\omega_{f f}$ are determined by the dual graph

## Poisson structure on face coordinates

$$
\left\{y_{f}, y_{f^{\prime}}\right\}=\omega_{f f^{\prime}} y_{f} y_{f^{\prime}} .
$$

where $\omega_{f f}$ are determined by the dual graph


## Elementary transformations

## Elementary transformations



Figure: Elementary transformations

## Elementary transformations



Figure: Elementary transformations

- Elementary transformation of type 3 is " $Y$-system type/ $\tau$-coordinates type" cluster transformation for face coordinates


## Elementary transformations



Figure: Elementary transformations

- Elementary transformation of type 3 is " $Y$-system type/ $\tau$-coordinates type" cluster transformation for face coordinates
- Universal Poisson structure is compatible with cluster algebra structure


## Elementary transformations



Figure: Elementary transformations

- Elementary transformation of type 3 is " $Y$-system type/ $\tau$-coordinates type" cluster transformation for face coordinates
- Universal Poisson structure is compatible with cluster algebra structure


## Networks on non-simply-connected higher genus surfaces?

## Networks on non-simply-connected higher genus surfaces?

- Simplest case: networks on a cylinder


## Networks on non-simply-connected higher genus surfaces?

- Simplest case: networks on a cylinder
(1) Images of the boundary measurement map are rational matrix-valued functions


## Networks on non-simply-connected higher genus surfaces?

- Simplest case: networks on a cylinder
(1) Images of the boundary measurement map are rational matrix-valued functions
(2) Universal Poisson brackets on edge weights lead to trigonometric R-matrix brackets in the case when sources and sinks are located at opposite ends of a cylinder


## Networks on non-simply-connected higher genus surfaces?

- Simplest case: networks on a cylinder
(1) Images of the boundary measurement map are rational matrix-valued functions
(2) Universal Poisson brackets on edge weights lead to trigonometric R-matrix brackets in the case when sources and sinks are located at opposite ends of a cylinder
(3) In the case of only one source and one sink, both located at the same component of the boundary, the corresponding Poisson bracket is relevant in the study of Toda lattices and allows to construct a cluster algebra structure in the space of rational functions.


## Example: graphical interpretation of a rational function



## Example: graphical interpretation of a rational function



The graph "inside" represents a $5 \times 5$ matrix $X$.

- The weight of a path $P$ between a source a sink:
- The weight of a path $P$ between a source a sink:

$$
\left.w_{P}= \pm \lambda^{i n d(P \cap \mid)} \prod_{\text {edge } \in P} \text { weight(edge }\right)
$$

where $\mid$ denotes a vertical cut in the picture.

- The weight of a path $P$ between a source a sink:

$$
w_{P}= \pm \lambda^{i n d(P \cap \mid)} \prod_{\text {edge } \in P} \text { weight(edge) }
$$

where | denotes a vertical cut in the picture.

- Boundary Meas. $M(\lambda):=\sum_{P} W_{P}$
- The weight of a path $P$ between a source a sink:

$$
\left.w_{P}= \pm \lambda^{i n d(P \cap \mid)} \prod_{\text {edge } \in P} \text { weight(edge }\right)
$$

where \| denotes a vertical cut in the picture.

- Boundary Meas. $M(\lambda):=\sum_{P} W_{P}=w_{\text {in }} W_{\text {out }}(\lambda 1-X)_{11}^{-1}$
- The weight of a path $P$ between a source a sink:

$$
\left.w_{P}= \pm \lambda^{i n d(P \cap \mid)} \prod_{\text {edge } \in P} \text { weight(edge }\right)
$$

where \| denotes a vertical cut in the picture.

- Boundary Meas. $M(\lambda):=\sum_{P} W_{P}=w_{\text {in }} W_{\text {out }}(\lambda 1-X)_{11}^{-1}$


## Can apply the same strategy in general:

Can apply the same strategy in general:

- Take a planar network in a rectangle representing elements of a fixed Double Bruhat cell in $G L_{n}$ (as above).

Can apply the same strategy in general:

- Take a planar network in a rectangle representing elements of a fixed Double Bruhat cell in $G L_{n}$ (as above).
- Glue right and left sides of a rectangle to form an annulus (cylinder) and attach one incoming and one outgoing edge as in the previous example.

Can apply the same strategy in general:

- Take a planar network in a rectangle representing elements of a fixed Double Bruhat cell in $G L_{n}$ (as above).
- Glue right and left sides of a rectangle to form an annulus (cylinder) and attach one incoming and one outgoing edge as in the previous example.
- Equip weights of the resulting network with the universal Poisson bracket defined as above.

Can apply the same strategy in general:

- Take a planar network in a rectangle representing elements of a fixed Double Bruhat cell in $G L_{n}$ (as above).
- Glue right and left sides of a rectangle to form an annulus (cylinder) and attach one incoming and one outgoing edge as in the previous example.
- Equip weights of the resulting network with the universal Poisson bracket defined as above.


## Theorem

Induced Poisson bracket on

$$
\mathcal{R}_{n}=\left\{M(\lambda)=\frac{Q(\lambda)}{P(\lambda)}: \operatorname{deg} P=n, \operatorname{deg} Q<n, P, Q \text { are coprime }\right\}
$$

is

$$
\{M(\lambda), M(\mu)\}=-(\lambda M(\lambda)-\mu M(\mu)) \frac{M(\lambda)-M(\mu)}{\lambda-\mu} .
$$

It coincides with the one induced by the quadratic Poisson structure for Toda flows.

## Now let's tie it all together with an example...

## Pentagram map


R. Schwartz, V. Ovsienko, S. Tabachnikov, S. Morier-Genoud, M. Glick, F. Soloviev, B. Khesin, G. Mari-Beffa, M. Gekhtman, M. Shapiro, A. Vainshtein, V. Fock, A. Marshakov , ...


Acts on projective equivalence classes of closed $n$-gons (dim $=2 n-8$ )


Acts on projective equivalence classes of closed $n$-gons ( $\operatorname{dim}=2 n-8$ ) or twisted $n$-gons with monodromy $M(\operatorname{dim}=2 n)$.

Corner coordinates: left and right cross-ratios $X_{1}, Y_{1}, \ldots, X_{n}, Y_{n}$.


Corner coordinates: left and right cross-ratios $X_{1}, Y_{1}, \ldots, X_{n}, Y_{n}$.


The map $T$ becomes:

$$
X_{i}^{*}=X_{i} \frac{1-X_{i-1} Y_{i-1}}{1-X_{i+1} Y_{i+1}}, \quad Y_{i}^{*}=Y_{i+1} \frac{1-X_{i+2} Y_{i+2}}{1-X_{i} Y_{i}}
$$

## Theorem (OST 2010).

Theorem (OST 2010).
(i) The Pentagram Map preserves a Poisson bracket: $\left\{X_{i}, X_{i+1}\right\}=-X_{i} X_{i+1},\left\{Y_{i}, Y_{i+1}\right\}=Y_{i} Y_{i+1}$;

Theorem (OST 2010).
(i) The Pentagram Map preserves a Poisson bracket:
$\left\{X_{i}, X_{i+1}\right\}=-X_{i} X_{i+1},\left\{Y_{i}, Y_{i+1}\right\}=Y_{i} Y_{i+1}$;
(ii) The Pentagram Map is completely integrable on the space of twisted $n$-gons.

Theorem (OST 2010).
(i) The Pentagram Map preserves a Poisson bracket:
$\left\{X_{i}, X_{i+1}\right\}=-X_{i} X_{i+1},\left\{Y_{i}, Y_{i+1}\right\}=Y_{i} Y_{i+1}$;
(ii) The Pentagram Map is completely integrable on the space of twisted $n$-gons.

Complete integrability on the space of closed polygons has been proven as well:
F. Soloviev. Integrability of the Pentagram Map, arXiv:1106.3950;
V. Ovsienko, R. Schwartz, S. Tabachnikov. Liouville-Arnold integrability of the pentagram map on closed polygons, arXiv:1107.3633.

Cluster Algebras and Integrable Systems: Pentagram Maps
Cluster algebras and integrable systems:

- Q-systems (DiFrancesco, Kedem)
- Q-systems (DiFrancesco, Kedem)
- T- and Y-systems (Inoue, Iyama, Keller, Kuniba, Nakanishi)
- Q-systems (DiFrancesco, Kedem)
- T- and Y-systems (Inoue, Iyama, Keller, Kuniba, Nakanishi)
- Somos sequences (Fordy, Hone, Marsh)
- Q-systems (DiFrancesco, Kedem)
- T- and Y-systems (Inoue, Iyama, Keller, Kuniba, Nakanishi)
- Somos sequences (Fordy, Hone, Marsh)
- Coxeter-Toda lattices (GSV)
- Q-systems (DiFrancesco, Kedem)
- T- and Y-systems (Inoue, Iyama, Keller, Kuniba, Nakanishi)
- Somos sequences (Fordy, Hone, Marsh)
- Coxeter-Toda lattices (GSV)
- Dimers ( Goncharov, Kenyon)

Cluster Algebras and Integrable Systems: Pentagram Maps

## Cluster interpretation for the Pentagram Map?

M. Glick. The pentagram map and $Y$-patterns ( Adv. Math., 227 (2011), 1019--1045) :

Considered the dynamics in the $2 n-1$-dimensional quotient space by the scaling symmetry $(X, Y) \mapsto\left(t X, t^{-1} Y\right)$ :

$$
p_{i}=-X_{i+1} Y_{i+1}, \quad q_{i}=-\frac{1}{Y_{i} X_{i+1}},
$$

and proved that it was a $Y$-type cluster algebra dynamics.

Cluster Algebras and Integrable Systems: Pentagram Maps
Cluster dynamics

Recall - Matrix mutations and transformations of $\tau$-coordinates in the definition of a cluster algebra is equivalent to quiver mutations:

Recall - Matrix mutations and transformations of $\tau$-coordinates in the definition of a cluster algebra is equivalent to quiver mutations: Given a quiver (an oriented graph with no loops or 2-cycles) whose vertices are labeled by variables $\tau_{i}$ (rational functions in some free variables), the mutation associated with a vertex $i$ is

the rest of the variables are intact.

The quiver also mutates, in three steps:

The quiver also mutates, in three steps:
(i) for every path $j \rightarrow i \rightarrow k$, add an edge $j \rightarrow k$;

The quiver also mutates, in three steps:
(i) for every path $j \rightarrow i \rightarrow k$, add an edge $j \rightarrow k$;
(ii) reverse the orientation of the edges incident to the vertex $i$;

The quiver also mutates, in three steps:
(i) for every path $j \rightarrow i \rightarrow k$, add an edge $j \rightarrow k$;
(ii) reverse the orientation of the edges incident to the vertex $i$;
(iii) delete the resulting 2-cycles.


The quiver also mutates, in three steps:
(i) for every path $j \rightarrow i \rightarrow k$, add an edge $j \rightarrow k$;
(ii) reverse the orientation of the edges incident to the vertex $i$;
(iii) delete the resulting 2-cycles.


The mutation on a given vertex is an involution.


Glick's quiver $(n=8)$ :


GSTV, ERA 19 (2012), 1-17:
Generalize Glick's quiver:
consider the homogeneous bipartite graph $\mathcal{Q}_{k, n}$ where $r=[k / 2]-1$, and $r^{\prime}=r$ for $k$ even and $r^{\prime}=r+1$ for $k$ odd (each vertex is 4 -valent):


Dynamics: mutations on all $p$-vertices, followed by swapping $p$ and $q$; this is the map $\bar{T}_{k}$ :

$$
\begin{aligned}
q_{i}^{*}=\frac{1}{p_{i}}, \quad p_{i}^{*}=q_{i} \frac{\left(1+p_{i-r-1}\right)\left(1+p_{i+r+1}\right) p_{i-r} p_{i+r}}{\left(1+p_{i-r}\right)\left(1+p_{i+r}\right)}, \quad k \text { even }, \\
q_{i}^{*}=\frac{1}{p_{i-1}}, \quad p_{i}^{*}=q_{i} \frac{\left(1+p_{i-r-2}\right)\left(1+p_{i+r+1}\right) p_{i-r-1} p_{i+r}}{\left(1+p_{i-r-1}\right)\left(1+p_{i+r}\right)}, \quad k \text { odd. }
\end{aligned}
$$

(The Pentagram Map corresponds to $\bar{T}_{3}$ ).

Cluster Algebras and Integrable Systems: Pentagram Maps
Properties of $\bar{T}_{k}$

Cluster Algebras and Integrable Systems: Pentagram Maps
Properties of $\bar{T}_{k}$

- The quiver $\mathcal{Q}_{k, n}$ is preserved.

Cluster Algebras and Integrable Systems: Pentagram Maps
Properties of $\bar{T}_{k}$

- The quiver $\mathcal{Q}_{k, n}$ is preserved.
- The function $\prod p_{i} q_{i}$ is invariant ( we restrict to the subspace $\prod p_{i} q_{i}=1$.)
- The quiver $\mathcal{Q}_{k, n}$ is preserved.
- The function $\prod p_{i} q_{i}$ is invariant ( we restrict to the subspace $\prod p_{i} q_{i}=1$.)
- There is an invariant Poisson bracket: the variables Poisson commute, unless they are connected by an arrow: $\left\{p_{i}, q_{j}\right\}= \pm p_{i} q_{j}$ (depending on the direction).
- The quiver $\mathcal{Q}_{k, n}$ is preserved.
- The function $\prod p_{i} q_{i}$ is invariant ( we restrict to the subspace $\prod p_{i} q_{i}=1$.)
- There is an invariant Poisson bracket: the variables Poisson commute, unless they are connected by an arrow: $\left\{p_{i}, q_{j}\right\}= \pm p_{i} q_{j}$ (depending on the direction).
- The Poisson bracket is compatible with the cluster algebra determined by the quiver.


## Goal: to reconstruct the $x, y$-dynamics and to interpret it geometrically.

## Goal: to reconstruct the $x, y$-dynamics and to interpret it geometrically.

Key: the quiver $\mathcal{Q}_{k, n}$ can be drawn on a torus

Goal: to reconstruct the $x, y$-dynamics and to interpret it geometrically.

Key: the quiver $\mathcal{Q}_{k, n}$ can be drawn on a torus
Main tool: directed network dual to the quiver $\mathcal{Q}_{k, n}$ :

Goal: to reconstruct the $x, y$-dynamics and to interpret it geometrically.

Key: the quiver $\mathcal{Q}_{k, n}$ can be drawn on a torus
Main tool: directed network dual to the quiver $\mathcal{Q}_{k, n}$ :


The Poisson bracket above can be realized as a universal Poisson bracket for the dual network.

## Weighted directed networks on the cylinder and the torus

## Example:



- Two kinds of vertices, white and black.
- Convention: an edge weight is 1 , if not specified.
- The cut is used to introduce a spectral parameter $\lambda$.


## Boundary measurements :

The network

corresponds to the matrix

$$
\left(\begin{array}{ccc}
0 & x & x+y \\
\lambda & 0 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

Concatenation of networks $\mapsto$ product of matrices.

Gauge group: at a vertex, multiply the weights of the incoming edges and divide the weights of the outgoing ones by the same function. Leaves the boundary measurements intact.

Gauge group: at a vertex, multiply the weights of the incoming edges and divide the weights of the outgoing ones by the same function. Leaves the boundary measurements intact.

Face weights: the product of edge weights ${ }^{ \pm 1}$ over the boundary $( \pm 1$ depends on orientation). The boundary measurement map to matrix functions factorizes through the space of face weights. (They will be identified with the $p, q$-coordinates).

Gauge group: at a vertex, multiply the weights of the incoming edges and divide the weights of the outgoing ones by the same function. Leaves the boundary measurements intact.

Face weights: the product of edge weights ${ }^{ \pm 1}$ over the boundary $( \pm 1$ depends on orientation). The boundary measurement map to matrix functions factorizes through the space of face weights. (They will be identified with the $p, q$-coordinates).

Poisson bracket (6-parameter): $\left\{x_{i}, x_{j}\right\}=c_{i j} x_{i} x_{j}, i \neq j \in\{1,2,3\}$


Cluster Algebras and Integrable Systems: Pentagram Maps

## Properties of the boundary measurement map

Cluster Algebras and Integrable Systems: Pentagram Maps

## Properties of the boundary measurement map

(1) Images of the boundary measurement map are rational matrix-valued functions $M(\lambda)$

## Properties of the boundary measurement map

(1) Images of the boundary measurement map are rational matrix-valued functions $M(\lambda)$
(2) Universal Poisson brackets on edge weights lead to trigonometric R-matrix brackets in the case when sources and sinks are located at opposite ends of a cylinder:

$$
\{M(\lambda) \stackrel{\otimes}{,} M(\mu)\}=[R(\lambda, \mu), M(\lambda) \otimes M(\mu)]
$$

Postnikov moves (do not change the boundary measurements):


Type 1


Type 2


Consider a network whose dual graph is the quiver $\mathcal{Q}_{k, n}$. It is drawn on the torus. Example, $k=3, n=5$ :


Convention: white vertices of the graph are on the left of oriented edges of the dual graph.

The network is made of the blocks:


$$
q_{i-r}
$$

Face weights:

$$
p_{i}=\frac{y_{i}}{x_{i}}, \quad q_{i}=\frac{x_{i+1+r}}{y_{i+r}} .
$$

This is a projection $\pi:(x, y) \mapsto(p, q)$ with 1-dimensional fiber.

## $(x, y)$-dynamics: mutation (Postnikov type 3 move on each $p$-face),


$(x, y)$-dynamics: mutation (Postnikov type 3 move on each $p$-face),

followed by the Postnikov type 1 and 2 moves on the white-white and black-black edge (this interchanges $p$ - and $q$-faces), including moving across the vertical cut,
$(x, y)$-dynamics: mutation (Postnikov type 3 move on each $p$-face),

followed by the Postnikov type 1 and 2 moves on the white-white and black-black edge (this interchanges $p$ - and $q$-faces), including moving across the vertical cut, and finally, re-calibration to restore 1s on the appropriate edges. These moves preserve the conjugacy class of the boundary measurement matrix.

## Schematically:



This results in the map $T_{k}$ :

$$
\begin{gathered}
x_{i}^{*}=x_{i-r-1} \frac{x_{i+r}+y_{i+r}}{x_{i-r-1}+y_{i-r-1}}, \quad y_{i}^{*}=y_{i-r} \frac{x_{i+r+1}+y_{i+r+1}}{x_{i-r}+y_{i-r}}, \quad k \text { even, } \\
x_{i}^{*}=x_{i-r-2} \frac{x_{i+r}+y_{i+r}}{x_{i-r-2}+y_{i-r-2}}, \quad y_{i}^{*}=y_{i-r-1} \frac{x_{i+r+1}+y_{i+r+1}}{x_{i-r-1}+y_{i-r-1}}, \quad k \text { odd. }
\end{gathered}
$$

This results in the map $T_{k}$ :

$$
\begin{gathered}
x_{i}^{*}=x_{i-r-1} \frac{x_{i+r}+y_{i+r}}{x_{i-r-1}+y_{i-r-1}}, \quad y_{i}^{*}=y_{i-r} \frac{x_{i+r+1}+y_{i+r+1}}{x_{i-r}+y_{i-r}}, \quad k \text { even, } \\
x_{i}^{*}=x_{i-r-2} \frac{x_{i+r}+y_{i+r}}{x_{i-r-2}+y_{i-r-2}}, \quad y_{i}^{*}=y_{i-r-1} \frac{x_{i+r+1}+y_{i+r+1}}{x_{i-r-1}+y_{i-r-1}}, \quad k \text { odd. }
\end{gathered}
$$

The map $T_{k}$ is conjugate to the $\operatorname{map} \bar{T}_{k}: \pi \circ T_{k}=\bar{T}_{k} \circ \pi$.

This results in the map $T_{k}$ :

$$
\begin{gathered}
x_{i}^{*}=x_{i-r-1} \frac{x_{i+r}+y_{i+r}}{x_{i-r-1}+y_{i-r-1}}, \quad y_{i}^{*}=y_{i-r} \frac{x_{i+r+1}+y_{i+r+1}}{x_{i-r}+y_{i-r}}, \quad k \text { even, } \\
x_{i}^{*}=x_{i-r-2} \frac{x_{i+r}+y_{i+r}}{x_{i-r-2}+y_{i-r-2}}, \quad y_{i}^{*}=y_{i-r-1} \frac{x_{i+r+1}+y_{i+r+1}}{x_{i-r-1}+y_{i-r-1}}, \quad k \text { odd. }
\end{gathered}
$$

The map $T_{k}$ is conjugate to the $\operatorname{map} \bar{T}_{k}: \pi \circ T_{k}=\bar{T}_{k} \circ \pi$.
Relation with the pentagram map: the change of variables

$$
x_{i} \mapsto Y_{i}, \quad y_{i} \mapsto-Y_{i} X_{i+1} Y_{i+1},
$$

identifies $T_{3}$ with the pentagram map.

Cluster Algebras and Integrable Systems: Pentagram Maps
Complete integrability of the maps $T_{k}$

Main point: all ingredients are determined by the combinatorics of the network!

Cluster Algebras and Integrable Systems: Pentagram Maps

## Complete integrability of the maps $T_{k}$

Main point: all ingredients are determined by the combinatorics of the network!

- Invariant Poisson bracket (in the "stable range" $n \geq 2 k-1$ ):

$$
\begin{aligned}
& \left\{x_{i}, x_{i+1}\right\}=-x_{i} x_{i+1}, 1 \leq I \leq k-2 ;\left\{y_{i}, y_{i+1}\right\}=-y_{i} y_{i+1}, 1 \leq I \leq k-1 ; \\
& \left\{y_{i}, x_{i+1}\right\}=-y_{i} x_{i+1}, 1 \leq I \leq k-1 ;\left\{y_{i}, x_{i-1}\right\}=y_{i} x_{i-1}, 0 \leq I \leq k-2 ;
\end{aligned}
$$

the indices are cyclic.

## Complete integrability of the maps $T_{k}$

Main point: all ingredients are determined by the combinatorics of the network!

- Invariant Poisson bracket (in the "stable range" $n \geq 2 k-1$ ):

$$
\begin{aligned}
& \left\{x_{i}, x_{i+1}\right\}=-x_{i} x_{i+1}, 1 \leq I \leq k-2 ;\left\{y_{i}, y_{i+1}\right\}=-y_{i} y_{i+1}, 1 \leq I \leq k-1 ; \\
& \left\{y_{i}, x_{i+1}\right\}=-y_{i} x_{i+1}, 1 \leq I \leq k-1 ;\left\{y_{i}, x_{i-1}\right\}=y_{i} x_{i-1}, 0 \leq I \leq k-2 ;
\end{aligned}
$$

the indices are cyclic.

- The functions $\prod x_{i}$ and $\prod y_{i}$ are Casimir. If $n$ is even and $k$ is odd, one has four Casimir functions:

$$
\prod_{i \text { even }} x_{i}, \quad \prod_{i \text { odd }} x_{i}, \quad \prod_{i \text { even }} y_{i}, \quad \prod_{i \text { odd }} y_{i}
$$

Cluster Algebras and Integrable Systems: Pentagram Maps

## Lax matrices, monodromy, integrals

## Lax matrices, monodromy, integrals

- For $k \geq 3$,

$$
L_{i}=\left(\begin{array}{cccccc}
0 & 0 & 0 & \ldots & x_{i} & x_{i}+y_{i} \\
\lambda & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 1 & 1
\end{array}\right)
$$

and for $k=2$,

$$
L_{i}=\left(\begin{array}{cc}
\lambda x_{i} & x_{i}+y_{i} \\
\lambda & 1
\end{array}\right) .
$$

## Lax matrices, monodromy, integrals

- For $k \geq 3$,

$$
L_{i}=\left(\begin{array}{cccccc}
0 & 0 & 0 & \ldots & x_{i} & x_{i}+y_{i} \\
\lambda & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 1 & 1
\end{array}\right)
$$

and for $k=2$,

$$
L_{i}=\left(\begin{array}{cc}
\lambda x_{i} & x_{i}+y_{i} \\
\lambda & 1
\end{array}\right)
$$

- The boundary measurement matrix is $M(\lambda)=L_{1} \cdots L_{n}$. The characteristic polynomial

$$
\operatorname{det}(M(\lambda)-z)=\sum I_{i j}(x, y) z^{i} \lambda^{j} .
$$

is $T_{k}$-invariant. The integrals $I_{i j}$ are in involution.

Zero curvature (Lax) representation:

$$
L_{i}^{*}=P_{i} L_{i+r-1} P_{i+1}^{-1}
$$

where $L_{i}$ are the Lax matrices and

$$
P_{i}=\left(\begin{array}{ccccccc}
0 & \frac{x_{i}}{\lambda \sigma_{i}} & \frac{y_{i+1}}{\lambda \sigma_{i+1}} & 0 & \ldots & 0 & 0 \\
0 & 0 & \frac{x_{i+1}}{\sigma_{i+1}} & \frac{y_{i+2}}{\sigma_{i+2}} & \ldots & 0 & 0 \\
\ldots & \ldots & \cdots & \cdots & \ldots & \ldots & \cdots \\
0 & 0 & 0 & \ldots & \frac{x_{i+k-4}}{\sigma_{i+k-4}} & \frac{y_{i+k-3}}{\sigma_{i+k-3}} & 0 \\
-\frac{1}{\sigma_{i+k-2}} & 0 & 0 & \cdots & 0 & \frac{x_{i+k-3}}{\sigma_{i+k-3}} & 1 \\
\frac{1}{\sigma_{i+k-2}} & -\frac{1}{\lambda \sigma_{i+k-1}} & 0 & \cdots & 0 & 0 & 0 \\
0 & \frac{1}{\lambda \sigma_{i+k-1}} & 0 & \cdots & 0 & 0 & 0
\end{array}\right),
$$

with $\sigma_{i}=x_{i}+y_{i}$.

Cluster Algebras and Integrable Systems: Pentagram Maps

## Geometric interpretation

Twisted corrugated polygons in $\mathbf{R P}^{k-1}$ and ( $k-1$ )-diagonal maps

## Geometric interpretation

Twisted corrugated polygons in $\mathbf{R P}^{k-1}$ and ( $k-1$ )-diagonal maps

- For $k \geq 3$, let $\mathcal{P}_{k, n}$ be the space of projective equivalence classes of generic twisted $n$-gons in $\mathbf{R P}^{k-1}\left(\operatorname{dim} \mathcal{P}_{k, n}=n(k-1)\right)$.

Twisted corrugated polygons in $\mathbf{R P}^{k-1}$ and ( $k-1$ )-diagonal maps

- For $k \geq 3$, let $\mathcal{P}_{k, n}$ be the space of projective equivalence classes of generic twisted $n$-gons in $\mathbf{R P}^{k-1}\left(\operatorname{dim} \mathcal{P}_{k, n}=n(k-1)\right)$.
- $\mathcal{P}_{k, n}^{0} \subset \mathcal{P}_{k, n}$ consists of the polygons with the following property: for every $i$, the vertices $V_{i}, V_{i+1}, V_{i+k-1}$ and $V_{i+k}$ span a projective plane. These are called corrugated polygons.

Twisted corrugated polygons in $\mathbf{R P}^{k-1}$ and ( $k-1$ )-diagonal maps

- For $k \geq 3$, let $\mathcal{P}_{k, n}$ be the space of projective equivalence classes of generic twisted $n$-gons in $\mathbf{R P}^{k-1}\left(\operatorname{dim} \mathcal{P}_{k, n}=n(k-1)\right)$.
- $\mathcal{P}_{k, n}^{0} \subset \mathcal{P}_{k, n}$ consists of the polygons with the following property: for every $i$, the vertices $V_{i}, V_{i+1}, V_{i+k-1}$ and $V_{i+k}$ span a projective plane. These are called corrugated polygons.
- The consecutive $(k-1)$-diagonals of a corrugated polygon intersect. The resulting polygon is again corrugated. One gets a pentagram-like $k$ - 1 -diagonal map on $\mathcal{P}_{k, n}^{0}$ (higher pentagram map). For $k=3$, this is the pentagram map.
- Coordinates: lift the vertices $V_{i}$ of a corrugated polygon to vectors $\widetilde{V}_{i}$ in $\mathbb{R}^{k}$ so that the linear recurrence holds

$$
\widetilde{V}_{i+k}=y_{i-1} \widetilde{V}_{i}+x_{i} \widetilde{V}_{i+1}+\widetilde{V}_{i+k-1},
$$

where $x_{i}$ and $y_{i}$ are $n$-periodic sequences. These are coordinates in $\mathcal{P}_{k, n}^{0}$. In these coordinates, the map is identified with $T_{k}$.

- Coordinates: lift the vertices $V_{i}$ of a corrugated polygon to vectors $\widetilde{V}_{i}$ in $\mathbb{R}^{k}$ so that the linear recurrence holds

$$
\widetilde{V}_{i+k}=y_{i-1} \widetilde{V}_{i}+x_{i} \widetilde{V}_{i+1}+\widetilde{V}_{i+k-1},
$$

where $x_{i}$ and $y_{i}$ are $n$-periodic sequences. These are coordinates in $\mathcal{P}_{k, n}^{0}$. In these coordinates, the map is identified with $T_{k}$.

- The same functions $x_{i}, y_{i}$ can be defined on polygons in the projective plane. One obtains integrals of the "deeper" diagonal maps on twisted polygons in $\mathbf{R P}^{2}$.

Consider the space $\mathcal{S}_{n}$ of pairs of twisted $n$-gons $\left(S^{-}, S\right)$ in $\mathbf{R P}^{1}$ with the same monodromy. Consider the projectively invariant projection $\phi$ to the $(x, y)$-space (cross-ratios):

$$
\begin{gathered}
x_{i}=\frac{\left(S_{i+1}-S_{i+2}^{-}\right)\left(S_{i}^{-}-S_{i+1}^{-}\right)}{\left(S_{i}^{-}-S_{i+1}\right)\left(S_{i+1}^{-}-S_{i+2}^{-}\right)} \\
y_{i}=\frac{\left(S_{i+1}^{-}-S_{i+1}\right)\left(S_{i+2}^{-}-S_{i+2}\right)\left(S_{i}^{-}-S_{i+1}^{-}\right)}{\left(S_{i+1}^{-}-S_{i+2}\right)\left(S_{i}^{-}-S_{i+1}\right)\left(S_{i+1}^{-}-S_{i+2}^{-}\right)} .
\end{gathered}
$$

Then $x_{i}, y_{i}$ are coordinates in $\mathcal{S}_{n} / P G L(2, \mathbb{R})$.

Define a transformation $F_{2}\left(S^{-}, S\right)=\left(S, S^{+}\right)$, where $S^{+}$is given by the following local leapfrog rule: given points $S_{i-1}, S_{i}^{-}, S_{i}, S_{i+1}$, the point $S_{i}^{+}$ is obtained by the reflection of $S_{i}^{-}$in $S_{i}$ in the projective metric on the segment $\left[S_{i-1}, S_{i+1}\right]$ :


The projection $\phi$ conjugates $F_{2}$ and $T_{2}$.

In formulas:

$$
\frac{1}{S_{i}^{+}-S_{i}}+\frac{1}{S_{i}^{-}-S_{i}}=\frac{1}{S_{i+1}-S_{i}}+\frac{1}{S_{i-1}-S_{i}},
$$

or, equivalently,

$$
\frac{\left(S_{i}^{+}-S_{i+1}\right)\left(S_{i}-S_{i}^{-}\right)\left(S_{i}-S_{i-1}\right)}{\left(S_{i}^{+}-S_{i}\right)\left(S_{i+1}-S_{i}\right)\left(S_{i}^{-}-S_{i-1}\right)}=-1,
$$

(Toda-type equations).

In $\mathbf{C P}^{1}$, a circle pattern interpretation (generalized Schramm's pattern):



That's all, folks!

