

Aerosol modeling at ECPL

Maria Kanakidou

Giorgos Fanourgakis, post doc now in molecular dynamics group

- Marios Chatziparaschos, PhD student TM
- Dimitris Amanatidis, PhD student WRF-Chem
- Aggelos Gouvousis, Master student TM
- Nikos Gialesakis, Master student CO₂, CO, CH₄ data interpretation

Evaggelia Tzitzikalaki, PhD student amines measurements & MALTEbox

Environmental Chemical Processes Laboratory Department of Chemistry, University of Crete Heraklion Greece <u>mariak@uoc.gr</u>

Global Cloud Condensation Nuclei (CCN) simulations: Robustness and implication for droplet formation

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1340 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 18 January 2019 © Author(s) 2019. CC BY 4.0 License.

Evaluation of global simulations of aerosol particle number and cloud condensation nuclei, and implications for cloud droplet formation

George S. Fanourgakis¹, Maria Kanakidou¹, Athanasios Nenes^{2,3,4,5}, Susanne E. Bauer^{6,7}, Tommi Bergman⁸, Ken S. Carslaw⁹, Alf Grini¹⁰, Douglas S. Hamilton ¹¹, Jill S. Johnson⁹, Vlassis A. Karydis^{12,13}, Alf Kirkevåg¹⁴, John K. Kodros¹⁵, Ulrike Lohmann¹⁶, Gan Luo¹⁷, Risto Makkonen^{18,19}, Hitoshi Matsui²⁰, David Neubauer¹⁶, Jeffrey R. Pierce ¹⁵, Julia Schmale ²¹, Philip Stier²², Kostas Tsigaridis ^{7,6}, Twan van Noije⁸, Hailong Wang²³, Duncan Watson-Parris²², Daniel M. Westervelt^{24,6}, Yang Yang²³, Masaru Yoshioka⁹, Nikos Daskalakis²⁵, Stefano Decesari²⁶, Martin Gysel Beer²¹, Nikos Kalivitis¹, Xiaohong Liu²⁷, Natalie M. Mahowald¹¹, Stelios Myriokefalitakis²⁸, Roland Schrödner²⁹, Maria Sfakianaki¹, Alexandra P. Tsimpidi¹², Mingxuan Wu²⁷, Fangqun Yu¹⁷

Shrivastava M, et al., Rev Geophys., 2017

IPCC 2013

aim of the study

Evaluate general circulation & global chemistry-transport models for their ability to simulate

- ✓ Aerosol number concentrations (N_a)
- Cloud condensation nuclei (CCN)
- Cloud droplets number concentration (CDNC)
- the long-term seasonal variability & the short-term dynamical behavior of aerosol particles and CCN

- > 15 global models (GCMs & CTMs) for the years 2010-2015
- > 8 European observatories (from ACTRIS) and 1 site in Japan

CCN

N3

PM₁ multi-model median chemical composition- surface

BACCHUS model intercomparison 15 models vs AMS- organics

Data (black dots) from ACTRIS - Schmale et al. Scientific Reports, 2017

MMM – blue line min, max model green dashed

BACCHUS model intercomparison 15 models vs AMS- organics

Data from ACTRIS -Schmale et al. Scientific Reports, 2017

Number concentration of aerosols

CCN at 0.2% supersaturation

Overall NMB -37%

Major contributors to model uncertainty –

perturbed parameter ensemble

How the CCN uncertainty reflects in CDNC (cloud droplet number concentration) calculations?

modelled CDNC

observed CDNC

 ω = 0.3ms⁻¹ typical for stratiform clouds

 ω = 0.6ms⁻¹ typical for cumulus clouds

number and updraft velocity Jungfraujoch Cabauw MaceHead Vavihill Finokalia 10^{3} CDNC $N_d \ [\mathrm{cm}^{-\mathbf{a}}]$ calculated 10² from Cloud droplet number observations Anticorrelation in the 10 and from Max sensitivities of CDNC supersaturation models 100 (N_d) to aerosol number Smax Nenes and (N_a) and to updraft 10-1 Seinfeld JGR, velocity (w) 2003 & 10-2 Fountoukis and 10° Nenes, JGR, 2005 $\partial N_d / \partial N_a$ For $\omega = 0.3 \text{ms}^{-1}$ Sensitivity to aerosol number $\partial N_d / \partial w \, [\mathrm{cm}^{-2} \, \mathrm{m}]$ 10^{3} For $\omega = 0.6 \text{ms}^{-1}$ 10² Sensitivity to 10¹ updraft velocity

Cloud droplet number and its sensitivity to aerosol

3201420152011 2012 2013 2014 2015 2011 2012 2013 2014 2015 2011 2012 2013 2014 2015 2016

Cloud droplet number and its sensitivity to aerosol number and updraft velocity

The number of CCN at a prescribed supersaturation cannot be used as indicator of CDNC, as supersaturation is dynamically determined and can vary considerably for a given site

Summary

- First comparisons of model results with experimentally derived CDNC.
- The spread of models for CDNC is smaller than the spread for N_a and for CCN
- The sensitivities of CDNC to N_a and to updraft velocity, ω , are negatively correlated. The variability in N_a and ω , is controlling that of CDNC
- The models underestimate
 - i) N50, N120, CCN
 - ii) Organic aerosol mass in PM1
- OA is important contributor: 2 to CCN

I to summer time uncertainty in CCN

• More N3 particles in the models with higher diversity between models over the NH continents than CCN indicating differences in the **size distribution of the primary emissions and/or in the NPF and growth.**

Ice Nuclei simulations Chatziparaschos et al 2018

simulations:

INPs :

- Marine OA (ocean biota)
- Dust (feldspar)
- Pollen
- Soot
- Fungal
- (functional groups via hydrogen
- bonds with -OH, -NH2)

- Wilson et al., 2015 (Numbers/TOC)
- Atkinson et al., 2013 , Niemand et al., 2012,
 Boose et al., 2016 (*/m*²)
- > McCluskey et al., 2018 (Terrestrial) ($/m^2$)

Bacteria

Singular description of Active sites

- describes ice active variability of different particles
- ice nucleation based on Temperature n_s(T)
- experimentally derived
- T_c is the critical temperature below which the multiple active sites present on an IN surface activate to form ice

Active sites : surface has

steps and cavities as a result of mechanical fracture of natural weathering, which have functional groups Hydroxyl–OH and act as hydrophilic sites (Freedman et al., 2015)

Accounting only for marine organics and dust INPs : missing sources

a.

Chatziparaschos et al COMECAP 2018

Accounting only for marine organics and dust INPs : missing sources

Chatziparaschos et al COMECAP 2018

Improvements: adding terrestrial bioaerosol

Dust feldspar & marine aerosol

New Parameterization Wilson, Niemand, Boose, TM4-ECPL dust(Boose et al. 2016) MOA(Wilson et al. 2015) 10⁴ 10³ 10^{3} 10² 10² -8 10¹ 10¹ -12 10° 10⁰ mperature (C) Simulated (#/L) Simulated (#/L) 10.1 10-1 10-2 10-2 -20 -20 10-3 10-3 -24 -24 10⁻⁴ 10-4 10-5 10-5 -28 -28 10-6 10-6 -32 -32 10-7 10 10-5 10.7 10-6 10-4 10-3 10-2 10-1 10⁰ 10¹ $10^2 \ 10^3 \ 10^4$ 10-7 10-6 10⁻⁵ 10⁻⁴ 10^{-3} 10^{-2} 10^{-1} 10^{0} $10^1 \ 10^2 \ 10^3 \ 10^4$ Observated (#/L) Observated (#/L)

Using McCuskey et al., 2018 based on number of insoluble bacteria, pollen, fungii

Adding also terrestrial bioaerosol

Annual Mean Distribution of INPs

INPs from mineral Dust:

- Dominate across Northern Hemisphere, North Africa (Sahara), Asia (Gobi)
- More abundant in number than marine INPs
- Transported to mid and high-altitudes
- Affect regions far from their emission point

INPs from Marine Organic:

- Dominate across Southern Hemisphere, (remote oceans)
- Several spots → oceanic biota activity
- Generally lower number concentration than dust INPs
- Affect regions close to their emissions
- Important in coastal regions →
 (North East Coast of America -North Atlantic) → comparable concentrations with dust INPs

at -20C \leftarrow [INP] \rightarrow at ambient temperature

3.4e-07 4.2e-06 5.2e-05 6.4e-04 7.9e-03

2.7e-08

Perspectives of INP/CCN modeling

- further implemented parameterizations for INPs missing sources improve discrepancies between model and measurements
- the simulated number concentrations of CCN and of INPs are compared and their significance for precipitation rates, cloud lifetime and cloud coverage and albedo will be investigated.

