

Universiteit Utrecht

TM5 in EC-Earth Change in aerosol burden when using online meteorology for wet deposition

Marco de Bruine, Maarten Krol, Twan van Noije, Philippe Le Sager, Thomas Röckmann

25th International TM5 Meeting – 17 January 2017 – Marco de Bruine, Utrecht University

Overview

- Procceses of aerosol wet deposition
- Current representation
- Changes in precipitation
- Implementation of aerosol resuspension
- Analysis of changes in aerosol burden
- "TO DO"

How are aerosols removed?

• *In-cloud* scavenging by nucleation and impaction

• *Below-cloud* scavenging by falling precipitation

Current TM5 wet scavenging scheme

Current TM5 wet scavenging scheme

- Precipitation formation too low: in-cloud scavenging underestimated
- Total column precipitation too low: Below-cloud scavenging underestimated (when rescaled to surface precipitation)
- No evaporation:
- Missing resuspension of aerosols
- Solution in EC-Earth, directly import 3D precipitation from IFS ☺

Research set-up

- 3 runs
 - BASE: Status quo
 - NOEVAP: Online meteorology
 - EVAP: Online meteorology + evaporation
- 1 year runs, nudged for comparison/validation

Research set-up

- 3 runs
 - BASE: Status quo
 - EVAP: Online meteorology + evaporation

Jan-aug 2005, nudged for comparison/validation

Changes in precipitation

Jan-Aug 2005

Changes in precipitation formation

Latitude

Latitude

Changes in precipitation formation

initial aerosol

partial evaporation

complete evaporation

- Accumulation of different aerosol modes of 1 species in precipitation
- Transported down with falling precipitation
- (Re-)evaporated aerosol added to ACS mode

1:1 ratio of release of aerosol to evaporated fraction of rainwater (f_{evp}) overestimates release of aerosols (f_{aer}).

Release of aerosol only at complete evaporation of raindrop.

Smaller raindrops completely evaporate faster.

Efficiency factor $\boldsymbol{\varepsilon}$ (Gong et al., 2006)

 $f_{aer} = \boldsymbol{\varepsilon}(f_{evp}, P) \cdot f_{evp}$

- Evaporation of aerosol number treated separately
- Based on Marshal-Palmer raindrop distribution
- 1 raindrop \rightarrow 1 aerosol
- $N_{evp} = N(P) N(f_{evp}P)$

Changes in organic matter (+10%)

Changes in organic matter

• Enhanced downward transport of aerosol

Changes in organic matter

Changes in organic matter

- Enhanced downward transport of aerosol
- (Partly) counteracted by advection, convection, sedimentation

Changes in black carbon (+10%)

Changes in sulfate (+0%)

Changes in sulfate

le10

le10

le9

14 16 18

• Enhanced downward transport of aerosol

Changes in sulfate

Changes in sulfate

- Enhanced downward transport of aerosol
- (Partly) counteracted by advection, convection, sedimentation
- Reduced chemical production

Changes in AOD

Mean AOD 0.066 \rightarrow 0.101 (not weighted for gridbox area)

Largest influence by sea salt

Changes in AOD

Comparison against MODIS monthly avg AOD (C5.1)

Mean bias $-0.069 \rightarrow -0.024$

RMSE

 $0.074 \rightarrow 0.046$

Overshoot in tropics

Changes in AOD

Comparison against MODIS monthly avg AOD (C6)

Mean bias $-0.091 \rightarrow -0.057$

RMSE $0.092 \rightarrow 0.057$

Remaining...

- Validity of (re-)evaporation of aerosol into accumulation mode
- Consequences for treatment of sedimentation
- Evaporation applied to aerosol only, but wet removal influences gas phase species leading to possible inconstistent changes to aerosol
 e.g. H₂SO₄(g) → SO₄(s)
- Sensitivity study: Number (re-)evaporation

Wrap-up

- Implementation of IFS precipitation fields
- Introduction of aerosol (re-)evaporation
- Additional downward transport by wet deposition (partly counteracted by advection, convection, sedimentation)
- Aerosol burden generally increases
 POM +10%, BC +10%, SO₄ 0%, Salt +60%, Dust +25%
- Simulated AOD increases

TM5 vs. Collection 5.1:RMSE: $0.074 \rightarrow 0.046$ TM5 vs. Collection 6:RMSE: $0.092 \rightarrow 0.057$

Additional slides

Changes in mineral dust (+25%)

Changes in sea salt (+60%)

Dominant species for AOD change

