Modeling the triple oxygen isotope Δ^{17} O in CO₂

Gerbrand Koren, Linda Schneider, Magdalena Hofmann, Wouter Peters

TM5 meeting SRON - January 16th, 2017

Airborne Stable Isotopes of Carbon from the Amazon

What is the triple oxygen isotope $\Delta^{17}O$?

• Definition of $\delta^n O$ (n =17 or 18):

$$\delta^{n}O = \frac{\left[{}^{n}O/{}^{16}O\right]_{sample}}{\left[{}^{n}O/{}^{16}O\right]_{standard}} - 1$$

 $\delta^n O > 0$: sample enriched in $^n O$

 $\delta^n O < 0$: sample depleted in ⁿO

• Definition of Δ^{17} O:

 $\Delta^{17}O = \ln(\delta^{17}O + 1) - 0.5229 \cdot \ln(\delta^{18}O + 1)$

 $\approx \delta^{17} O - \ 0.5229 \cdot \delta^{18} O$

• Also known as the ¹⁷O-excess

Global budget of Δ^{17} O in CO₂

- Budget from 1D box model with fluxes in PgC/yr (Hofmann et al., 2017)
- Source of Δ^{17} O is in the stratosphere
- Vegetation is main sink of $\Delta^{17}O \rightarrow$ tracer of gross primary production (GPP)
- Other sinks of Δ^{17} O:
 - oceans
 - soil invasion
 - biomass burning
 - fossil fuel combustion
- Objective: build 3D model for Δ^{17} O

Overview of TM5 model setup

• Model setup:

- offline 3 hrly ERA-Interim meteorology
- offline SiBCASA vegetation model results
- slopes advection scheme

• Active tracers:

- CO₂ - C¹⁷OO
- N₂O (Bergamaschi et al., 2015)
- Model resolution:
- 6° x 4° horizontal resolution
- 25 vertical layers
- 1 hr time step

• Platforms:

- cartesius (SURFsara)
- capegrim (WUR)

TM5 simulations of N₂O tracer

- Stratospheric N₂O sinks and optimized surface fluxes (Bergamaschi et al., 2015)
- Comparison of TM5 simulated N₂O 'climatology ' (average over 2007) vs observed N₂O
- N₂O observations detrended with atmospheric growth rate for N₂O

Linear $N_2O-\Delta^{17}O$ correlation

- Stratospheric source of C¹⁷OO determined from N₂O tracer and N₂O- Δ^{17} O fit
- Sensitivity analysis for different fits
- Domain of application for fit:
 - N₂O threshold
 - level threshold

Sensitivity analysis for $N_2O-\Delta^{17}O$ fit

- Monthly average Δ^{17} O at surface for Göttingen (Germany) and La Jolla (California)
- Fit is applied for model level 20 (\sim 60 hPa) and above
- Sensitivity of calculated Δ^{17} O on N₂O- Δ^{17} O fit is not negligible (~10 per meg)

Gerbrand Koren – Modeling Δ^{17} O in CO₂

N_2O threshold for $N_2O-\Delta^{17}O$ fit

- Monthly average Δ^{17} O at surface for Göttingen (Germany) and La Jolla (California)
- Fit is only applied for cells where simulated N_2O is below N_2O threshold

Vegetation model for Δ^{17} O in CO₂

- Vegetation model SiBCASA with ERA-Interim meteorology
- C₃ and C₄ vegetation photosynthesis scheme
- Internal and external CO₂ concentrations for leaf stomata
- Gross atmosphere-leaf flux from c_i / c_a

$$F_{AL} = F_A \frac{C_a}{C_a - C_i}$$

Gross atmosphere-leaf flux of CO₂

- Gross atmosphere-leaf flux shows large seasonality (amplitude ~400 PgC/yr)
- Average gross atmosphere-leaf flux > 350 PgC/yr from Hofmann et al. (2017)
- Spatial distribution of atmosphere-leaf flux for years 2010 and 2011

- Average Δ^{17} O in CO₂ at surface for 2011
- Confirms potential of Δ^{17} O in CO₂ as tracer of GPP

Gerbrand Koren – Modeling Δ^{17} O in CO₂

TM5 meeting – January 16th, 2017

Project overview

- Summary
 - Stratospheric source of Δ^{17} O based on N₂O- Δ^{17} O correlation
 - Vegetation model allows for explicit calculation of atmosphere-leaf flux
 - Spatial pattern of Δ^{17} O at surface confirms its potential as tracer of GPP
- Future work
 - Compare gross STE fluxes (Appenzeller et al., 1996; van Noije et al., 2004)
 - Improve soil invasion model (e.g. scaling hydrogen deposition maps)
 - Incorporate production of Δ^{17} O in CO₂ from tropospheric chemistry
 - Perform sensitivity tests and runs at higher resolution

References

Appenzeller et al., Seasonal variation of mass transport across the tropopause, *Journal of Geophysical Research: Atmospheres*, 1996.

Bergamaschi et al., Top-down estimates of European CH₄ and N₂O emissions based on four different inverse models, *Atmospheric Chemistry and Physics*, 2015.

Boering et al., Observations of the anomalous oxygen isotopic composition of carbon dioxide in the lower stratosphere and the flux of the anomaly to the troposphere, *Geophysical Research Letters*, 2004.

Hofmann et al., Atmospheric measurements of Δ^{17} O in CO₂ in Göttingen, Germany reveal a seasonal cycle driven by biospheric uptake, *Geochimica et Cosmochimica Acta*, 2017.

Kawagucci et al., Long-term observation of mass-independent oxygen isotope anomaly in stratospheric CO₂, *Atmospheric Chemistry and Physics*, 2008.

Thiemens et al., Carbon Dioxide and Oxygen Isotope Anomalies in the Mesosphere and Stratosphere, Science, 1995.

van Noije et al., Implications of the enhanced Brewer-Dobson circulation in European Centre for Medium-Range Weather Forecasts reanalysis ERA-40 for the stratosphere-troposphere exchange of ozone in global chemistry transport models, *Journal of Geophysical Research*, 2004.

Wiegel et al., Unexpected variations in the triple oxygen isotope composition of stratospheric carbon dioxide, *Proceedings of the National Academy of Sciences*, 2013.

Gerbrand Koren – Modeling Δ^{17} O in CO₂