

Proposal for a faster TM5 (what's up with netCDF?)

P. Le Sager *R&D Weather and Climate Modeling* KNMI

> S. Basu, A. Jacobson NOAA

The bottleneck

Meteo format & libraries

<u>File format</u>

- HDF4 \rightarrow uncompressed netCDF4

Library

Meteo format & libraries

Arjo's presentations 2009-2010

- 2009-12 "one file, outside TM5"
 - nc4 : speedup ~5 !!
 - nc4-L6 : speedup ~3.7 !

- 2010-06
 - nc3 : speedup of 1.33 for "step init"
 - netcdf3 lib (b/c bug HDF5)
- 2010-11
 - nc4 : "read meteo" 1.25 faster

Arjo's presentations 2009-2010

- 2009-12 "one file, outside TM5"
 - nc4 : speedup ~5 !!
 - nc4-L6 : speedup ~3.7 !
- 2010-06
 - nc3 : speedup of **1.33** for "step init"
 - netcdf3 lib (b/c bug HDF5)
- 2010-11
 - nc4 : "read meteo" 1.25 faster

Arjo's presentations 2009-2010

- 2009-12 "one file, outside TM5"
 - nc4 : speedup ~5 !!
 - nc4-L6 : speedup ~3.7 !
- 2010-06
 - nc3 : speedup of **1.33** for "step init"
 - netcdf3 lib (b/c bug HDF5)
- 2010-11
 - nc4 : "read meteo" **1.25** faster

- nc4 : "read meteo" **1.25** faster

More comprehensive tests

	HDF4	NC4	NC4 L1	NC4 L9	NC3	NC3 L1	NC3 L9
Serial library							
Parallel library with serial IO							
Parallel library with parallel IO (TM5-MP only)							

- Runs on each row should be concomitant, and long enough
- On different machines

A word about compression

	NC4	NC3
unlimited	596	596
fixed	596	596
unlimited-L1	117	117
fixed-L1	114	114
unlimited-L9	-	99
fixed-L9	100	100

- meteo ouput is written with unlimited dimension
- can reduce the compression
- but not by much here

Compression

- L1 is fastest to decompress
- L9 is very slow
 for little more compression

Size in MB of ec-ei-fc012up2tr3-ml60-glb100x100-2006-cld_20060124_00p03.nc for different compression levels, time dimension types, and nc format.

A word about compression

Size in MB of ec-ei-fc012up2tr3-ml60-glb100x100-2006-cld_20060124_00p03.nc for different compression levels, time dimension types, and nc format.

CCA (ECMWF, UK) – CRAY XC40

Environment

- CRAY and IFORT compilers (switch PrgEnv)
- netcdf 4.4.0
- Lustre file system

Model setup

- TM5-MP r464, full-chemistry, 1 month run, 3x45-34L
- reading 1x1-60L met fields
- without restart or timeseries output to test serial lib
- 3x45 (135) cores

Result

- Speedup (w/r/t/ HDF4) of the "readrecord" timer (from "timing.output: T" setting)
- repeat a couple of times, and average

But wait! What about the other platforms?

CCA – Cray compiler

Cartesius (SurfSARA, NL) Theia (NOAA, USA)

Paralle lib:

compressed files is faster than uncompressed Serial lib:

uncompressed files is faster than compressed

Same time to read compressed files with serial and parallel libraries

Uncompressed much longer in the parallel than in the serial lib

SAME RELATIVE RESULTS !

Sourish

Theia (NOAA, USA)

the speed up relative to HDF with the parallel lib:

Conclusion

- 1. Stop using HDF4
- 2. With current nc4, zip it OR use serial lib if possible

(Sourish already has a restart module for some versions)

3. Rewrite the restart module to do IO in serial

(needed regardless of the meteo strategy, b/c //-write does not scale)

Conclusion

- 1. Stop using HDF4
- 2. With current nc4, zip it OR use serial lib if possible

(Sourish already has a restart module for some versions)

- 3. Rewrite the restart module to do IO in serial (needed regardless of the meteo strategy, b/c //-write does not scale)
- 4. Convert meteo archive to classic-L1 ?? could be done locally, but WAIT, because:
- 5. Read all time steps in a file <u>at once</u> (at least in TM5-MP) larger (than from switching format) speedup expected maybe 5x faster like Arjo's first test ? redo all these lib/fmt tests

Explanation

How can "classic" be faster than netcdf4 format?

"the IO is **not handled by hdf5** if you read classic format, but directly through an I/O layer implemented much like the C standard I/O library"

Why can compression lead to faster IO?

time saved reading less data, larger than: extra computing time to decompress data

(but not necessary always the case)

Technicalities

F90 code enforces nc4 format when writing met field. To produce netcdf4 classic format, you have to either

- modify the code, or
- do it in a post-processing step

Meteo output is written with unlimited dimension:

- postprocessing needed outside the fortran code to remove the unlimited dimension (a simple ncks cmd)
- compression for netcdf_classic (nc3) cannot be done by simple ncks. Need to use nccopy with the shuffle option.
 But that may depends on your NCO version.