

modelling the effect of air pollution on ocean biogeochemistry in an Earth System Model

Stelios Myriokefalitakis, Maarten Krol (IMAU) Twan van Noije, Philippe Le Sager (KNMI) Gröger Matthias, Rarf Döscher (SMHI)

s.myriok@uu.gr

Outlook

1. The role of Fe deposition over the global ocean

2. State-of-the-art

3. The objectives of the ODEON project

4. Current status of TM5-MP

Atmospheric inputs to the ocean

- The surface ocean ecosystem comprises essential sources and sinks for carbon cycle.
- Atmospheric deposition of macro- and micro-nutrients (e.g. Fe, P, Si, ...) set important controls on marine ecology and biogeochemistry.
- Iron (Fe) is a key micronutrient that modulates gross primary production in High-Nutrient-Low-Chlorophyll (HNLC) oceans.

Anthropogenic INPUTS

Saharan inputs

The Atmospheric Fe Cycle

 \checkmark Fe carried by atmospheric dust and combustion aerosols is transported and deposited over remote oceans.

✓ Dissolved Fe (DFe) is a significant nutrient for marine biota (i.e. bio-available).

DFe may regulate key biogeochemical interactions and influence climate via atmosphere-ocean feedbacks.
Atmospheric

Atmospheric Fe input to the ocean

>Atmospheric processes related to air-quality convert insoluble Fe to more soluble forms (*and thus bioavailable...*)

Strong acids and organic ligands that coat minerals transform part of the contained insoluble forms of Fe (e.g. Fe_2O_3) into soluble forms (e.g. Fe(II), inorganic soluble species of Fe (III), organic Fe-complexes) during atmospheric processing.

Uncertainty remains on the impact of atmospheric composition and climate on the marine Fe-limitations and consequently on the oceanic carbon-cycle ! ! !

The Atmospheric Fe-Cycle in TM4-ECPL

Global Fe Emissions

TM4-ECPL takes into account ~8 Tg Fe yr¹ Illite, ~1 Tg Fe yr¹ Kaolinite, ~16 Tg Fe yr¹ Smectite, ~3 Tg Fe yr¹ Feldspar and ~6 Tg Fe yr¹ Hematite and Goethite (*Nickovic et al.,* ACP, 2013)

Fe emissions from combustion processes (biomass burning, coal and ships oil combustion) are equal to $\sim 2 Tg Fe yr^{-1}$ (*Luo et al. GBC, 2008; Ito, GBC, 2013*).

The extractable Fe emissions ~0.3 Tg Fe yr⁻¹ are prescribed a) in the initial dust sources as 4.3% Fe is in the form of impurities in soils (*Ito and Xu, ACP, 2014*) and b) 4% in combustion Fe emissions.

Mineral-Fe mobilization fluxes: Estimations with the TM4 model

The model calculates the dissolution of Fecontaining minerals, both in aerosol water and cloud droplets, as a kinetic process that depends on the concentrations of:

- H⁺ (proton-promoted Fe dissolution; *Lasaga et al., Geochim. Cosmochim.,1994*) and
 - Oxalate (OXL) (organic ligand-promoted Fe dissolution; *Paris et al., Atmos. Environ., 2011; Johnson and Meskhidze, GMD, 2013*)

Myriokefalitakis et al., Biogeosciences, 2015

Fe atmospheric chemical possessing

PROTON PROMOTED MOBILIZATION

$$R_{Fe} = NFe_{MIN} \cdot K_{MIN}(T) \cdot a(H^+)^m \cdot f_{MIN} \cdot A_{MIN} \cdot [MIN]$$

Lasaga et al., Geochim. Cosmochim., 1994

 $> R_{Fe}$ is the mineral dissolution rate (mol Fe gr_{MIN}⁻¹ s⁻¹)

>*NFe_{MIN}* is the stoichiometric number of moles of Fe per mole of mineral

 $> K_{MIN}$ is the mineral's temperature (T) dependent dissolution reaction coefficient (mol m⁻² s⁻¹)

 $> \alpha(H^+)$ is the H⁺ activity in the solution

> m is the reaction order with respect to aqueous-phase protons

 \succ *f* accounts for the variation of the rate with deviation from equilibrium

 $>A_{MIN}$ is the specific surface area of the mineral (m² g⁻¹)

OXALATE PROMOTED MOBILIZATION

Experimental studies support a positive linear correlation between iron solubility and oxalate concentrations (*Paris et al., Atmos. Env., 2011; Paris and Desboeufs, ACP, 2013*)

Myriokefalitakis et al., Biogeosciences, 2015

Fe Deposition *Estimations*

State-of-the-art chemistry-transport modelling (CTM) studies calculate a total oceanic Fe deposition flux of 7-10 Tg-Fe/yr.

- TM4 calculates that ~37 Tg Fe yr¹ of TFe are deposited on Earth's surface.
- Global DFe deposition is calculated to be ~0.5 Tg Fe yr⁻¹ of which ~0.2 Tg Fe yr⁻¹ is deposited over the oceans.

State-of-the-art CTMs clearly support the view that air-quality affects dissolved Fe deposition flux over oceans (0.1-0.3 Tg-Fe/yr).

➢ Fe solubility (SFe = %DFe/TFe) is calculated to vary spatially with minima over the dust sources (~ 1%) and maxima over remote (equatorial) regions (~ 5%).

Myriokefalitakis et al., Biogeosciences, 2015

Fe parameterization in the PISCES model

- The model can include the <u>atmospheric supply</u> of Fe, Si, P and N.
- Fe, Si and P sources are dependent on each other as they are computed from the same dust input file.

The solubility of dust-Fe in sea water can be either set to a constant value or can be read from a file. → Roughly 0.01% of the particulate Fe dissolves per day

Aumont et al., GMD, 2015

ODEON Objectives

- Implementation and evaluation of the atmospheric Fe-cycle in TM5.
- 2. Cause-effect linkages between climate and atmospheric Femobilization.
- 3. Atmospheric Fe-cycle coupling to marine bio-geochemistry in EC-Earth.
- 4. Impact estimations of air-quality changes on the marine

primary productivity

•The couplings of air-quality and Fe-supply into the oceanic biogeochemistry and climate (between IFS, TM5 and PISCES) will be activated in a <u>stepwise</u> <u>approach</u> via Uncoupled (U) and Coupled (C) configurations of the <u>oceanic Fe</u> <u>input</u>

•<u>10-years time-slice simulations</u> for preindustrial (1846-1855), the present day (2001-2010) and the end of the century (2091-2100) for the medium-high (e.g. RCP6.0) and the high (e.g. RCP8.5) forcing scenarios

Current status of ODEON

Fe emissions

Fe-dust emissions based on an updated iron mineralogy dataset on emissions (Perlwitz et al., 2015) for accumulation and coarse dust particles Current model species: FeH_aci, FeH_coi, FeO_aci, FeO_coi, ILL_aci, ILL_coi, SME_aci, SME_coi, HEM_aci, SME_coi, Fep3_acs, Fep3_cos, Fep2_acs, Fep2_cos

> Combustion Fe emissions (not yet fully implemented) Current model species: FeC_aii, FeC_ais, FeC_aci, FeC_acs, FeC_coi, FeC_cos

• Fe chemistry

- TM5-MP is coupled with <u>a multiphase Fe-mobilization scheme</u> in cloud droplets. (wetS subroutine is now replaced with the (standalone) AQHEM module; aerosol water still under development for the global simulation) New feature: KPP solver for aqueous phase chemistry is now implemented (with the contribution of Giorgos Fanourgakis from M. Kanakidou group)
- To do...
 - Finish aqueous-phase chemistry reactions budgets calculations (budrw)
 - Thermodynamic calculations for both accumulation and coarse particles
 - Model Fe evaluation
 - Coupling the ECPL detailed gas-phase chemical scheme (?)

The End

Aqueous-phase Fe Chemical Scheme

Reactions	K_{298} (M ⁻ⁿ⁺¹ s ⁻¹)	Ea/R (K)	References
$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH + OH$	5.24×10^{1}	5050	Kremer, 2003
$Fe^{2+} + O_2^{} + 2H^+ \rightarrow Fe^{3+} + H_2O_2$	1.00×10^{7}	5050	Rush and Bielski, 1985
$Fe^{2+} + HO_2 + H^+ \rightarrow Fe^{3+} + H_2O_2$	1.20×10^{6}	5050	Jayson et al., 1973b
$Fe^{2+} + OH \rightarrow Fe(OH)^{2+}$	4.60×10^{8}	1100	Christensen and Sehested, 1981
$Fe^{2+} + NO_3 \rightarrow Fe^{3+} + NO_3^{-}$	8.00×10^{6}		Pikaev et al., 1974
$Fe^{2+} + NO_2 + H^+ \rightarrow Fe^{3+} + HONO$	3.10×10^4		Epstein et al., 1982
$Fe^{2+} + O_3 (+ H_2O) \rightarrow Fe(OH)^{2+} + OH + O_2 (*)$	8.20×10^{5}		Logager et al., 1992
$Fe^{3+} + hv (+ H_2O) \rightarrow Fe^{2+} + OH + H^+$	6.41 x 10 ⁻⁶		Benkelberg and Warneck, 1995
$Fe(OH)^{2+} + hv \rightarrow Fe^{2+} + OH$	4.51 × 10 ⁻³		Benkelberg and Warneck, 1995
$Fe(OH)_2^+ + hv \rightarrow Fe^{2+} + OH + OH$	5.77 × 10 ⁻³		Benkelberg et al., 1991
$Fe(OH)^{2+} + O_2^- \rightarrow Fe^{2+} + O_2 + OH$	1.50×10^{8}		Rush and Bielski, 1985
$Fe(OH)^{2+} + HO_2 \rightarrow Fe^{2+} + O_2 + H_2O$	1.30×10^{5}		Ziajka et al., 1994
$Fe^{3+} + SO_4^{2-} \rightarrow Fe(SO_4)^+$	3.20×10^{3}		Jayson et al., 1973b
$\operatorname{Fe(SO_4)}^+ \to \operatorname{Fe^{3+}+SO_4^{2-}}$	2.70×10^{1}		Jayson et al., 1973b
$\operatorname{Fe(SO_4)}^+ + hv \to \operatorname{Fe}^{2+} + \operatorname{SO}_4^-$	6.43×10^{-3}		Lin et al., 2014
$\operatorname{Fe}^{3+} + \operatorname{C_2O_4}^{2-} \rightarrow \operatorname{Fe}(\operatorname{C_2O_4})^+$	7.50×10^{6}		Lin et al., 2014
$Fe(C_2O_4)^+ \rightarrow Fe^{3+} + C_2O_4^{2-}$	3.00×10^{-3}		Lin et al., 2014
$\operatorname{Fe}(\operatorname{C}_2\operatorname{O}_4)^+ + \operatorname{C}_2\operatorname{O}_4^{2-} \rightarrow \operatorname{Fe}(\operatorname{C}_2\operatorname{O}_4)_2^-$	1.89×10^{4}		Lin et al., 2014
$\operatorname{Fe}(\operatorname{C}_2\operatorname{O}_4)_2^- \rightarrow \operatorname{Fe}(\operatorname{C}_2\operatorname{O}_4)^+ + \operatorname{C}_2\operatorname{O}_4^{2-}$	3.30×10^{-3}		Lin et al., 2014
$Fe(C_2O_4)^+ + O_2^- \rightarrow Fe(C_2O_4) + O_2$	1.00×10^{6}		Sedlak and Hoigne, 1993
$Fe(C_2O_4)^+ + HO_2 \rightarrow Fe(C_2O_4) + O_2 + H^+$	1.20×10^{5}		Sedlak and Hoigne, 1993
$\operatorname{Fe}(\operatorname{C}_2\operatorname{O}_4)_2^- + \operatorname{O}_2^- \rightarrow \operatorname{Fe}(\operatorname{C}_2\operatorname{O}_4)_2^{-2} + \operatorname{O}_2$	1.00×10^{6}		Sedlak and Hoigne, 1993
$Fe(C_2O_4)_2^+ + HO_2 \rightarrow Fe(C_2O_4)_2^{-2} + O_2 + H^+$	1.20×10^{5}		Sedlak and Hoigne, 1993
$Fe(C_2O_4) + H_2O_2 \rightarrow Fe(C_2O_4)^+ + OH + OH$	5.24×10^{4}		Sedlak and Hoigne, 1993
$Fe(C_2O_4)_2^- + hv (+ O_2) \rightarrow Fe^{+2} + C_2O_4^{-2} + 2CO_2 +$	2.47×10 ⁻²		Lin et al., 2014
02 ⁻			
Equilibrium	Keq (mol kg ⁻¹)		References
$Fe^{3+} H_2O \leftrightarrow Fe(OH)^{2+} H^+$	1.10× 10 ⁻⁴		Ervens et al., 2003
$Fe(OH)^{2^+} + H_2O \leftrightarrow Fe(OH)_2^+ + H^+$	1.40× 10 ⁻⁷		Ervens et al., 2003

(*) For simplicity FeO^{2+} formation is neglected and formation of $Fe(OH)^{2+}$ is here considered.

