Constraining fossil fuel CO₂ emissions by the joint assimilation of atmospheric CO₂ and ¹⁴CO₂

Sourish Basu, John Miller, Scott Lehman

TM Meeting, Ispra, 27th June, 2016

- Intended Nationally Determined Commitments (INDCs) at COP21
- ► E.g., the US INDC aims to reduce CO₂ equivalent GHG emissions by 25-28% by 2025, compared to 2005 levels
- ▶ Do we have the tools to verify such reductions? Inventories are hard to update and may not be "good enough". E.g., ~ 8% difference between CDIAC and EDGARv4.2 FT2010 for the US in 2010.

- National totals for Annex I and II countries known to within 5%, for developing countries less so. Regional monthly inventory estimates, even for developed countries, are also less accurate.
- ▶ In a pure CO₂ inversion, direct impact on NEE due to biased fossil fuel.

$$\frac{dC}{dt} = F_{\rm oce} + F_{\rm bio} + F_{\rm fos}$$

$$\begin{split} \delta^{14}\text{CO}_2 &= \left[\frac{({}^{14}\text{CO}_2/\text{CO}_2)_{\text{sample}}}{({}^{14}\text{CO}_2/\text{CO}_2)_{\text{reference}}} - 1\right] \times 1000\% \\ &= \left[\frac{\text{relative abundance in sample}}{\text{``typical'' relative abundance}} - 1\right] \times 1000\% \end{split}$$

•
$$({}^{14}\text{CO}_2/\text{CO}_2)_{\text{reference}} = 1.176 \times 10^{-12}$$

- ▶ Basis for radiocarbon dating; older the sample, lower the δ^{14} C
- Emitting fossil fuel CO₂ "ages" the atmosphere

Tree ring $\Delta^{14}C$ by Stuiver & Quay, 1981

Long term trend of ¹⁴CO₂ in the Northern Hemisphere

fossil fuel only

Mass balance

$$\begin{aligned} \frac{d\mathbf{C}}{dt} &= F_{\text{oce}} + F_{\text{bio}} + F_{\text{fos}} \\ \frac{d}{dt} \left(\mathbf{C} \cdot \Delta_{\text{atm}} \right) &= \Delta_{\text{fos}} F_{\text{fos}} + \Delta_{\text{atm}} \left(F_{\text{oce}} + F_{\text{bio}} \right) \\ &+ \left(\Delta_{\text{oce}} - \Delta_{\text{atm}} \right) F_{\text{oce} \to \text{atm}} \\ &+ \left(\Delta_{\text{bio}} - \Delta_{\text{atm}} \right) F_{\text{bio} \to \text{atm}} \\ &+ \alpha \left(F_{\text{nuc}} + F_{\text{cosmo}} \right) \\ &= \Delta_{\text{fos}} F_{\text{fos}} + \Delta_{\text{atm}} \left(F_{\text{oce}} + F_{\text{bio}} \right) \\ &+ F_{\text{ocedis}} + F_{\text{biodis}} \\ &+ \alpha \left(F_{\text{nuc}} + F_{\text{cosmo}} \right) \end{aligned}$$

tracers transported fluxes estimated

OSSE observation network

Regions for reporting fossil fuel fluxes

OSSE posterior flux

OSSE posterior flux

$$r = \left\langle \left(\mathsf{CO}_2^{\mathsf{bio}} - \left\langle \mathsf{CO}_2^{\mathsf{bio}} \right\rangle \right) \left(\mathsf{CO}_2^{\mathsf{fos}} - \left\langle \mathsf{CO}_2^{\mathsf{fos}} \right\rangle \right) \right\rangle$$

Average evaluated over 100 independent inversions with perturbed prior emissions and measurements (\sim 1.2m core hours)

NEE bias due to wrong fossil fuel

Bias due to incorrect transport (TM5 El "sub" vs EIC "conv")

Bias due to incorrect transport (TM5 El "sub" vs EIC "conv")

Bias due to incorrect transport (TM5 El "sub" vs EIC "conv")

- Independent estimate of fossil fuel CO₂ needed for both commitments such as INDCs and for reducing biases in NEE
- ¹⁴CO₂ measurements, even though hard to perform, can provide constraints on fossil fuel CO₂
- With current network, we can estimate annual total to within a few percent. With augmented but realistic network, we can estimate monthly regional totals for highly emissive regions.
- Transport biases can severely affect this capability (much like any inversion), but trends could still be robust, to be checked in a multi-year inversion

Define "fraction modern" as

$$\mathit{fm} = rac{({}^{14}\mathrm{C/C})_{\mathrm{sample}}}{({}^{14}\mathrm{C/C})_{\mathrm{standard}}}$$

• Then δ and Δ are, respectively,

$$\delta^{14}C = (fm - 1) \times 1000 \%$$
$$\Delta^{14}C = \left(fm \times \left(\frac{975 \%}{\delta^{13}C + 1000 \%}\right)^2 - 1\right) \times 1000 \%$$

► There is *almost* no mass-dependent fractionation between reservoirs if ¹⁴C signatures are expressed in Δ rather than δ

Appendix: Construction of cosmogenic ¹⁴C flux

2

Appendix: Zonal gradient of $\Delta^{14}CO_2$ over N America

