A two box perspective on TM5 Stijn Naus, S.A. Montzka, S. Basu, S. Pandey, E.J. Dlugogencky & M.C. Krol

Williams, J. E., Boersma, K. F., Le Sager, P., and Verstraeten, W. W.: The high-resolution version of TM5-MP for optimized satellite retrievals: description and validation, 2017.

A two box perspective on TM5 Stijn Naus, S.A. Montzka, S. Basu, S. Pandey, E.J. Dlugogencky & M.C. Krol

Williams, J. E., Boersma, K. F., Le Sager, P., and Verstraeten, W. W.: The high-resolution version of TM5-MP for optimized satellite retrievals: description and validation, 2017.

Two recent two-box model studies

Rigby et al. (2017) & *Turner et al. (2017)*

Two recent two-box model studies

Rigby et al. (2017) & *Turner et al. (2017)*

Coupled inversion of MCF-CH₄-OH

Key message:

We don't know OH well enough, so we don't know CH₄ emissions either

Can you capture complex problems in a simple two-box model?

Two aspects:

- Loss of information
- Imperfect information

 $T_{IH} = k_{IH}(X_{NH} - X_{SH})$

 $\overline{T_{strat,NH}} = l_{strat} X_{NH}$

TM5 set-up

- Resolution 6°x4°
- MCF, CH_4 and SF_6

TM5 set-up

- Resolution 6°x4°
- MCF, CH_4 and SF_6
 - CH₄ -> annually repeating emissions
 - SF₆ -> transport tracer
 - MCF -> strong drop in emissions

TM5 set-up

- Resolution 6°x4°
- MCF, CH_4 and SF_6
 - CH₄ -> annually repeating emissions
 - SF₆ -> transport tracer
 - MCF -> strong drop in emissions

Interhemispheric transport

 $T_{IH} = k_{IH}(X_{NH} - X_{SH})$

Interhemispheric transport

Interhemispheric transport: Trend for CH₄?

 $T_{strat,NH} = l_{strat}X_{NH}$

 $T_{strat,NH} = l_{strat} X_{NH}$

Emissions drop

Emissions continue to decrease...

Two more:

- Surface sampling bias
- Interhemispheric OH ratio

Conclusions

- Correct usage of simple box models requires complex tuning by a full 3D model
- The two-box parametrization provides an interesting perspective on TM5

Conclusions

- Correct usage of simple box models requires complex tuning by a full 3D model
- The two-box parametrization provides an interesting perspective on TM5

Outlook

- A full 3D inversion of MCF
- Integrating additional tracers

Surface sampling bias

Bias in global mean mixing ratio

Surface sampling bias

Bias in interhemispheric gradient

Sampling the atmosphere: Latitude

1995

Sampling the atmosphere: Latitude

Sampling the atmosphere: Latitude

Sampling the atmosphere: Vertical

Sampling the atmosphere: Vertical

IH exchange rate if repeat meteo

IH exchange rate if repeat meteo

Stratospheric loss if fixed emissions

In equations

$$\frac{dX_{SH}}{dt} = E - k_{OH}OH_{SH}X_{SH} + k_{IH}(X_{NH} - X_{SH}) - l_{strat}X_{SH}$$

$$\frac{dX_{NH}}{dt} = E - k_{OH}OH_{NH}X_{NH} - k_{IH}(X_{NH} - X_{SH}) - l_{strat}X_{NH}$$

$$\frac{dX_{strat}}{dt} = -L + l_{strat}X_{SH} + l_{strat}X_{NH}$$

OH anomalies from two-box model

CH₄ emission anomalies from two-box model

