Uncertainty quantification for CH_4 emission estimates in TM5-4DVAR

Mihai Alexe¹, Peter Bergamaschi¹, Arjo Segers²

¹EC Joint Research Centre

$^{2}\mathsf{TNO}$

November 5, 2015

TM5-4D-Var is a *deterministic* inversion framework.

• We estimate the CH₄ emissions that *best fit* the model and observations under some error assumptions (an optimal solution, also called the *analysis*).

However, error covariance information for the optimal solution is not easy to obtain.

- If the model is linear, and (model and observation) errors are Gaussian, then TM5-CONGRAD can estimate the leading components of the analysis error covariance matrix.
- What can we do if the model is nonlinear and/or prior emission statistics are non-Gaussian?

We are given:

- the background state vector \mathbf{x}_b with error covariance $\mathbf{B} = \mathbf{D}\mathbf{C}\mathbf{D} := \mathbf{L}\mathbf{L}^T$ $(\mathbf{L} := \mathbf{D}\mathbf{C}^{1/2}),$
- $\bullet\,$ the (potentially nonlinear) model operator ${\bf H}$ (forward model + observation operator), and
- the measurement data vector **y** with error covariance **R**.

Solve for the *analysis* state:

$$\mathbf{x}_{a} = \arg\min_{\mathbf{x}} \mathcal{J} = \frac{1}{2} (\mathbf{x} - \mathbf{x}_{b})^{T} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{b}) + \frac{1}{2} (\mathbf{H}\mathbf{x} - \mathbf{y})^{T} \mathbf{R}^{-1} (\mathbf{H}\mathbf{x} - \mathbf{y})$$

CONGRAD UQ (Meirink et al., ACP, 2008)

CONGRAD

Assumptions: **H** is **linear**. The prior and observation errors are **Gaussian**. Then:

$$\nabla_{\mathbf{x}}^{2} \mathcal{J} = \mathbf{B}^{-1} + \mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}$$

We optimize the preconditioned state vector $\boldsymbol{\xi} := \mathbf{L}^{-1}\mathbf{x}$. The covariance matrix of the analysis errors reads:

$$\mathcal{P}^{\mathrm{apos}}(\mathbf{x}_{a}) = \left(
abla^{2}\mathcal{J}(\mathbf{x}_{a})
ight)^{-1} pprox \mathbf{B} + \sum_{i=1}^{K} \left(rac{1}{\lambda_{i}} - 1
ight) (\mathbf{L}\mathbf{v}_{i}) (\mathbf{L}\mathbf{v}_{i})^{T}$$

 $(\lambda_i, \mathbf{v}_i)_{i=1...K}$ are the leading eigen-pairs of the preconditioned Hessian matrix. The uncertainty reduction factor: $1 - \frac{\sigma_{apos}}{\sigma_{apri}}$, with $\sigma_{apos} = \sqrt{\operatorname{diag}(\mathcal{P}^{apos}(\mathbf{x}_a))}$.

CONGRAD UQ (Meirink et al., ACP, 2008)

CONGRAD

Assumptions: **H** is **linear**. The prior and observation errors are **Gaussian**. Then:

$$\nabla_{\mathbf{x}}^{2} \mathcal{J} = \mathbf{B}^{-1} + \mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}$$

We optimize the preconditioned state vector $\boldsymbol{\xi} := \mathbf{L}^{-1} \mathbf{x}$. The covariance matrix of the analysis errors reads:

$$\mathcal{P}^{ ext{apos}}(\mathbf{x}_{s}) = \left(
abla^{2}\mathcal{J}(\mathbf{x}_{s})
ight)^{-1} pprox \mathbf{B} + \sum_{i=1}^{K} \left(rac{1}{\lambda_{i}} - 1
ight) (\mathbf{L}\mathbf{v}_{i}) (\mathbf{L}\mathbf{v}_{i})^{T}$$

 $(\lambda_i, \mathbf{v}_i)_{i=1...K}$ are the leading eigen-pairs of the preconditioned Hessian matrix. The uncertainty reduction factor: $1 - \frac{\sigma_{apos}}{\sigma_{apri}}$, with $\sigma_{apos} = \sqrt{\operatorname{diag}(\mathcal{P}^{apos}(\mathbf{x}_a))}$.

We may get negative emissions in regions that are not well constrained by observations (we can fit anything with a Gaussian...).

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

TM5-4DVAR: (semi-)lognormal emissions prior

We optimize the *emission factors* \mathbf{x} , not the absolute emissions \mathbf{z} :

Semi-lognormal emissions, e.g. Bergamaschi et. al, 2009

$$\mathbf{z}_{ ext{emis}}^{i} := egin{cases} E_{ ext{apri}}^{i}(1 + \mathbf{x}_{ ext{emis}}^{i}) & \mathbf{x}_{ ext{emis}}^{i} \ge 0 \ E_{ ext{apri}}^{i} \exp \mathbf{x}_{ ext{emis}}^{i} & \mathbf{x}_{ ext{emis}}^{i} < 0. \ \sim \mathcal{N}(0, \mathbf{B}), ext{ then } \mathcal{E}\{\mathbf{z}_{ ext{emis}}^{i}\} = E_{ ext{apri}}^{i}\left(rac{1}{2} + rac{1}{\sqrt{2\pi}}\sigma_{i} + rac{1}{2}\exprac{\sigma_{i}^{2}}{2}\operatorname{erfc}rac{\sigma_{i}}{\sqrt{2}}
ight).$$

Lognormal emissions

If x

$$\mathbf{z}^i_{ ext{emis}} := E^i_{ ext{apri}} \exp \mathbf{x}^i_{ ext{emis}}$$

If $\mathbf{x} \sim \mathcal{N}(0, \mathbf{B})$, then $\mathbf{z} \sim \log \mathcal{N}(E_{\mathrm{apri}}^{i}, \mathbf{B})$ and $\mathcal{E}\{\mathbf{z}_{\mathrm{emis}}^{i}\} = E_{\mathrm{apri}}^{i} \exp \frac{\sigma_{i}^{2}}{2}$.

The diagonal elements of **B** are now the *relative* per-category emission uncertainties (variances), as defined in the TM5 rc file. **NB:** \mathcal{J} is defined in terms of **x**, remains Gaussian (quadratic in **x**).

M. Alexe, P. Bergamaschi, A. Segers

TM5-4DVAR: (semi-)lognormal emissions prior

© The emission uncertainty space has positive support - a posteriori emissions cannot be negative.

We invert for the mean of the (lognormal) a posteriori PDF. But this mean is unbounded wrt the (per-category) emission variance. Our choice of PDF pushes us away from the prior z_{apri}.

Semi-lognormal vs. lognormal

イロト 不得下 イヨト イヨト

 \odot The cost function \mathcal{J} is no longer quadratic in the *absolute* emissions **z**. We have to use M1QN3 instead of CONGRAD.

UQ with a nonlinear model: M1QN3 Hessian approximation

Joint Research Centre

Main idea

- What we want: the **leading eigen-pairs** $(\lambda_i, \mathbf{v}_i)$ of the Hessian matrix $\nabla^2_{\boldsymbol{\xi}} \mathcal{J}(\boldsymbol{\xi}_a)$.
- We cannot form the Hessian matrix explicitly (it can have more than $\sim 10^{12}$ elements for a zoomed model run). But we don't need to!
- Let's use a *black-box matrix-free eigenvalue solver* (such as ARPACK, available in scipy). We just need to calculate the action of the (approximate) Hessian on a given vector **q**.
- TM5-4DVAR implementation: a post-inversion step (after we have computed \mathbf{x}_a).
- How can we approximate the Hessian?

<ロ> (日) (日) (日) (日) (日)

Joint Research Centre

M1QN3

- A limited-memory quasi-Newton optimization routine.
- At iteration k, the algorithm uses the state and gradient vectors from iterations k − 1,..., k − m (m ~ 10) to build an approximation to ∇²J(ξ).

 \odot We can efficiently compute the product $\nabla^2_{M1QN3}J(\boldsymbol{\xi}) \times \mathbf{q} \ (\mathcal{O}(mn) \text{ FLOPs}).$

(日) (同) (三) (三)

Finite difference of adjoints: $\epsilon > 0$ (sufficiently small)

$$\begin{aligned} \boldsymbol{\xi}_{a} &= \mathbf{L}^{-1} \mathbf{x}_{a} \\ \nabla_{\boldsymbol{\xi}}^{2} \mathcal{J}(\boldsymbol{\xi}_{a}) \times \mathbf{q} &= \frac{1}{2\epsilon} \left[\nabla_{\boldsymbol{\xi}} \mathcal{J}(\boldsymbol{\xi}_{a} + \epsilon \, \mathbf{q}) - \nabla_{\boldsymbol{\xi}} \mathcal{J}(\boldsymbol{\xi}_{a} - \epsilon \, \mathbf{q}) \right] + \mathcal{O}(\epsilon^{2}) \end{aligned}$$

© Cost: two adjoint integrations per Hessian-vector product.

© The adjoint integrations can be performed in parallel.

The analysis error covariance

$$\begin{aligned} \mathbf{z}_{a} &:= h(\mathbf{x}_{a}) \\ \mathcal{P}^{\text{apos}}(\mathbf{z}_{a}) &\approx \mathbf{B}_{\text{abs}} + \left(\frac{\mathrm{d}h}{\mathrm{d}\mathbf{x}}\right) \left(\sum_{i=1}^{K} \left(\frac{1}{\lambda_{i}} - 1\right) (\mathbf{L}\mathbf{v}_{i}) (\mathbf{L}\mathbf{v}_{i})^{T}\right) \left(\frac{\mathrm{d}h}{\mathrm{d}\mathbf{x}}\right)^{T} \end{aligned}$$

M. Alexe, P. Bergamaschi, A. Segers

Hessian-based UQ: largest eigenvalues

10⁵ CONGRAD M1QN3 FINITEDIFF 10⁴ Eigenvalue 10³ 10² 10¹ 0 10 20 30 40 Eigenvalue index

M. Alexe, P. Bergamaschi, A. Segers

UQ in TM5-4DVAR

Nov 5, 2015 10 / 19

Joint Research Centre

Hessian-based UQ: uncertainty reduction

CONGRAD relative UR (K=30)ICE 0.50 3 0.45 djCH4_apri 0.40 BAL 0.35 BI5 CAS LRO 0.30 djCH4_apos , HUN 0.25 0.20 BG 0.15 0.10 ЧЙР 1 0.05

M. Alexe, P. Bergamaschi, A. Segers

UQ in TM5-4DVAR

Nov 5, 2015 11 / 19

A (10) A (10)

Hessian-based UQ: uncertainty reduction

M1QN3 relative UR (K=8)**JCE** 0.50 टि 0.45 djCH4_apri σ BAL 0.40 0.35 BI5 **R**A KAS RO 0.30 djCH4_apos / HUN 0.25 **BSC** PDAGU 0.20 0.15 **4**MP 0.10 ~ 0.05

A (10) A (10)

Hessian-based UQ: uncertainty reduction

FINITEDIFF relative UR (K=30)İCE 0.50 3 0.45 djCH4_apri σ 0.40 BAL 0.35 BI5 KAS LRO 0.30 djCH4_apos , HUM 0.25 BSC 0.20 BGU 0.15 0.10 ЧЙР 0.05

UQ in TM5-4DVAR

• • • • • • • • •

Monte Carlo 4DVAR

The algorithm

- Generate an ensemble of prior states $\mathbf{x}_b^{(k)} \sim \mathcal{N}(0, \mathbf{B}), \ k = 1 \dots K$.
- Perturb point observations and satellite total columns:

$$\mathbf{y}^{(k)} = \mathbf{y} + \mathbf{R}^{1/2} \rho^{(k)}, \quad \rho^{(k)} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$$

- Run K inversions: each starts from x_b^(k) and assimilates the data vector y^(k).
 We get the a posteriori ensemble x_a^(k).
- Calculate a posteriori statistics (mean, variances) from x^(k)_a, aggregate (absolute) errors with KPP.
- Works with any prior/observation PDF, easy to implement (at least in theory), embarrassingly parallel.
- \odot Computationally expensive, converges slowly (rate $\sim \frac{1}{\sqrt{K}}$).

イロン 不良と 不良と 不良と

Research

Wrap-up

Computational cost:

 $\begin{array}{ll} \mbox{Monte Carlo} & \mbox{$K \times {\rm Cost}_{\rm 4DVAR}$} \\ \mbox{M1QN3} & \mbox{very small overhead} \\ \mbox{Finite differences} & \mbox{$\sim 3 \times K \times [{\rm Cost}_{\rm FWD} + {\rm Cost}_{\rm ADJ}]$} \end{array}$

Computational cost:

 $\begin{array}{ll} \mbox{Monte Carlo} & \mbox{$K \times {\rm Cost}_{\rm 4DVAR}$} \\ \mbox{M1QN3} & \mbox{very small overhead} \\ \mbox{Finite differences} & \mbox{$\sim 3 \times K \times [{\rm Cost}_{\rm FWD} + {\rm Cost}_{\rm ADJ}]$} \end{array}$

Code status and future work:

- Monte-Carlo and Hessian-based UQ code now in the TM5-JRC SVN tree, to be merged into the SF .hg branch.
- Calculate and compare uncertainty estimates for a multi-year inversion.
- Make Monte-Carlo more HPC-friendly (use MPI with K processes instead of K single-core inversion jobs).
- Invert for the median/mode of the lognormal PDF (previous work by Fletcher and Zupanski, not trivial).

Questions?

UQ in TM5-4DVAR

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The effect of variable transformations

We are optimizing the emission coefficients \mathbf{x} .

What we really want is (the eigen-pairs of) the Hessian wrt the absolute emission variables $\mathbf{z}_{emis} = h(\mathbf{x})$. After some math...

$$\frac{\partial^2 \mathcal{J}}{\partial \mathbf{z}^2} \mathbf{q} = \left(\frac{\mathrm{d}h}{\mathrm{d}\mathbf{x}}\right)^{-T} \frac{\partial^2 \mathcal{J}^2}{\partial \mathbf{x}} \left(\frac{\mathrm{d}h}{\mathrm{d}\mathbf{x}}\right)^{-1} \mathbf{q} - \left(\frac{\mathrm{d}h}{\mathrm{d}\mathbf{x}}\right)^{-T} \left(\frac{\mathrm{d}^2 h}{\mathrm{d}\mathbf{x}^2} \otimes \left(\frac{\mathrm{d}h}{\mathrm{d}\mathbf{x}}\right)^{-1} \mathbf{q}\right)^T \left(\frac{\partial \mathcal{J}}{\partial \mathbf{z}}\right)^T$$

Ignoring the second order term (Hessian of h), we get:

$$\mathcal{P}^{\text{apos}}(\mathbf{z}_{a}) \approx \left(\nabla^{2} \mathcal{J}(\mathbf{z}_{a})\right)^{-1} \approx \mathbf{B}_{\text{abs}} + \left(\frac{\mathrm{d}h}{\mathrm{d}\mathbf{x}}\right) \left(\sum_{i=1}^{K} \left(\frac{1}{\lambda_{i}} - 1\right) (\mathbf{L}\mathbf{v}_{i}) (\mathbf{L}\mathbf{v}_{i})^{T}\right) \left(\frac{\mathrm{d}h}{\mathrm{d}\mathbf{x}}\right)^{T}$$

(日) (同) (日) (日)

- TM5 version: JRC-M05
- Time period: 12/2009 3/2010
- 40 M1QN3 iterations, 40 CONGRAD iterations
- Prior emission uncertainties: 100% for all categories ($\sigma_x = 1$).
- We assimilated surface observations (NOAA) and GOSAT OCPR v52 retrievals.
- Uncertainties aggregated with VPP.

(日) (同) (日) (日)