High-resolution measurements and modeling of $\Delta^{14}CO_2$ over Western Europe

D. Bozhinova, M. Combe, M. van der Molen,

S. Palstra, H. Meijer, W. Peters and M. Krol

The carbon isotopes – ¹²C, ¹³C, ¹⁴C

Isotope mixing ratios of CO₂ in the atmosphere

- Stable ¹²C isotope ~ 98.9%
- Stable ¹³C isotope ~ 1.1%
- Radioactive ¹⁴C isotope ~ 0.000000001% (10⁻¹²)

I⁴C is reported usually as normalized difference with a reference standard

- $\Delta^{14}C = (A_s/A_{ref} 1)*Corrections*1000 [‰]$
- Corrections for two major processes
 - Fractionation using ¹³C information
 - Radioactive decay in the reference since 1950

The unstable ¹⁴C

Destroyed by radioactive decay

- ¹⁴C half-life time = 5730 ± 40 years
- Well-researched for archaeological dating purposes
 - Effects are negligible for modern samples and measurable only in reservoirs with long turn-over time
- Production requires high energy particles
 - Natural by cosmic radiation in the upper atmosphere

Figure source: Virtual Courseware Project - ScienceCourseware.org

The unstable ¹⁴C

Destroyed by radioactive decay

- ¹⁴C half-life time = 5730 ± 40 years
- Well-researched for archaeological dating purposes
 - Effects are negligible for modern samples and measurable only in reservoirs with long turn-over time
 - Fossil fuels are old enough to have no ¹⁴C left
- Production requires high energy particles
 - Natural by cosmic radiation in the upper atmosphere
 - Manmade by atmospheric nuclear bomb tests (mostly before 1963)
 - Manmade by nuclear power industry

WAGENINGEN UNIVERSITY

Figure source: Institute for Environmental Physics, University of Heidelberg, 2011

The budget of ¹⁴CO₂

$$d\Delta_{atm}C_{atm}/dt = \Delta_{fossil}C_{fossil} +$$

•
$$\Delta_{\text{fossil}}$$
 = -1000 ‰ – no ¹⁴CO₂ in the flux

The budget of ¹⁴CO₂

 $= d\Delta_{atm}C_{atm}/dt = \Delta_{fossil}C_{fossil} + \Delta_{14}^{14}C_{cosmic} + \Delta_{14}^{14}C_{nuclear}$

- Δ_{fossil} = -1000 ‰ no ¹⁴CO₂ in the flux
- $\Delta_{14} \sim +7.5 \times 10^{15}$ ‰ pure ¹⁴CO₂ fluxes

The budget of ¹⁴CO₂

 $= d\Delta_{atm}C_{atm}/dt = \Delta_{fossil}C_{fossil} + \Delta_{14}^{14}C_{cosmic} + \Delta_{14}^{14}C_{nuclear}$

+ $\Delta^{bio}_{diseq}(C_{landuse} + C_{bio}^{net}) + \Delta^{ocean}_{diseq}C_{ocean}^{net}$

•
$$\Delta_{\text{fossil}}$$
 = -1000 ‰ – no ¹⁴CO₂ in the flux

- $\Delta_{14} \sim +7.5 \times 10^{15}$ ‰ pure ¹⁴CO₂ fluxes
- Disequilibrium terms induced by the bomb-peak curve represent the difference in the Δ signature of the incoming and outgoing flux for the reservoirs

WAGENINGEN UNIVERSITY

Figure source: Institute for Environmental Physics, University of Heidelberg, 2011

Project: ¹⁴C in crops in Western Europe

PhD project Denica Bozhinova

Fixation of 'old' (fossil) CO₂ in maize (corn)

Our project and methods

Can we use plant samples in a quantitative manner?

- Model the plant CO₂ assimilation with crop growth model
 SUCROS2
- Model the atmospheric CO_2 concentrations (C_{atm}) and their $\Delta^{14}CO_2$ signature (Δ_{atm}) WRF-Chem
- Gather plant samples to verify the method

The crop growth model

A simple and universal crop growth simulator - SUCROS

- Mechanistic process-based LUE model
- Includes water limited plant growth (SUCROS2)
- Requires basic meteorological information
- Time step of 1 day
- Models the allocation of mass in the different plant parts
- Simulates own development and leaf area index

Averaging kernel

Averaging kernels for different plant parts as simulated by SUCROS

Averaging kernel: matters !

$\Delta^{14}\mathrm{C}_{res}[\%_0]$	Spring wheat		Maize	
	flowering	maturity	flowering	maturity
Leaves	39.0	39.0	39.6	39.6
Roots	38.6	38.8	39.6	39.5
Stems	41.0	41.3	42.6	41.7
St. organs	-	40.6	-	38.1
Total plant	40.5	40.8	41.4	39.5
Flat-kernel	37.8	38.3	38.4	38.9
Radiation	37.6	38.0	38.4	38.4
Temperature	37.6	37.8	38.3	38.5

Same weather Same atm $\Delta 14C$ Different growth period

WRF-Chem version 3.2.1

- 3 nested domains with horizontal resolution of 36, 12 and 4 km
- 27 vertical eta-levels, with 18 in the lower 2 km of the troposphere
- Time step of 180s in the mother domain, hourly output
- 6 hourly meteorological boundary conditions NCEP FNL model
- MYNN 2.5 boundary layer and surface layer scheme
- Noah Unified Land-Surface Model
- 6 hourly update of surface conditions
- 2 days of model spin-up
- Period simulated 30-03-2008 01-10-2008

WRF-Chem - SUCROS

WRF-Chem with CO₂ tracers

$$CO_{2obs} = CO_{2bg} + CO_{2ff} + CO_{2p} + CO_{2r}$$

$$\Delta_{obs} CO_{2obs} = \Delta_{bg} (CO_{2bg} + CO_{2p} + CO_{2r}) + \Delta_{ff} CO_{2ff} + \frac{14}{\Delta} ({}^{14}CO_{2bio}^{dis} + {}^{14}CO_{2o}^{dis} + {}^{14}CO_{2n} + {}^{14}CO_{2c})$$

- Background CO₂ concentrations from CarbonTracker
- Biospheric CO₂ fluxes from SiBCASA
- Δ_{bg} from Jungfraujoch observatory (courtesy I. Levin)
- Fossil fuel CO₂ emissions from CarboEurope (IER, Stuttgart)
- Nuclear ¹⁴CO₂ emissions (IAEA, Graven and Gruber [2011])
- disequilibrium fluxes and stratospheric production from Miller et al., 2012
- The $\Delta^{14}CO_2$ signatures are calculated offline

WAGENINGEN UNIVERSITY WAGENINGEN UR

Using plants to sample the atmosphere?

IER fossil fuel emissions

Our regional sampling campaigns

2010 – 12 sites in Groningen province, the Netherlands

- Differences between samples were within the measurement precision of $\sim 2\%$
- 2011 24 sites in three directions in the Netherlands
 - The cleaner north and more polluted south were clearly differentiated, samples from polluted areas more than 10‰ lower than cleaner ~ 3.5 ppm fossil fuel CO₂
- 2012 42 samples from the Netherlands, Germany (the Ruhrgebiet) and France (Normandy)
 - clear signatures per country/area
 - nuclear and fossil influence sampled

Maize leaf sampled $\Delta 14C$

Measured plant samples 2010-2012

Measured vs modeled Maize samples

Measured vs modeled Maize samples

Measured vs modeled plant samples: contributions

Reactor types considered

Total ${}^{14}CO_2$ emissions from the nuclear industry. EAS. Total ¹⁴CO₂ emissions from the nuclear industry. ECAH. Spent-fuel reprocessing plants. ECAH. Pressurized water reactors. ECAH. Boiling water reactors. ECAH. Advanced gas-cooled reactors. ECAH. Magnox advanced gas-cooled reactors. ECAH. Light-water-cooled graphite-moderated reactors. ECAH. Heavy water reactors and Fast-breeder reactors. ECAH. 2012 AGR tracer, with temporary shutdowns. ECAH. 2012 SFRP tracer, only 4h-at-noon emissions. ECAH. 2012 SFRP tracer, only 4h-at-midnight emissions. ECAH.

What is the temporal profile of 14C release from each site?

Conclusions

- ¹⁴C in plants is a promising verification approach over much of Europe
- Absolute signatures in integrated plants still too variable: local background samples must accompany each verification site
- Details matter:
 - Nuclear emissions can dominate fossil fuel signals
 - Plants grow as a function of the weather
 - A plant sample is not the same as an air sample
- We now have a complete framework to describe these details

SUCROS

The regional budget of CO₂ and ¹⁴CO₂

 $= dC_{atm}/dt = C_{bg} + C_{fossil} + C_{landuse} + C_{bio}^{net} + C_{ocean}^{net}$

+ $\Delta^{\text{bio}}_{\text{diseq}}(C_{\text{landuse}}+C_{\text{bio}}^{\text{net}})$ + Δ^{ocean} $C_{\text{ocean}}^{\text{net}}$ + $\Delta_{14}^{14}C_{\text{nuclear}}$ AGENINGEN WAGENINGENUR

Discussion

- Nuclear emissions uncertainties
 - Pollution dispersion in the model
 - Biospheric disequilibrium
 - Is there a limit in the horizontal resolution?
- Other challenges?

28.0

1.0