A global 3D model for the triple oxygen isotope signature Δ^{17} O of atmospheric CO₂ in TM5

Gerbrand Koren, Linda Schneider, Ivar R. van der Velde, Erik van Schaik, Sergey S. Gromov, Getachew A. Adnew, Dorota J. Mrozek, Magdalena E.G. Hofmann, Mao-Chang Liang, Sasadhar Mahata, Peter Bergamaschi, Ingrid T. van der Laan-Luijkx, Maarten C. Krol, Thomas Röckmann and Wouter Peters

TM5 meeting - November 21, 2017 - Wageningen

Airborne Stable Isotopes of Carbon from the Amazon

The carbon cycle

The carbon cycle

The carbon cycle

Research motivation

- Global carbon cycle:
 - Vegetation-atmosphere exchange consists of two large opposing fluxes
 - Magnitude of gross primary production (GPP) is uncertain
- Objective:
 - Develop 'forward' model framework for Δ^{17} O in atmospheric CO₂
 - Simulate spatial and temporal patterns of Δ^{17} O in CO₂
- Follow up:
 - Constrain gross primary production (GPP) with inverse model and measurements of Δ¹⁷O in atmospheric CO₂

Definition of Δ^{17} O in CO₂

• Definition of $\delta^n O$ (n =17 or 18):

$$\delta^{n}O = \frac{[{}^{n}O/{}^{16}O]_{sample}}{[{}^{n}O/{}^{16}O]_{standard}} - 1 \qquad {}^{12}CO_{2} \qquad 98.7\%$$

$$\delta^{n}O > 0 : sample enriched in {}^{n}O \qquad {}^{13}CO_{2} \qquad 1.1\%$$

$$\delta^{n}O < 0 : sample depleted in {}^{n}O \qquad {}^{13}CO_{2} \qquad 0.04\%$$

Definition of $\Delta^{17}O$:

$$\Delta^{17}O = \ln(\delta^{17}O + 1) - 0.5229 \cdot \ln(\delta^{18}O + 1) \qquad C^{18}OO \qquad 0.2\%$$

$$\approx \delta^{17}O - 0.5229 \cdot \delta^{18}O$$

• Also known as the ¹⁷O-excess

Δ¹⁷O model

Effect of vegetation on Δ^{17} O in CO₂

- CO₂ can exchange oxygen isotopes after dissolving into water
- Most exchange of isotopes between CO₂ and water occurs in vegetation
- Δ^{17} O in atmospheric CO₂ is strongly affected by gross atmosphere leaf exchange
- Internal and external CO_2 concentration C_i and C_a determine gross exchange fluxes F_{AL} and F_{LA}

Global budget of Δ^{17} O in CO₂

Global budget of Δ^{17} O in CO₂

9

Global budget of Δ^{17} O in CO₂

Stratospheric source of Δ^{17} O in CO₂

- N_2O and $\Delta^{17}O$ in stratospheric CO_2 are both tracers with a long lifetime and related to photochemistry
- N₂O tracer with optimized surface emissions and stratospheric sinks (data from Bergamaschi et al., 2015)

Results

Conclusions

Δ¹⁷O model

Theory

Introduction

Biospheric sink of Δ^{17} O in CO₂

• Vegetation model SiBCASA with C₃ and C₄ vegetation photosynthesis scheme

Results

• Gross atmosphere-leaf flux from c_i / c_a (and $F_A = 0.88 \cdot GPP$)

Δ¹⁷O model

• Time and space dependent Δ^{17} O leaf water signature

Theory

Introduction

Conclusions

12

Global time series of Δ^{17} O in CO₂

- Decrease of Δ^{17} O in atmospheric CO₂ during periods of high GPP (with highest amplitude in NH)
- Our TM5 model prediction lower than box models (mainly due to higher F_{AL})

Seasonal maps of Δ^{17} O in CO₂

- Lower values of Δ^{17} O in CO₂ over land area
- During entire year low Δ¹⁷O value above the Amazon
- Large swings in Δ¹⁷O values for NH

14

Results of Δ^{17} O in CO₂ over Sodankylä, Finland

• Model predictions for N₂O mixing ratios and Δ^{17} O in CO₂ agree well with observations from Mrozek et al. (2016) measured with AirCore

 Δ^{17} O model

Results of Δ^{17} O in CO₂ for Göttingen, Germany

- Seasonal cycle in Δ^{17} O due to seasonality in biosphere
- Large drop in measured Δ^{17} O in CO₂ for second year cannot be explained

Δ¹⁷O model

Where should we measure?

- High northern latitude (e.g. Zotino, Russia at 60 °N) for large seasonal cycle
- Northern Hemisphere background (e.g. Mauna Loa, Hawaii, 19.5 °N)
- Southern Hemisphere background location for NS-gradient (e.g. South Pole)
- Amazonia for vegetation induced drop in Δ^{17} O (e.g. Manaus, 3 °S)

Where should we measure?

• Longitudinal and vertical gradients in Δ^{17} O of CO₂ for wet and dry season at Manaus (60 °W)

 Δ^{17} O model

Conclusions

- First 3D model for Δ^{17} O in atmospheric CO₂
 - Atmospheric transport model TM5
 - Stratospheric source based on observed $N_2O-\Delta^{17}O(CO_2)$ correlation
 - Gross atmosphere-leaf exchange from vegetation model SiBCASA
- Model results for Δ^{17} O in CO₂
 - Spatial and temporal pattern agree with vegetation dynamics
 - Average prediction lower than box model predictions
 - Good agreement for profile over Sodankylä, Finland
- More measurements are need to better understand the budget of Δ^{17} O in CO₂