

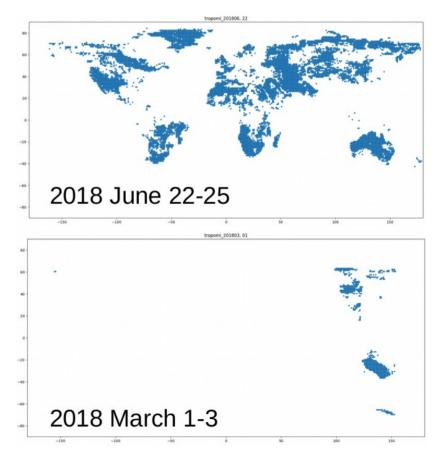
LMATIETEEN LAITOS 1ETEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

TROPOMI inversion with CTE-CH4

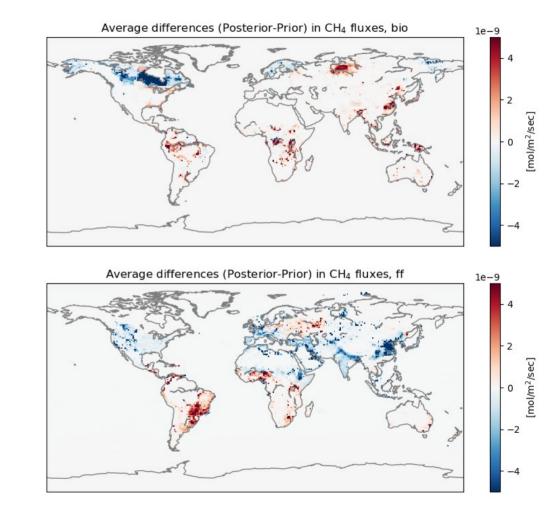
Aki Tsuruta, Ella Kivimäki, Hannakaisa Lindqvist, Janne Hakkarainen, Tuula Aalto

22/11/2019 TM meeting, remote connection to Wageningen

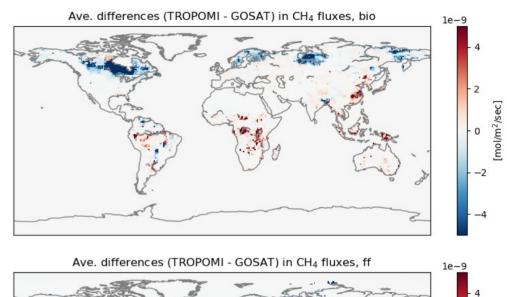
CTE-CH₄

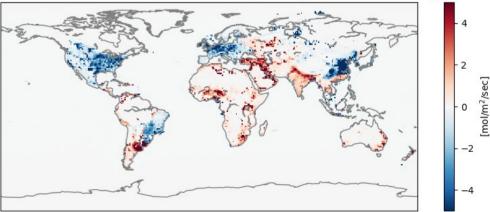

- Setup similar to normal CTE-CH4
 - TM5 with zoom over Europe
 - Grid base optimization over Europe, region-wise elsewhere
 - Optimize biospheric (wetland+sink) and anthropogenic sources, prior uncorrelated
 - Priors as GCP (avg. from Pouter et al., 2017, EDGAR v4.3.2, GFED v4, geological, termite, ocean)
- 3 day optimization with 15 days (3-day x 5) assimilation window
 - Shorter optimization window is used to reduce number of obs. to handle
- Simulation: Nov. 2017 \rightarrow Dec. 2018

TROPOMI data preprocessing


- Data preprocessed by taking 1° x 1° x daily averages
 - 1. Calculate median XCH₄ value of the grid
 - 2. Find a retrieval whose XCH₄ value is the closest value to the median
 - 3. Take the retrieval as the obs. of the grid (applies to all parameters, e.g. AK correction)
- Obs. uncertainty: std from averaging + transport model uncertainty (15 ppb)
 - Min. std = 5 ppb
- AK implemented
- Rejection threshold = twice obs. uncertainty
 - Too large unc. was not good

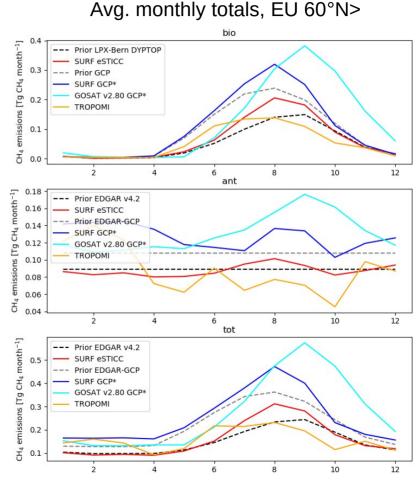
Global emissions [Tg CH4 yr-1]

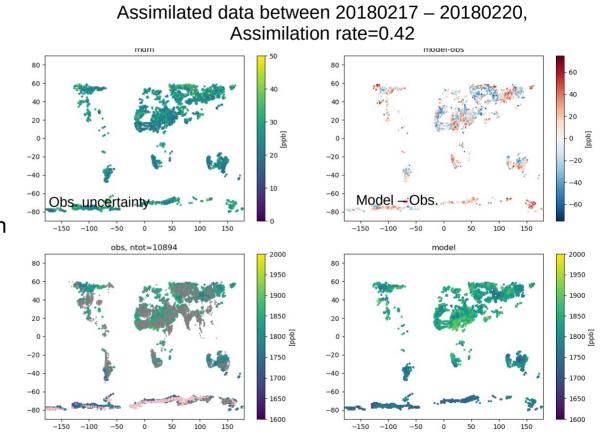

- Total: 556 (prior) → 552 (posterior)
 GOSAT (560), surface* (550→572)
- Biospheric: $142 \rightarrow 162$
 - GOSAT (157), surface* (147→157)
- Anthropogenic: $350 \rightarrow 325$
 - GOSAT (341), surface* (360→372)



Comparison to GOSAT inversion

- Biospheric
 - NH: TROPOMI<GOSAT
 - SH: TROPOMI>GOSAT
- Anthropogenic
 - North America, Europe, China: TROPOMI<GOSAT
 - Middle East, Africa, India: TROPOMI>GOSAT
- \rightarrow Some spatial dependencies




Seasonal cycle for Northern Europe

- TROPOMI inv. give earlier increase in biospheric emissions
 - Maybe due to seasonal bias in the TROPOMI data
- Summer max. in TROPOMI inversion is not as clear as other inversions, but July-August is close to e.g. EC observations
- GOSAT inversion give much later summer maximum and high winter emissions
 - XCH4 data is "pre-corrected" to match XCH4 from surface inversion (zonal and monthly means)

- Assimilation rate ~0.5 throughout the year
- Comparison with posterior XCH₄ showed little latitudinal gradient bias
- Over ice: std of XCH₄ values from ensembles were zero
 - Could not be used in optimization

- Assimilation rate ~0.5 throughout the year
- Comparison with posterior XCH₄ showed little latitudinal gradient bias
- Over ice: std of XCH₄ values from ensembles were zero
 - Could not be used in optimization
- Mountains & desserts, central Russia obs. seem to have problem assimilating
 - Increasing TM5 resolution may help?

Next step

- Further evaluation of results
 - Posterior surface CH₄, comparison to observations
 - Seasonal cycles
 - HNL autumn and spring (in connection to Maria's project)
- · Assimilate surface observations at the same time
- *Increase TM5 resolution global 1°x1° or 0.5°x0.5°
- *Move to ERA5

*Will be applied to all upcoming CTE-CH4 runs

