

Update on investigating CH₄ emissions from tropical wetlands

A.Klemme T. Warneke, N. Daskalakis, M. Vrekoussis, J. Notholt November 22, 2019

Universität Bremen

NOAA, Mauna Loa [Dlugokencky et al., 2017]

- Methane Sources:
 - Wetlands
 - Agriculture
 - Fossil Fuel
 - Other
- Methane Sink:
 - Reaction with OH⁻

NOAA, Mauna Loa [Dlugokencky et al., 2017]

- Methane Sources:
 - Wetlands (216.9 $\mathrm{Tg/yr})$
 - Agriculture (143.6 Tg/yr)
 - Fossil Fuel (122.1 $\mathrm{Tg/yr})$
 - Other (118.4 $\mathrm{Tg/yr}$)
- Methane Sink:
 - Reaction with OH⁻

NOAA, Mauna Loa [Dlugokencky et al., 2017]

- Methane Sources:
 - Wetlands (216.9 $\mathrm{Tg/yr})$
 - Agriculture (143.6 Tg/yr)
 - Fossil Fuel (122.1 Tg/yr)
 - Other (118.4 $\mathrm{Tg/yr}$)
- Methane Sink:
 - Reaction with OH⁻

NOAA, Mauna Loa [Dlugokencky et al., 2017]

 $\cdot\,$ Natural wetland emissions: 20 to 50 % of global CH_4 emissions

- Methane Sources:
 - Wetlands (216.9 $\mathrm{Tg/yr})$
 - Agriculture (143.6 Tg/yr)
 - Fossil Fuel (122.1 Tg/yr)
 - Other (118.4 $\mathrm{Tg/yr}$)
- Methane Sink:
 - Reaction with OH⁻

NOAA, Mauna Loa [Dlugokencky et al., 2017]

- $\cdot\,$ Natural wetland emissions: 20 to 50 % of global CH_4 emissions
 - waterlogged areas of high carbon content \rightarrow methanogenesis

- Methane Sources:
 - Wetlands (216.9 $\mathrm{Tg/yr})$
 - Agriculture (143.6 Tg/yr)
 - Fossil Fuel (122.1 $\mathrm{Tg/yr}$)
 - Other (118.4 $\mathrm{Tg/yr}$)
- Methane Sink:
 - Reaction with OH⁻

NOAA, Mauna Loa [Dlugokencky et al., 2017]

- $\cdot\,$ Natural wetland emissions: 20 to 50 % of global CH_4 emissions
 - waterlogged areas of high carbon content \rightarrow methanogenesis
- $\cdot~>50\,\%$ of wetl. emis. between 25 $^{\circ}\mathrm{N}$ and 25 $^{\circ}\mathrm{S}$

Global distribution of rice & wetland emissions

Global distribution of rice & wetland emissions

Interesting emission regions:

- Amazon river basin
- Congo river basin
- Ganges-Brahmaputra-Meghna river basin

Two model runs for atmospheric methane:

- 1. calculated with full emission product
- 2. calculated excluding local emissions

• datasets from 13 different soil models

Wetland CH4 emission datasets

- datasets from 13 different soil models
- $\rightarrow\,$ used for calculation of Global Methane Budget by CGP

- datasets from 13 different soil models
- $\rightarrow\,$ used for calculation of Global Methane Budget by CGP
- \rightarrow 2000 2017: (101 179) TgCH₄ yr⁻¹ [Saunois et al., n.d.]

- datasets from 13 different soil models
- ightarrow used for calculation of Global Methane Budget by CGP
- \rightarrow 2000 2017: (101 179) TgCH₄ yr⁻¹ [Saunois *et al.*, n.d.]

- datasets from 13 different soil models
- ightarrow used for calculation of Global Methane Budget by CGP
- \rightarrow 2000 2017: (101 179) TgCH₄ yr⁻¹ [Saunois *et al.*, n.d.]

- datasets from 13 different soil models
- ightarrow used for calculation of Global Methane Budget by CGP
- \rightarrow 2000 2017: (101 179) TgCH₄ yr⁻¹ [Saunois *et al.*, n.d.]

- datasets from 13 different soil models
- ightarrow used for calculation of Global Methane Budget by CGP
- \rightarrow 2000 2017: (101 179) TgCH₄ yr⁻¹ [Saunois *et al.*, n.d.]

- datasets from 13 different soil models
- ightarrow used for calculation of Global Methane Budget by CGP
- \rightarrow 2000 2017: (101 179) TgCH₄ yr⁻¹ [Saunois *et al.*, n.d.]

- datasets from 13 different soil models
- ightarrow used for calculation of Global Methane Budget by CGP
- \rightarrow 2000 2017: (101 179) TgCH₄ yr⁻¹ [Saunois *et al.*, n.d.]

- datasets from 13 different soil models
- ightarrow used for calculation of Global Methane Budget by CGP
- \rightarrow 2000 2017: (101 179) TgCH₄ yr⁻¹ [Saunois *et al.*, n.d.]

- datasets from 13 different soil models
- ightarrow used for calculation of Global Methane Budget by CGP
- \rightarrow 2000 2017: (101 179) TgCH₄ yr⁻¹ [Saunois *et al.*, n.d.]

- datasets from 13 different soil models
- ightarrow used for calculation of Global Methane Budget by CGP
- \rightarrow 2000 2017: (101 179) TgCH₄ yr⁻¹ [Saunois *et al.*, n.d.]

- datasets from 13 different soil models
- ightarrow used for calculation of Global Methane Budget by CGP
- \rightarrow 2000 2017: (101 179) TgCH₄ yr⁻¹ [Saunois *et al.*, n.d.]

- datasets from 13 different soil models
- ightarrow used for calculation of Global Methane Budget by CGP
- \rightarrow 2000 2017: (101 179) TgCH₄ yr⁻¹ [Saunois *et al.*, n.d.]

- datasets from 13 different soil models
- ightarrow used for calculation of Global Methane Budget by CGP
- \rightarrow 2000 2017: (101 179) TgCH₄ yr⁻¹ [Saunois *et al.*, n.d.]

- datasets from 13 different soil models
- ightarrow used for calculation of Global Methane Budget by CGP
- \rightarrow 2000 2017: (101 179) TgCH₄ yr⁻¹ [Saunois *et al.*, n.d.]

· comparison of regional wetland emissions

 $\cdot\,$ comparison of modeled CH_4 with satellite data

- $\cdot\,$ comparison of modeled CH_4 with satellite data
- 1st attempt: Run 2010 2017 using AR5 RCP85

- \cdot comparison of modeled CH₄ with satellite data
- 1st attempt: Run 2010 2017 using AR5 RCP85

- comparison of modeled CH₄ with satellite data
- 1st attempt: Run 2010 2017 using AR5 RCP85
- deviation from satellite data starting 2014

- \cdot comparison of modeled CH₄ with satellite data
- 1st attempt: Run 2010 2017 using AR5 RCP85
- deviation from satellite data starting 2014 but reasonable seasonality

 \cdot 2nd attempt: look at seasonality only

 \cdot 2nd attempt: look at seasonality only

- · 2nd attempt: look at seasonality only
- good correlation with satellite data

- · 2nd attempt: look at seasonality only
- good correlation with satellite data
- no quantitative results possible

- · 2nd attempt: look at seasonality only
- comparison of datasets

- · 2nd attempt: look at seasonality only
- comparison of datasets

- · 2nd attempt: look at seasonality only
- comparison of datasets

- · 2nd attempt: look at seasonality only
- comparison of datasets

- · 2nd attempt: look at seasonality only
- comparison of datasets

- · 2nd attempt: look at seasonality only
- comparison of datasets

- · 2nd attempt: look at seasonality only
- comparison of datasets

· 3rd attempt: With versus without wetland emissions

· 3rd attempt: With versus without wetland emissions

- · 4th attempt: Implementation of CMIP6 Data
- \cdot emission and mole fraction files implemented

- · 4th attempt: Implementation of CMIP6 Data
- emission and mole fraction files implemented
- After a lot of ERR, the model runs.. but there are more issues:

- · 4th attempt: Implementation of CMIP6 Data
- emission and mole fraction files implemented
- After a lot of ERR, the model runs.. but there are more issues:

\cdot evaluation of different wetland CH4 emission datasets

• evaluation of different wetland CH4 emission datasets using TM5 forward model & satellite data

- evaluation of different wetland CH4 emission datasets using TM5 forward model & satellite data
- emission datasets range from 2000 2017
 - $\rightarrow\,$ implementation of years in TM5
 - ightarrow no comparison with S5-P data

- evaluation of different wetland CH4 emission datasets using TM5 forward model & satellite data
- emission datasets range from 2000 2017
 - ightarrow implementation of years in TM5
 - ightarrow no comparison with S5-P data
- Remaining questions:
 - Which wetlands should we focus on? (Amazon?, Congo?, Ganges?)
 - How to solve the problem with CMIP6 data?