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What’s so special about satellites?



Vertical sensitivity / averaging kernels

• sensitivity of the satellite measurement depends on light path
• altitude
• wavelength (i.e., trace gas)
• cloudiness
• aerosols
• surface albedo

Column AKs for (a) clear-sky, albedo 0.02; (b) clear-sky, albedo 0.15; (c) cloudy, cloud top @800 hPa [Eskes and Boersma, 2003]
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What is an averaging kernel?

• for pro�le retrievals from satellite, the AK is a matrix Aij,
indicating the sensitivity of the retrieved concentration in layer j
to trace gas present in atmospheric layer i

• for column retrievals from satellite, the AK is a vector Ai,
indicating the sensitivity of the retrieved column to trace gas
present in atmospheric layer i

2/12



How do I use an averaging kernel?

• using the modelled concentrations, calculate the column which
the sensor would have retrieved ŷm from the modelled pro�le xm

ŷm = A · xm

• in case of tropospheric columns (i.e., NO2), need to apply
conversion factor:

ŷm,trop = A · AMF
AMFtrop

· xm,trop

• this ŷm can then be compared to the satellite retrievals
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Data aggregation work�ow



From single satellite measurements to gridded data

1. read satellite data (lv 2: retrieval output of single measurements,
i.e., column densities and averaging kernels)

2. (strictly) �lter satellite data (according to product speci�cation)
3. (linearly) interpolate hourly model concentration pro�les to time
and horizontal location of each (remaining) measurement

4. for each satellite measurement, apply the averaging kernel to the
model concentration pro�le to yield ŷm

5. average all ŷm from one day within a model grid cell
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From single satellite measurements to gridded data

1. read satellite data (lv 2: retrieval output of single measurements,
i.e., column densities and averaging kernels)

2. (strictly) �lter satellite data (according to product speci�cation)
3. (linearly) interpolate hourly model concentration pro�les to time
and horizontal location of each (remaining) measurement

4. for each satellite measurement, apply the averaging kernel to the
model concentration pro�le to yield ŷm

5. average all ŷm from one day within a model grid cell
What does this leave us with?
For each model dataset (di�erent chemistry schemes / solvers)

• vertical column densities as the satellite would have seen them
• at model resolution (here: 1×1°)
• averaged daily 4/12



Model validation



Maps

• monthly / annual mean maps (global or regional)
• one map per dataset
• additional map(s) for relative and/or absolute di�erences

Why (not) to use maps

• make sense only for long temporal aggregates (noisy
measurement data!)

• are hard to interpret quantitatively
• give indication for areas to look into at more detail
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Maps

• monthly / annual mean maps (global or regional)
• one map per dataset
• additional map(s) for relative and/or absolute di�erences

Example
2006 mean CO total VCDs from MOPITT (l) and TM5mp-MOGUNTIA (r)
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Maps

• monthly / annual mean maps (global or regional)
• one map per dataset
• additional map(s) for relative and/or absolute di�erences

Example
Relative di�erence TM5—MOPITT for MOGUNTIA (l) and CB05/EBI (r)
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Time-series

• monthly mean time-series over individual regions
• error bars to show variability within one month
• several datasets in one plot

Why (not) to use time-series

• spatial (regional) averages
• longer temporal averages
• can give ideas about seasonal changes in the di�erences
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• error bars to show variability within one month
• several datasets in one plot

Example
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Scatter plots / heatmaps

• scatter plots/heatmaps of daily/monthly/annual data
• comparison against reference data (one plot per model dataset)

• draw 1:1 and linear regression lines
• show distribution / histogram for individual datasets on outer axes

Why (not) to use scatter plots

• make the model look very bad when used on daily data,
especially for HCHO and NO2

• make the model look very good when used on annual averages
• nicely shows correlation and slope
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Other distribution plots (violin plots, . . . )

• violin plots basically show many histograms simultaneously
Example
Monthly distribution of MOPITT and TM5 (violin plot)
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Aggregated statistics

• correlation coe�cient
• slope/intercept of regression line
• (normalized) mean bias, root mean square error, . . .
• unbiased symmetric metrics [Yu et al., 2006]:

• normalized mean bias factor (NMBF)
• normalized mean absolute error factor (NMAEF)

How to visualize aggregated statistics?

• Tables (not really visual . . . )
• Bar plots of, e.g., correlation
• Taylor plots
• ???
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Aggregated statistics

• correlation coe�cient
• slope/intercept of regression line
• (normalized) mean bias, root mean square error, . . .
• unbiased symmetric metrics [Yu et al., 2006]:

• normalized mean bias factor (NMBF)
• normalized mean absolute error factor (NMAEF)

Example
Correlation and slope of daily mean gridded model CO VCDs against
MOPITT V008 CO total VCDs:

Dataset Pearson’s r Slope
Moguntia 0.810 0.657
CB05 (KPP) 0.740 0.631
CB05 (EBI) 0.779 0.636
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Aggregated statistics

• correlation coe�cient
• slope/intercept of regression line
• (normalized) mean bias, root mean square error, . . .
• unbiased symmetric metrics [Yu et al., 2006]:

• normalized mean bias factor (NMBF)
• normalized mean absolute error factor (NMAEF)

Example
Correlation of daily mean gridded model CO VCDs vs. MOPITT V008:
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Beyond column densities: what else can be done?

• surface concentration measurements (from satellite or in-situ)
• isobar concentration measurement (from satellite pro�les)
• pro�le measurements from sonde �ights
• concentration measurements from aircraft (non-regular locations
and timings)
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Conclusions



Summary

• modelled concentration pro�les have to be adapted for the
measuremts’ vertical sensitivity before comparison

• there are many di�erent ways to evaluate these global datasets
• maps look nice and give a general overview
• time-series show seasonality
• scatter plots / heatmaps of daily values are honest but look bad
• scatter plots / heatmaps of annual values look good but are not
really honest

• scatter plot somewhat implies individual data points
• aggregate stastical metrics can be a nice tool to summarize

• It is hard to not get lost in all the options . . . what to choose best?
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