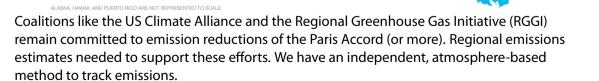
US Fossil Fuel CO_2 Estimates from Atmospheric $\Delta^{14}CO_2$ Measurements

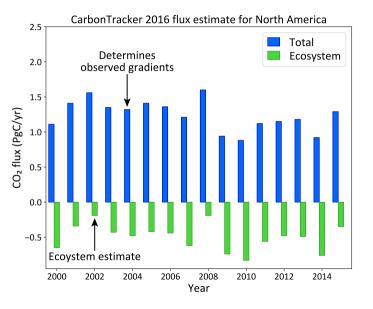
Sourish Basu^{1,3,4}, Scott Lehman², John Miller¹, Kevin Gurney⁵, Arlyn Andrews¹, Colm Sweeney¹, Pieter Tans¹, Xiamoei Xu⁶, John Southon⁶

¹NOAA Earth System Research Laboratory, Boulder CO

²INSTAAR, University of Colorado, Boulder CO

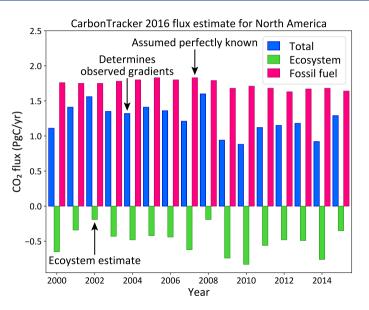

³NASA Goddard Space Flight Center, Greenbelt MD

⁴ESSIC, University of Maryland, College Park MD

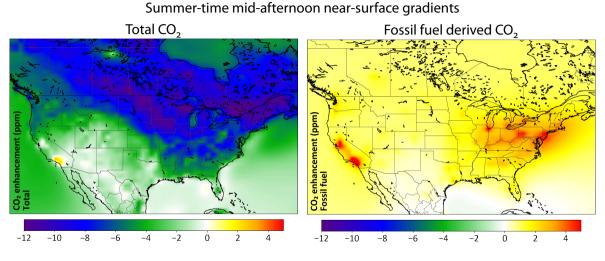

⁵Northern Arizona University, Flagstaff AZ

⁶University of California Irvine, Irvine CA

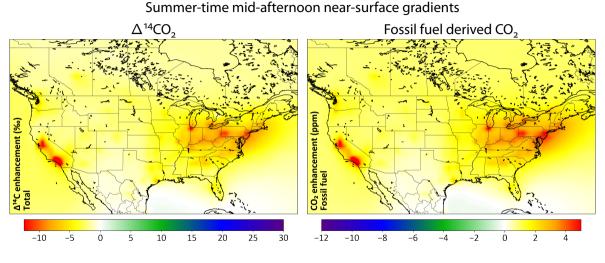
21st November 2019, TM5 Meeting Wageningen



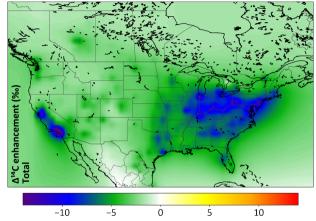
- We are interested in the climate response of land ecosystem (NEE) and ocean fluxes
- CarbonTracker-like CO₂ flux estimation systems solve for NEE from observed atmospheric gradients


Why track US fossil fuel emissions (2)?

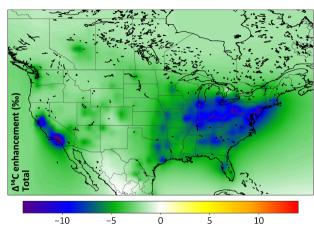
- We are interested in the climate response of land ecosystem (NEE) and ocean fluxes
- CarbonTracker-like CO₂ flux estimation systems solve for NEE from observed atmospheric gradients
- Fossil fuel emissions assumed to be perfectly known
- Errors in FF (especially seasonal) can impact diagnosed NEE anomalies and climate response



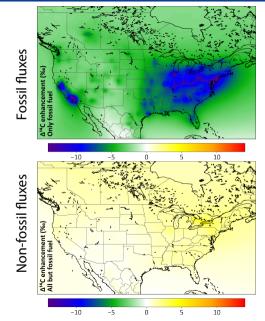
Near-surface gradients of CO₂ are completely different from that of fossil fuel derived CO₂ It is not possible to estimate the latter by measuring the former



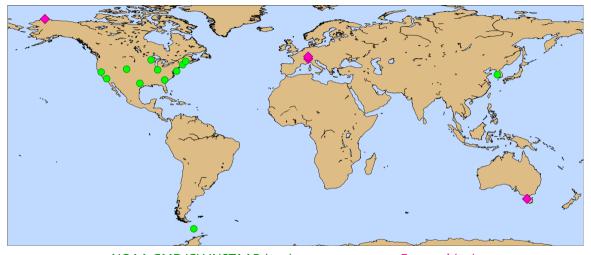
1 ppm fossil fuel $CO_2 = -2.5 \%$ in $\Delta^{14}CO_2$ (roughly) Correlation is tight enough to estimate FF CO_2 from $\Delta^{14}CO_2$ gradients


$$\begin{split} \frac{d\textbf{C}}{dt} = & F_{\text{oce}} + F_{\text{bio}} + F_{\text{fos}} \\ \textbf{C} \frac{d}{dt} \Delta_{\text{atm}} = & (\Delta_{\text{fos}} - \Delta_{\text{atm}}) F_{\text{fos}} \\ & + \Delta_{\text{oce}} F_{\text{oce} \to \text{atm}} + \Delta_{\text{bio}} F_{\text{bio} \to \text{atm}} \\ & + \alpha \left(F_{\text{nuc}} + F_{\text{cosmo}} \right) \end{split}$$

measurements assimilated fluxes estimated



 $\Delta^{14}CO_2$ gradients are determined by fossil fuel, cosmogenic production, nuclear production, and oceanic and terrestrial disequilibria

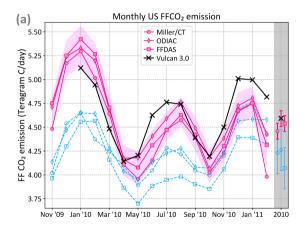


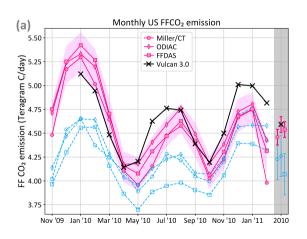
 $\Delta^{14}CO_2$ gradients are determined by fossil fuel, cosmogenic production, nuclear production, and oceanic and terrestrial disequilibria

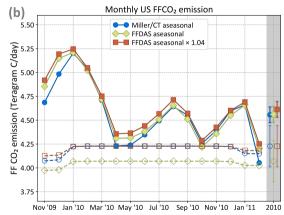
NOAA GMD/CU INSTAAR (895)

External (89)

• Random uncertainty (posterior covariance) evaluated by performing 110 inversions with perturbed fluxes and measurements (Monte Carlo)


 Systematic errors from doing inversions with different configurations (prior FF, prior NEE, disequilibrium, ¹⁴C production, etc.)



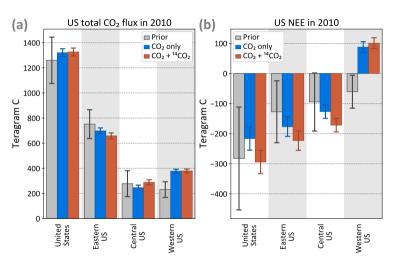

In the summer, CO_2 variations are primarily due to the biosphere. However, in the winter a significant component of the CO_2 variation could be FF CO_2 . We evaluated this by looking at residuals of CO_2 and $CO_2 \cdot \Delta^{14}CO_2$ from smooth curves over three years.

Systematic errors/sensitivity tests

	2010 Total FF CO ₂		Analytical uncertainty				Spread due to		Spread due to prior NEE			E	Spread from other	
Region	(TgC yr ⁻¹)		Prior		Posterior		prior FF		2010 coverage		NRC5000		sensitivity runs	
	Inversion	Vulcan	TgC yr ^{−1}	%	TgC yr ^{−1}	%	TgC yr ^{−1}	%	TgC yr ^{−1}	%	TgC yr ^{−1}	%	TgC yr ^{−1}	%
United States	1653	1676	78.8	5.2	30.2	1.8	56.4	3.4	86.2	5.2	26.3	1.6	29.4	1.8
Eastern US	889	953	56.2	6.3	26.2	3.0	15.7	1.8	34.3	3.9	18.7	2.1	15.0	1.7
Western US	302	310	32.8	12.4	12.4	4.1	35.8	11.9	49.9	16.6	7.6	2.5	5.2	1.7
Central US	463	413	36.1	9.6	19.6	4.2	8.8	1.9	1.9	0.4	0.0	0.0	9.2	2.0

- Of all the sensitivity tests run, FF CO₂ seems to be the most sensitive to prior NEE
- This is not a theoretical limit, but due to small number of $\Delta^{14}CO_2$ obs, disappears if that number is increased

- Inherent problem with aggregating gridded inversion estimates, since 1 \times 1 grid is fairly coarse to properly account for coastal urban areas and country boundaries
- Inventories typically serve UNFCC reporting requirements, which ignore bunker fuels, and include some non-fossil CO₂ emissions
- ullet US gasoline contains \sim 10% ethanol, which is included in the total automotive sector of some inventories
- Vulcan includes some airline emissions (below 1 km), other inventories vary
- Some inventories report both gridded and national emissions, but what country masks they use (if any) is unclear


After some adjustments...

Source	FF CO ₂ (TgC yr ⁻¹)			
Source	Reported	Adjusted		
CDIAC	1471	1513		
EDGAR 4.2 FT2010	1497	1522		
EDGAR 4.3	1505	1545		
US EPA	1555^{+62}_{-31}	1581^{+62}_{-31}		
Vulcan 3.0	1638	1676		
	Prior	Posterior		
Inverse estimate (mean)	1528	$\textbf{1653} \pm \textbf{30}$		
Inverse estimate (CT/Miller prior)	1543	1627 ± 30		
Inverse estimate (seasonal FFDAS prior)	1485	1656 ± 30		
Inverse estimate (ODIAC prior)	1555	$\textbf{1675} \pm \textbf{30}$		

NEE estimates can have significant errors due to wrong FF

- Difference in NEE due to adjusting FF CO₂ is ~75 TgC/yr
- For comparison, US average NEE from CarbonTracker NAM is ~300 TgC/yr, and inter-annual variations are ~100 TgC/yr
- More importantly, difference is $> 2\sigma$ of posterior error

- Δ^{14} C of CO₂ is a very sensitive and accurate tracer for recently derived FF CO₂
- $\Delta^{14}\text{CO}_2$ -derived FF CO $_2$ for the US in 2010 is higher than most inventories used for carbon accounting, including the US EPA. However, it is quite close to the US-specific high resolution Vulcan inventory.
- \bullet Random errors on the annual national total are \sim 2% with existing coverage, errors on monthly totals are < 5%
- $\bullet~$ Fixed FF CO $_2$ in CO $_2$ inversions can significantly bias NEE, can be solved by also assimilating $\Delta^{\rm 14}{\rm CO}_2$
- Possibility for a post-doc to work on this at NOAA Boulder. If you're a post-doc or may soon become one, and are proficient in TM5, contact me for more details.

Danian	Daniana	D	Dastaulau
Region 1	Region 2	Prior	Posterior
	Central US	0.08	-0.27
Eastern US	Western US	0.07	-0.02
	Central + Western US	0.10	-0.25
	Eastern US	0.08	-0.27
Central US	Western US	0.04	-0.04
	Eastern + Western US	0.09	-0.26
	Eastern US	0.07	-0.02
Western US	Central US	0.04	-0.04
	Eastern + Central US	0.08	-0.05

$$\begin{split} \frac{d\textbf{C}}{dt} = & F_{\text{oce}} + F_{\text{bio}} + F_{\text{fos}} \\ \frac{d}{dt} \left(\textbf{C} \cdot \Delta_{\text{atm}} \right) = & \Delta_{\text{fos}} F_{\text{fos}} + \Delta_{\text{atm}} \left(F_{\text{oce}} + F_{\text{bio}} \right) \\ & + \Delta_{\text{oce}} F_{\text{oce} \to \text{atm}} + \Delta_{\text{bio}} F_{\text{bio} \to \text{atm}} \\ & + \alpha \left(F_{\text{nuc}} + F_{\text{cosmo}} \right) \end{split}$$

tracers transported fluxes estimated