TM5 – Synthesis analysis of atmospheric $\delta^{13}\text{CH}_4$

Vilma Kangasaho 22.11.2019

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Background – CH₄

Background – CH₄ carbon isotopes

- Stable isotopes ¹²CH₄ and ¹³CH₄
 - isotopic separation due to different masses
- Each CH₄ source have process specific isotopic signature

•
$$\delta^{13}CH_4 = \left[\frac{\binom{1^3}{(1^3}CH_4/\binom{1^2}{(1^3}CH_4)_{sample}}{\binom{1^3}{(1^3}CH_4/\binom{1^2}{(1^2}CH_4)_{standard}} - 1\right] 1000\%$$

Source	δ ¹³ CH ₄ (‰)	Source	δ ¹³ CH ₄ (‰)
Rice agriculture(EDGAR)	-63 ¹	Landfills and waste water treatment (EDGAR)	-55 ¹
Enteric Fermentation and Manure Management (EDGAR)	-62 ¹ [-67, -54] ²	Termites (Ito et al.)	-57 ¹
Coal (EDGAR)	-35 ¹ [-64, -36] ³	Fire (GFED)	-21.8 ¹ [-25, -12] ²
Oil and gas (EDGAR)	-40 ¹ [-56, -29] ²	Ocean (FMI)	-59 ¹
Residential (EDGAR)	-38 ¹	Wetlands (LPX-Bern DYPTOP)	-59 ¹ [-74.9, -50] ⁵
Geological (Etiope et al. 2019)	-68,-24.3 ⁴	Wildanimals (FMI)	-62 ¹
ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET	¹ Monteil et al. (2011) (Houweling et al. (2006), Bergamaschi (1997); Levin (1994); Berga- $_3$		

EDGAR 4.2 FT2010/4.3.2

¹ Monteil et al. (2011) (Houweling et al. (2006), Bergamaschi (1997); Levin (1994); Bergamaschi et al. (1998); Gupta et al. (1996); Canttell et al. (1990); Brenninkmeijer et al. (1995); Tyler et al. (1994))

² Aryeh et al. 2017 ³ Sherwood et al. 2017 ⁴ Etiope et al. 2019 ⁵ Ganesan et al. (2018)

Wetlands – isotopic signature variation globally

Ganesan et al. (2018) values combined with Monteil et al. (2011) values

4

Enteric Fermentation and Manure Management

Coal

Sherwood et al. 2017

Oil and Gas

Aryeh et al. 2017

7

Fire

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Aryeh et al. 2017

8

Geological

Etiope et al. 2019

Observations of \delta^{13}CH_4 \& CH_4 during 2000-2017

TM5 -set up for spin-up

- Resolution 1° x 1° over Europe, elsewhere 6° x 4°
- Transports CH₄ and ¹³CH₄ but the traces are not communicating
- Includes OH, CI + O¹D chemistry atmospheric sinks
 - OH; Spivakovsky x 0,92
- All isotopic signature values are included
- Prior emissions are multiplied by 0.93 for keeping the CH₄ level constat
 - In spin-up the CH_4 should remain in the same level at each loop
- Spin-up is done for year 2000 i.e. looping the same year multiple time
- Two different initial fields for 13CH4
 - 1. Initial field not reasonable (TM5 should correct the field)
 - Delta values are set to be remarkable more negative than in reality
 - 2. Initial field resonable
 - Delta values are set to correspond observations

Rseults from spin-up – not resonable initial field (SPO)

Results from the spin-up – resonable field (SPO)

Comparision absolute values (SPO)

TM5 synthesis analysis

- Find out the impact of each change to the model and how the changes in delta signature values and priors affect the seasonality in delta values
- EDGAR4.3.2 has a seasonal cycle where as 4.2 FT2010 has none
- 1. EDGAR4.3.2 + all sources with isotopic map if available
- 2. EDGAR4.3.2 + no map in EDGAR components (=single value used globally for each source from Table 1), others with map
- 3. EDGAR 4.2 + no map in EDGAR components, others with map
- 4. EDGAR4.2 + rice(EDGAR4.3.2) + no map in EDGAR components, others with map
- 5. EDGAR4.2 + enteric fermentation and manure management (EDGAR4.3.2) + no map in EDGAR components, others with map
- 6. EDGAR4.2 + coal (EDGAR4.3.2) + no map in EDGAR components, others with map

EDGAR 4.3.2 vs 4.2 monthly 2000-2010

16

Compare all runs - absolute values (ALT)

Compare runs with EDGAR4.3.2 component- detrended (NWR)

Compare runs EDGAR 4.3.2 vs 4.2 map/nomap-detrended- detrended (NWR)

Compare runs with EDGAR4.3.2 component – detrended (MHD)

Compare runs EDGAR 4.3.2 vs 4.2 map/nomap-detrended- detrended (MHD)

Compare runs with EDGAR4.3.2 component- detrended (ALT

Compare runs EDGAR 4.3.2 vs 4.2 map/nomap-detrended (ALT)

Conclusions

- TM5 receives a balance after the spin-up, but the balance differs much from the observations
- Spin-up takes about 40 years
- Synthesis analysis:
 - Hard to say if signature maps have a big difference on results further investigations
 - There is no single change that makes a great difference all modifications affect only little
 - The effect of CH4 seasonal cycle to d13CH4 is found at some stations (e.g MHD)
 - Rather episodical, the effect can be more than 1 permille (approximate range of measurement error)

Future work

- Separating CI and O¹D chemistry
- Adding communicating of CH_4 and ${}^{13}CH_4$ tracers
- Investigate how wetland emissions and atmospheric chemistry affects the seasonality of delta values
- Look for stations where edgar components are visible

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Thank you!

@VilmaKangasahovilma.kangasaho@fmi.fi+358 29 539 2245

