next up previous
Next: Spectral fields Up: Grids and transformations Previous: Grids and transformations

Spherical coordinates

Longitude-latitude coordinates $(\lambda,\theta,a)$ are defined with $\lambda\in[-\pi,\pi]$ the longitude, $\theta\in[-\pi/2,\pi/2]$ the latitude, and $a$ the radius of the earth. A new latitude coordinate $\mu$ is introduced:

\begin{displaymath}
\mu =  \sin\theta
\quad,\qquad
\cos\theta = \sqrt{1-\mu^2}
\end{displaymath} (3.1)

Table 3.1 lists the coordinate transformations from 2D carthesian to spherical.


Table 3.1: Coordiante transformations from 2D carthesian to spherical.
       
  carthesian spherical spherical, $\mu=\sin\theta$
       
       
$\vec{\mathbf{x}}$ $(x,y)$ $(\lambda,\theta)$ $(\lambda,\mu)$
       
       
  $\mbox{d}x$ $a \cos\theta \mbox{d}\lambda$  
  $\mbox{d}y$ $a \mbox{d}\theta$  
       
       
$\vec{\mathbf{\nabla}}$ $( \frac{\partial}{\partial x} , \frac{\partial}{\partial y} )$ $( \frac{1}{a\cos\theta}\frac{\partial}{\partial\lambda}
 ,  \frac{1}{a}\frac{\partial}{\partial\theta} )$ $\frac{1}{a\cos\theta} (\
\frac{\partial}{\partial\lambda}
 ,  (1-\mu^2)\frac{\partial}{\partial\mu}
 )$
       
       
$\vec{\mathbf{\nabla}}\cdot\vec{\mathbf{v}}$ $\frac{\partial v_{x}}{\partial x} + \frac{\partial v_y}{\partial y}$ $\frac{1}{a\cos^2\theta} \{\
\frac{\partial v_{\lambda}\cos\theta}{\partial\lambda}
 +  \cos\theta\frac{\partial(v_{\theta}\cos\theta)}{\partial\theta}
 \}$ $\frac{1}{a\cos^2\theta} \{\
\frac{\partial(v_{\lambda}\cos\theta)}{\partial\lambda}
 +  (1-\mu^2)\frac{\partial(v_{\theta}\cos\theta)}{\partial\mu}
 \}$
       



next up previous
Next: Spectral fields Up: Grids and transformations Previous: Grids and transformations
TM5 2009-03-03