Urban Biology!
Urban Biology!

References - Bioplastics to the rescue!

(1) Álvarez-Chavez, C. R., Edwards, S., Moure-Eraso, R., &Geiser, K. (2012). Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement. Journal of Cleaner Production, 23(1), 47-56.

(2) Amulya, K., Jukuri, S., & Mohan, S. V. (2015). Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling. Bioresource technology, 188, 231-239.

(3) Azapagic, A., Emsley, A., &Hamerton, I. (2003). Polymers: the environment and sustainable development. John WileyandSons.

(4) Bolck, C. (2006). Bioplastics. Groene Grondstoffen Series. Agrotechnology& Food Sciences Group, Wageningen. ISBN 90-8585-014-2.

(5) Bouwmeester, H., Hollman, P. C., & Peters, R. J. (2015). Potential Health Impact of Environmentally Released Micro-and Nanoplastics in the Human Food Production Chain: Experiences from Nanotoxicology. Environmentalscience&technology, 49(15), 8932-8947.

(6) Cruz-Romero, M., & Kerry, J. P. (2008). Crop-based biodegradable packaging and its environmental implications. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 3(82), 25.

(7) Endo, S., Takizawa, R., Okuda, K., Takada, H., Chiba, K., Kanehiro, H., ... & Date, T. (2005). Concentration of polychlorinated biphenyls (PCBs) in beached resin pellets: variability among individual particles and regional differences. Marine Pollution Bulletin, 50(10), 1103-1114.

(8) Gumel, A. M., Annuar, M. S. M., &Chisti, Y. (2013). Recent advances in the production, recovery and applications of polyhydroxyalkanoates. Journal of Polymersandthe Environment, 21(2), 580-605.

(9) Jain, R., & Tiwari, A. (2015). Biosynthesis of planet friendly bioplastics using renewable carbon source. Journal of Environmental Health Scienceand Engineering, 13(1), 11.

(10) Kale, G., Kijchavengkul, T., Auras, R., Rubino, M., Selke, S. E., & Singh, S. P. (2007). Compostability of bioplastic packaging materials: an overview. Macromolecularbioscience, 7(3), 255-277.

(11) Keshavarz, T., & Roy, I. (2010). Polyhydroxyalkanoates: bioplastics with a green agenda. Current opinion in microbiology, 13(3), 321-326.

(12) Koch, H. M., & Calafat, A. M. (2009). Human body burdens of chemicals used in plastic manufacture. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2063-2078

(13) Madison, L. L., & Huisman, G. W. (1999). Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiologyandmolecularbiology reviews, 63(1), 21-53.

(14) Pilla, S. (Ed.). (2011). Handbook of bioplastics and biocomposites engineering applications (Vol. 81). John Wiley&Sons.

(15) PlasticsEurope, E. U. P. C., & EPRO, E. (2015) Plastics - the Facts 2015 An analysis of European plastics production, demand and waste data file:///C:/Users/4190211/AppData/Local/Google/Chrome/Downloads/FinalPlasticsTheFacts2015_30p_25112015.pdf (geraadpleegd 3-12-2015)

(16) Sanchez-Garcia, M. D., Lopez-Rubio, A., & Lagaron, J. M. (2010). Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends in Food Science& Technology, 21(11), 528-536.

(17) Zhang, Y., Rempel, C., &Liu, Q. (2014). Thermoplastic starch processing and characteristics - a review. Critical reviews in food scienceandnutrition, 54(10), 1353-1370.