next up previous
Next: Specific humidity Up: TM5 data Previous: Temperature

Subsections

Potential Vorticity, Potential Temperature, Eqv. Latitude

Task

task description
pv potential vorticity
pvth potential vorticity, potential temperature ('theta'), eqv. lat of pv on theta levels

Content versions

The content version is an attribute in hdf files.

content version description
10 initial number pv (march 2003)
10 initial number pvth (oct 2003)

Fields

file param description unit shape time res. (hr) grib code hor. comb. vert. comb Comments
                   
pv pv potential vorticity K m2/kg/s im x jm x lm [21,03], .. 060 mass aver mass aver  
                   
pvth pv potential vorticity K m2/kg/s im x jm x lm [21,03], ..   mass aver mass aver  
  theta potential temperature K im x jm x lm [21,03], ..   mass aver mass aver  
  eqvlatb boundaries of eqv. lat. bins deg 0:jm x ntheta [21,03], ..        
  eqvinds index of eqv. lat. bin index im x jm x ntheta          
                   

Potential vorticity fields are valid for 6 hour intervals.

Computed from ECMWF fields valid for the mid of the interval. First computed on ECMWF's Gaussian Grid, then mass weighted average over cells and layers.

\begin{figure}\psfig{file=eps/times_6hr.eps,scale=0.5}
\end{figure}

About potential vorticity

Definition

Definition according to [Holton, 1992, §4.3]:

\begin{displaymath}
P =  \left(\zeta_{\theta}+f\right)\left(-g\frac{\partial\theta}{\partial p}\right)
\end{displaymath} (4.1)

where

Implementation

\psfig{file=eps/isentrop.eps,scale=0.6}
Gradients on isentropic surface.

Use equation 1.22 in [Holton, 1992] for horizontal gradient along isentropic surface:

$\displaystyle \left(\frac{\partial F}{\partial x}\right)_{\theta}$ $\textstyle =$ $\displaystyle \left(\frac{\partial F}{\partial x}\right)_{\eta}
 +  \frac{\partial F}{\partial\eta}\left(\frac{\partial \eta}{\partial x}\right)_{\theta}$ (4.4)
  $\textstyle =$ $\displaystyle \left(\frac{\partial F}{\partial x}\right)_{\eta}
 -  \frac{\part...
...c{\partial\theta}{\partial x}\right)_{\eta}
\frac{\partial\eta}{\partial\theta}$ (4.5)

where first formula on page 22 is used for:
$\displaystyle \left(\frac{\partial\eta}{\partial x}\right)_{\theta}$ $\textstyle =$ $\displaystyle - \left(\frac{\partial\eta}{\partial\theta}\right)_{x}
\left(\fra...
...c{\partial\theta}{\partial x}\right)_{\eta}
\frac{\partial\eta}{\partial\theta}$ (4.6)

Thus:
$\displaystyle \zeta_{\theta}$ $\textstyle =$ $\displaystyle \left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)_{\theta}$ (4.7)
  $\textstyle =$ $\displaystyle \left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}...
...l \theta}{\partial y}\right)_{\eta}
\right] \frac{\partial\eta}{\partial\theta}$ (4.8)

Horizontal gradient of potential temperature:
$\displaystyle \frac{\partial \theta}{\partial x}$ $\textstyle =$ $\displaystyle \frac{\partial}{\partial x}\left[T\left(\frac{p_0}{p}\right)^{\kappa}\right]$ (4.9)
  $\textstyle =$ $\displaystyle \frac{\partial T}{\partial x}\left(\frac{p_0}{p}\right)^{\kappa}
...
...0}{p}\right)^{\kappa} \frac{p}{p_0}\frac{p_0}{p^2}\frac{\partial p}{\partial x}$ (4.10)
  $\textstyle =$ $\displaystyle \left(\frac{p_0}{p}\right)^{\kappa}
\left[ \frac{\partial T}{\partial x} - \kappa T \frac{\partial\ln p}{\partial x} \right]$ (4.11)

Pressure gradient of potential temperature:
$\displaystyle \frac{\partial\theta}{\partial p}$ $\textstyle =$ $\displaystyle \frac{\partial}{\partial p}\left[T\left(\frac{p_0}{p}\right)^{\kappa}\right]$ (4.12)
  $\textstyle =$ $\displaystyle \frac{\partial T}{\partial p}\left(\frac{p_0}{p}\right)^{\kappa}
 -  \kappa T \left(\frac{p_0}{p}\right)^{\kappa}\frac{p}{p_0}\frac{p_0}{p^2}$ (4.13)
  $\textstyle =$ $\displaystyle \left(\frac{p_0}{p}\right)^{\kappa}
\left[ \frac{\partial T}{\partial p} - \kappa \frac{T}{p} \right]$ (4.14)

Potential vorticity:
$\displaystyle P$ $\textstyle =$ $\displaystyle -g \left(\zeta_{\theta}+f\right) \frac{\partial\theta}{\partial p}$ (4.15)
  $\textstyle =$ $\displaystyle -g \left(\zeta_{\eta}
 -  \left[
\frac{\partial v}{\partial\eta}\...
...rac{\partial\eta}{\partial\theta}
 + f\right) \frac{\partial\theta}{\partial p}$ (4.16)
  $\textstyle =$ $\displaystyle -g \left(\left(\zeta_{\eta} + f\right) \frac{\partial\theta}{\par...
...t] \frac{\partial\eta}{\partial\theta}
\frac{\partial\theta}{\partial p}\right)$ (4.17)
  $\textstyle =$ $\displaystyle -g \left(\left(\zeta_{\eta}+f\right) \frac{\partial\theta}{\parti...
...al u}{\partial p}\left(\frac{\partial \theta}{\partial y}\right)_{\eta}
\right)$ (4.18)
  $\textstyle =$ $\displaystyle -g \left(\frac{p_0}{p}\right)^{\kappa}
\left(
\left(\zeta_{\eta}+...
...tial T}{\partial y} - \kappa T \frac{\partial\ln p}{\partial y} \right]
\right)$ (4.19)
  $\textstyle =$ $\displaystyle -g \left(\frac{p_0}{p}\right)^{\kappa} \frac{1}{p}
\left(
\left(\...
...rac{\partial\ln p}{\partial y} \right] \frac{\partial u}{\partial\ln p}
\right)$ (4.20)

In terms of $\ln p_s$ this becomes:
\begin{displaymath}
P = 
-g \left(\frac{p_0}{p}\right)^{\kappa} \frac{1}{p}
...
...\partial y} \right] \frac{\partial u}{\partial\ln p}
\right)
\end{displaymath} (4.21)

Transformation to spherical coordinates using (3.20) gives:
\begin{displaymath}
P = 
-g \left(\frac{p_0}{p}\right)^{\kappa} \frac{1}{p}
...
...partial\mu} \right] \frac{\partial u}{\partial\ln p}
\right)
\end{displaymath} (4.22)

In old preprocessing, an analog of (4.20) was implemented with computed vorticity:

\begin{displaymath}
P =  -g \left(\frac{p_0}{p}\right)^{\kappa} \frac{1}{p}
...
...{\partial y}\right]\frac{\partial u}{\partial\ln p}
\right)
\end{displaymath} (4.23)

PV from ECMWF?

060, PV, Potential vorticity, K m2/kg/s

In ECMWF archive since 2000-07-18 ?

Seems to be only on presure levels and potential temperature levels.

Potential temperature

3D field computed from temperature and pressure.

Definition according to [Holton, 1992, page 52]:

\begin{displaymath}
\theta = T \left(\frac{p_0}{p}\right)^{\kappa}
\end{displaymath} (4.24)

with

Equivalent latitude

Equivalent latitude of pv on some selected theta levels:

300.0, 315.0, 330.0, 350.0, 370.0, 395.0, 475.0, 600.0, 850.0 K


next up previous
Next: Specific humidity Up: TM5 data Previous: Temperature
TM5 2009-03-03